The Use of Color to Quantify the Effects of pH and Temperature on the Crystallization Kinetics of Goethite Under Highly Alkaline Conditions

Tetsushi Nagano¹, Satoru Nakashima², Shinichi Nakayama¹ and Muneaki Senoo¹

Abstract: The crystallization kinetics of goethite were studied colorimetrically under highly alkaline conditions (pH 10.1–12.2) at temperatures from 40° to 85°C. Color changes during crystallization from fresh precipitates, plotted on a*–b* colorimetric diagrams, were used to discriminate between pure goethite and mixtures of goethite and hematite. Only the b* value increased as goethite crystallization proceeded, and even a minor increase in the a* value revealed the existence of hematite. The rate of goethite crystallization, estimated from the b* value, could be modeled by a pseudo-first-order rate law. This rate depended both on pH and on temperature. Apparent activation energies for the reactions of 56.1 kJ/mol at pH 11.7 and 48.2 kJ/mol at pH 12.2 were estimated from Arrhenius plots.

Key Words: Color • Colorimetry • Crystallization • Goethite • Hematite • Kinetics • L*a*b* color space

Clays and Clay Minerals; April 1994 v. 42; no. 2; p. 226-234; DOI: 10.1346/CCMN.1994.0420213
© 1994, The Clay Minerals Society
Clay Minerals Society (www.clays.org)

¹ Environmental Geochemistry Laboratory, Japan Atomic Energy Research Institute Tokai, Naka, Ibaraki 319-11, Japan

² Geological Institute, Faculty of Science, The University of Tokyo Hongo, Tokyo 113, Japan