Chromate Adsorption by Kaolinite

J. M. Zachara, C. E. Cowan, R. L. Schmidt and C. C. Ainsworth

Battelle, Pacific Northwest Laboratories P.O. Box 999, Richland, Washington 99352

Abstract: Chromate $(\text{CrO}_4^{2^-})$ adsorption was investigated on kaolinite $(0.2-2 \ \mu\text{m})$ saturated with NaClO₄ over a range of pH. Adsorption increased with decreasing pH because of protonation of chromate and/or variable charge sites on kaolinite. Chemical pretreatment to remove noncrystalline and crystalline oxide contaminants affected the magnitude of $\text{CrO}_4^{2^-}$ adsorption, but not the pH range over which $\text{CrO}_4^{2^-}$ adsorbed. Chromate adsorption at different sorbate and sorbent concentrations increased below the pH_{zpc} for the kaolinite edge, suggesting the formation of weak surface complexes. If $\text{CrO}_4^{2^-}$ and $\text{SO}_4^{2^-}$ were present at equal concentration (5.0 x 10^{-7} M), the two solutes sorbed independently, suggesting binding to separate sites. The presence of excess $\text{SO}_4^{2^-}$ (5.0 x 10^{-4} M), however, unexplainably enhanced $\text{CrO}_4^{2^-}$ adsorption. The adsorption of both chromate and sulfate can be described in terms of a site-binding model of the kaolinite edge, in which the edge is viewed as composite layers of Al and Si oxide. Surface complexation constants for $\text{CrO}_4^{2^-}$ on kaolinite were similar to those for alumina, pointing to the importance of Al-OH edge sites in chromate adsorption.

Key Words: Adsorption • Chromate • Kaolinite • Sulfate • Surface complex

Clays and Clay Minerals; August 1988 v. 36; no. 4; p. 317-326; DOI: <u>10.1346/CCMN.1988.0360405</u> © 1988, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)