Chemiographic Analysis of Trioctahedral Smectite-to-Chlorite Conversion Series from the Ohyu Caldera, Japan

A. Meunier¹, A. Inoue² and D. Beaufort¹

Abstract: The chemical compositions of chlorite-smectite mixed-layered minerals (C/S) from the Ohyu caldera (Inoue, 1985) are analyzed using M^+ -4Si-3R²⁺ diagrams. The assumed original saponite has the following composition:

Si $_{3.54}$ Al $_{0.46}$ O $_{10}$ Al $_{0.175}$ Fe $^{2+}$ $_{1.385}$ Mg $_{1.295}$ Mn $_{0.02}$ (OH) $_{2}$ M $^{+}$ $_{0.56}$. Random C/S minerals (100 to 80% expandable layers) are interpreted as an interstratification of the starting 2:1 smectite layer with a Al $_{x}$ R $^{2+}$ $_{3-x}$ interlayer. The 2:1 smectite layer charge remains constant but Ca, Na, K cations are replaced by a Al-R $^{2+}$ complex ion. The brucitic layer (produced by the polymerization of the complex ions) and the 2:1 smectite layer form a 14 Å non-expandable phase having a composition different from a true chlorite.

The true chlorite layers first appear in the ordered (corrensite) phase composed of a high charge saponite: $\mathrm{Si}_{3.35}\mathrm{Al}_{0.65}\mathrm{O}_{10}\mathrm{R}^{2+}_{3}(\mathrm{OH})_{2}\mathrm{M}^{+}_{0.65}$ and an octahedral vacancy-free chlorite $\mathrm{Si}_{2.90}\mathrm{Al}_{1.10}\mathrm{O}_{10}\mathrm{Al}_{1.10}\mathrm{R}^{2+}_{4.90}(\mathrm{OH})_{8}$. The recrystallization of the original trioctahedral smectite into a high-charge saponite decreases the b-dimension difference with the chlorite component.

From these data, it is suggested that the trioctahedral smectite-to-chlorite conversion is controlled by three reactions: 1. fixation and polymerization of $Al-R^{2+}$ complex ions in the interlayer region of the original smectite producing a 14 $\,\mathring{A}\,$ non-expandable phase (the interlayering of this phase with the original smectite gives the randomly interstratified C/S mineral. 2. dissolution of these random mixed-layered minerals and precipitation of corrensite. 3. dissolution of corrensite and growth of Fe-rich chlorite.

Key Words: Chlorite/smectite mixed layer • Corrensite • Ohyu caldera • Smectite-to-chlorite conversion

Clays and Clay Minerals; August 1991 v. 39; no. 4; p. 409-415; DOI: 10.1346/CCMN.1991.0390410
© 1991, The Clay Minerals Society
Clay Minerals Society (www.clays.org)

¹ Laboratoire de Pétrologie des Altérations Hydrothermales URA 721 CNRS. Université de Poitiers. 40, avenue du Recteur Pineau. 86022 Poitiers Cedex. France

² Geological Institute, College of Arts and Sciences, Chiba University, Chiba 260, Japan