Swelling Pressure of Montmorillonite Layers versus H-O-H Bending Frequency of the Interlayer Water

Laibin Yan, Philip F. Low and Charles B. Roth
Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-1150

Abstract

The in-depth perturbation of vicinal water by the surfaces of montmorillonite layers was investigated by relating the swelling pressure, Π, of the montmorillonite layers to the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bending frequency, v_{2}, of the interlayer water. For this purpose, an oriented montmorillonite gel was deposited on a porous filter in an environmental chamber. On its underside the filter was in contact with a solution maintained at atmospheric pressure. By admitting nitrogen gas at a known pressure to the environmental chamber, water was squeezed from the gel into the solution until equilibrium was reached and Π equalled the applied pressure. Then the gel was divided into 2 parts. One part was used for the gravimetric determination of the water content, m_{w} / m_{c}. It was possible, therefore, to determine m_{w} / m_{c} as a function of Π. The other part of the sample was transferred to an FTIR spectrometer where the v_{2} of the water within it was measured by attenuated total reflectance. Thus, the same samples were used to determine the dependence of both Π and v_{2} on m_{w} / m_{c}. It was found that Π and v_{2} were both exponential functions of m_{c} / m_{w} and so a linear relation was found between $\ln (\Pi+1)$ and $\ln \left(v_{2} / v_{2}{ }^{0}\right)$, where $v 2^{\circ}$ is the H -OH bending frequency of bulk water. These results strongly support the conclusion that the in-depth perturbation of the water by the surfaces of the montmorillonite layers is primarily responsible for both the development of Π and the departure of v_{2} from $v_{2}{ }^{\circ}$.

Key Words: Bending Frequency • Hydration • Infrared Spectroscopy • Interlayer Force • Interlayer Water • Montmorillonite - Swelling Pressure

Clays and Clay Minerals; December 1996 v. 44; no. 6; p. 749-756; DOI: 10.1346/CCMN.1996.0440605
© 1996, The Clay Minerals Society
Clay Minerals Society (www.clays.org)

