

Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties

K. Prashantha^{1,2*}, M. F. Lacrampe^{1,2}, P. Krawczak^{1,2}

¹Univ. Lille Nord de France, F-59500 Lille, France ²Ecole des Mines de Douai, Polymers and Composites Technology and Mechanical Engineering Department, 941 rue Charles Bourseul, BP 10838, F-59508 Douai Cedex, France

Received 25 June 2010; accepted in revised form 4 November 2010

Abstract. Halloysites/polypropylene nanocomposites with different nanotubes contents were prepared by diluting a masterbatch containing 30 wt.% halloysites with polypropylene (PP). Unmodified (HNTs) and quaternary ammonium salt treated (QM-HNTs) halloysite nanotubes were used. Both degree of crystallinity and crystallization temperature increase upon addition of halloysites into PP, thus indicating a potential nucleation effect induced by the nanotubes. An homogeneous distribution and dispersion of nanotubes was observed throughout the PP matrix, with a slightly better dispersion in the case of modified QM-HNTs compared to unmodified HNTs. Mechanical tests in tension, bending and notched impact demonstrated that strength and modulus of the nanocomposites significantly increase with addition of halloysites (QM-HNTs) lead to globally better performances due to strong interfacial interaction between the polymer matrix and the nanotubes.

Keywords: nanocomposites, polypropylene, halloysite nanotubes, masterbatch

^{*}Corresponding author, e-mail: <u>kalappa.prashantha@mines-douai.fr</u> © BME-PT