Quantification Curves for Mica/Smectite Interstratifications by X-ray Powder Diffraction

Katsutoshi Tomita¹, Hidewo Takahashi² and Takashi Watanabe³

¹ Institute of Earth Sciences, Faculty of Science, Kagoshima University Kagoshima 890, Japan
² Department of Geology, Faculty of Education, Kagoshima University Kagoshima 890, Japan
³ Institute of Geoscience, Faculty of Natural Science Joetsu University of Education, Joetsu, Niigata Prefecture, Japan

Abstract: X-ray powder diffraction (XRD) patterns for many interstratified mica/glycolated smectites were calculated by changing combinations of probabilities and transition probabilities of two-component layers. Three basal XRD reflections, $5.1^{\circ} - 7.6^{\circ} 2\theta (p_1)$, $8.9^{\circ} - 10.2^{\circ} 2\theta (p_2)$, and $16.1^{\circ} - 17.2^{\circ} 2\theta (p_3)$ were selected for the quantification curves. A distinct relationship exists between $\Delta 2\theta_1 (p_2 - p_1)$ and $\Delta 2\theta_2 (p_3 - p_2)$ which shows systematic changes with expandability at constant Reichweite values. The calculated values were plotted with $\Delta 2\theta_1$ and $\Delta 2\theta_2$ as the axes of coordinates, and quantification curves were calculated. The components and stacking parameters of mica/smectites were estimated easily using this diagram. Probabilities of existence of component layers and their transition probabilities for Reichweite (R=0) and (R=1) structures, and special cases of R=2 and R=3 structures were obtained.

Key Words: Ethylene glycol • Interstratification • Mica/smectite • Reichweite structures • X-ray powder diffraction

Clays and Clay Minerals; June 1988 v. 36; no. 3; p. 258-262; DOI: <u>10.1346/CCMN.1988.0360307</u> © 1988, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)