Thermal Characterization of Poly(styrene sulfonate)/Layered Double Hydroxide Nanocomposites

Christopher O. Oriakhi, Isaac V. Farr and Michael M. Lerner

Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331

Abstract: Phase and morphological changes during thermolysis of $Mg_4Al_2(OH)_{12}CO_3 \cdot nH_2O$ and $Zn_6Al_2(OH)_{16}CO_3 \cdot nH_2O$ layered double hydroxides (LDH) and their nanocomposites with poly(styrene sulfonate) (PSS) are studied by X-ray powder diffraction (XRD), scanning and transmission electron micrography (SEM and TEM) and thermal analyses. Mg_4Al_2 (OH)₁₂CO₃ $\cdot nH_2O$ and $Mg_2Al(OH)_6[CH_2CH(C_6H_4SO_3)] \cdot 3H_2O$ show comparable thermal stabilities: the layered structure is lost above 300 $^{\circ}$ C with the nucleation of the MgO phase at approximately 400 $^{\circ}$ C and the MgAl₂O₄ phase at approximately 800 $^{\circ}$ C Zn₃Al(OH)₈[CH₂CH(C₆H₄SO₃)] $\cdot nH_2O$ undergoes complete oxidative pyrolysis of the polyanion by 500 $^{\circ}$ C. Crystalline oxide products are obtained at a temperature approximately 300 $^{\circ}$ C lower than that of thermolysis of Zn₆Al₂(OH)₁₆CO₃ $\cdot nH_2O$. The SEM and TEM images show that the thermolysis of LDH carbonates produces dense aggregates containing microcrystalline particles, whereas $Mg_2Al(OH)_6[CH_2CH(C_6H_4SO_3)] \cdot 3H_2O$ forms a macroporous solid.

Key Words: Layered Double Hydroxides • Nanocomposites • Poly(styrene sulfonate)

Clays and Clay Minerals; April 1997 v. 45; no. 2; p. 194-202; DOI: <u>10.1346/CCMN.1997.0450207</u> © 1997, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)