Identification of Noncrystalline (Fe,Cr)(OH)₃ by Infrared Spectroscopy

James E. Amonette and Dhanpat Rai

Department of Environmental Sciences, Battelle, Pacific Northwest Laboratories P.O. Box 999, Richland, Washington 99352

Abstract: Iron-chromium hydroxides are important solid phases governing the aqueous concentrations of Cr(III) in soils and fly ashes. Although direct identification of noncrystalline (Fe,Cr)(OH)₃ is difficult, the infrared spectra of noncrystalline Fe(OH)₃ and Cr(OH)₃, coprecipitated (Fe,Cr)(OH)₃, and physical mixtures of Fe(OH)₃ and Cr(OH)₃ can be distinguished on the basis of the asymmetric stretching doublet (v_3) of structural carbonate anions. As the Cr mole fraction of the coprecipitated (Fe,Cr) (OH)₃ increases, the position of the low-frequency v_3 peak (v_3'') changes progressively to higher frequencies, and the carbonate v_3 splitting decreases. No change in carbonate v_3 splitting or v_3'' location was observed for physical mixtures of Fe (OH)₃ and Cr(OH)₃. The changes in v_3 splitting are believed to be caused by different degrees of polarization of the carbonate ligand by the Fe and Cr cations.

Pure $Cr(OH)_3$ exhibits a strong affinity for carbonate and H_2O and tends to remain noncrystalline even at very high pHs. In contrast, pure $Fe(OH)_3$ gradually converts to crystalline goethite at high pH, to the exclusion of much of the H_2O and carbonate. The presence of Cr in $(Fe,Cr)(OH)_3$ solid solutions seems to inhibit the transformation to crystalline goethite. The strong association of carbonate with Cr and the kinetic inertness of Cr(III) inner-sphere complexes in general may account for the maintenance of non-crystalline solid-solution materials in lieu of transformation to a crystalline end product.

Key Words: Chromium hydroxide • Goethite • Infrared spectroscopy • Iron hydroxide • Noncrystalline • Solid solution

Clays and Clay Minerals; April 1990 v. 38; no. 2; p. 129-136; DOI: <u>10.1346/CCMN.1990.0380203</u> © 1990, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)