Properties and Characterization of Al₂O₃ and SiO₂-TiO₂ Pillared Saponite

P. B. Malla¹ and S. Komarneni^{*, 2}

¹ Research and Development, Thiele Kaolin Company, P.O. Box 1056, Sandersville, Georgia 31082
² Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

* Also with the Department of Agronomy.

Abstract: A saponite pillared with a single (Al₂O₃) or a mixed (SiO₂-TiO₂) oxide exhibited basal spacings of 16-19 and 30–40 Å, respectively. The pillared structures were found to be stable up to 700° C. Water, nitrogen, and high resolution argon adsorption were used to study the effect of thermal treatments on surface chemistry, pore structure, and surface area of these pillared clays. The pillared saponites exhibited a hydrophobic behavior at temperatures $> 500^{\circ}$ C, whereas such behavior was observed at $\ge 300^{\circ}$ C for montmorillonite. Most of the micropores in the Al₂O₃ pillared clays were < 10 Å, whereas the SiO₂-TiO₂ pillared clays showed a broad distribution of pores in both micropore and mesopore regions. The SiO₂-TiO₂ pillared samples possessed higher surface area compared with Al₂O₃ pillared clays. The percent decrease in surface area was smaller for pillared saponites compared with pillared montmorillonites when calcined from 300° to 700° C, indicating a higher thermal stability of the former. The pillared clays were also characterized by solid state ²⁷Al and ²⁹Si magic-angle spinning nuclear magnetic resonance (MAS/NMR) spectroscopy. There was no direct evidence of cross-linking (covalent bonding between the clay layer and pillar) in montmorillonite irrespective of the types of pillars. In saponite, however, a significant structural modification took place. ²⁷Al spectra of Al₂O₃ pillared saponite heated at \geq 300° C appear to indicate an increase in Al^{VI} as a result, at least in part, of initiation of hydrolytic splitting of Si-O-Al bonds. The actual release of Al from the tetrahedral sheet probably occurred at a temperature $> 500^{\circ}$ C and completed around 700° C with the formation of Si-O-Si linkages. The decreased intensity of peak due to Si(1Al) in ²⁹Si spectra of the sample heated at 700° C corroborates the ²⁷Al MAS/NMR results. Additionally, the ²⁹Si spectra indicated a cross-linking between SiO₄ (clay sheet) with Al_2O_3 pillars, which could be achieved by inverting some silica tetrahedra into the interlayer. ²⁷Al and ²⁹Si spectra of SiO₂TiO₂ pillared saponite also showed the trend similar to that exhibited by Al_2O_3 pillared saponite, indicating that the crystal chemistry of the host may be more important than the nature of pillars in the structural modification and cross-linking behavior of thermally treated pillared clays.

Key Words: Adsorption • Clays • Cross-linking • MASNMR • Montmorillonite • Pillared clay • Saponite • Smectite

Clays and Clay Minerals; August 1993 v. 41; no. 4; p. 472-483; DOI: <u>10.1346/CCMN.1993.0410408</u> © 1993, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)