Synthesis and Paragenesis of Na-Beidellite as a Function of Temperature, Water Pressure, and Sodium Activity* J. Theo Kloprogge^{1, **}, A. M. J. van der Eerden¹, J. Ben H. Jansen^{1, ***}, John W. Geus² and Roelof D. Schuiling¹ * Publication of the Debye Institute, University of Utrecht. **Abstract:** In the chemical system Na₂O-Al₂O₃-SiO₂-H₂O, the stability field of Na-beidellite is presented as a function of pressure, temperature, and Na- and Si-activity. Na_{0.7}-beidellite was hydrothermally synthesized using a stoichiometric gel composition in the temperature range from 275° to 475° C and at pressures from 0.2 to 5 kbar. Below 275° C kaolinite was the only crystalline phase, and above about 500° C paragonite and quartz developed instead of beidellite. An optimum yield of 95% of the Na_{0.7}- beidellite was obtained at 400° C and 1 kbar after 20 days. Gels with a Na-content equivalent to a layer charge lower than 0.3 per O₂₀(OH)₄ did not produce beidellite. They yielded kaolinite below 325° C and pyrophyllite above 325° C. With gels of a Na-content equivalent to a layer charge of 1.5, the Na-beidellite field shifted to a minimum between temperatures of 275° and 200° C. This procedure offers the potential to synthesize beidellite at low temperatures. Beidellite synthesized from Na_{1.0}-gel approach a Na_{1.35} composition and those from Na_{1.5}- and Na_{2.0}-gels a Na_{1.8} composition. **Key Words:** Beidellite • Electron microprobe • Hydrothermal synthesis • Kaolinite • Paragonite • Pyrophyllite • Scanning electron microscopy • X-ray diffraction Clays and Clay Minerals; August 1993 v. 41; no. 4; p. 423-430; DOI: 10.1346/CCMN.1993.0410403 © 1993, The Clay Minerals Society (www.clays.org) ¹ Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands ² Department of Inorganic Chemistry, University of Utrecht, P.O. Box 80.083, 3508 TB Utrecht, The Netherlands ^{**} Present address: Plastics and Rubber Institute TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands. *** Present address: Bowagemi, Prinses Beatrixlaan 20, 3972 AN Driebergen, The Netherlands.