Quantification Curves for XRD Analysis of Mixed-Layer 14Å/10 Å Clay Minerals

C. H. Pons ${ }^{1}$, C. de la Calle ${ }^{2}$ and J. L. Martin de Vidales ${ }^{3}$
${ }^{1}$ Université d'Orléans, CRMD Unité Mixte CNRS-Université, U.F.R. Faculté des Sciences Rue de Chartres BP 6759, 45067 Orléans Cedex 2, France
${ }^{2}$ Instituto de Ciencia de Materiales, Sede D, C.S.I.C., c) Serrano 11328006 Madrid, Spain
${ }^{3}$ Departamento de Quimica Agricola, Facultad de Ciencias Universidad Autonoma de Madrid, 28049 Madrid, Spain

Abstract

Using theoretical profiles of diffracted X-ray intensity for interstratification between layers having d-spacings around 14.3 \AA and $10.1 \AA$, a series of diagrams was derived from which the proportion of $14.3 \AA$ layers $\left(\mathrm{W}_{14}\right)$ and the probability of passing from a $14.3 \AA$ layer to a $10.1 \AA$ layer $\left(\mathrm{P}_{14 / 10}\right)$ can be derived. W_{14} can be derived independently of $\mathrm{P}_{14 / 10}$ using the angular distance between reflections situated at 18.2° and $25.4^{\circ} \quad 2 \theta(\mathrm{CuK} \alpha)$. Once W_{14} is determined, $\mathrm{P}_{14 / 10}$ may be obtained using the angular width of the diffuse reflections between 27° and $34^{\circ} \quad 2 \theta$. In this case, two different diagrams are proposed for $\mathrm{P}_{14 / 10}$ determination because experimental X-ray patterns show either one or two diffuse reflections. Comparison of five experimental patterns with theoretical patterns calculated using W_{14} and $P_{14 / 10}$ obtained using these diagrams indicates that the method can be useful for determining W_{14} and $\mathrm{P}_{14 / 10}$ in unknown samples. Moreover, the method described is independent of the Lorentz polarization factor and the layer type. The d-spacings associated with the two kinds of layers, however, should be similar ($\pm 1 \%$) to those for which the determinative diagrams were calculated.

Key Words: Biotite • Chlorite • Interstratification • Mixed-layer quantification • Vermiculite Clays and Clay Minerals; April 1995 v. 43; no. 2; p. 246-254; DOI: 10.1346/CCMN.1995.0430212 © 1995, The Clay Minerals Society Clay Minerals Society (www.clays.org)

