Effect of Saturating Cation, pH, and Aluminum and Iron Oxide on the Flocculation of Kaolinite and Montmorillonite

Sabine Goldberg and Robert A. Glaubig

United States Department of Agriculture, Agricultural Research Service U.S. Salinity Laboratory, 4500 Glenwood Drive, Riverside, California 92501

Abstract: The effect of pH on the flocculation-dispersion behavior of noncrystalline aluminum and iron oxides, kaolinite, montmorillonite, and various mixtures of these materials was investigated. The clays were Na- or Ca-saturated and freeze-dried before use. Critical coagulation concentrations (CCC) of all materials and mixtures were found to be pH dependent. The Al oxide was flocculated at pH >9.5 and the iron oxide was flocculated between pH 6.0 and 8.2; i.e., flocculation occurred at pHs near the point of zero charge (PZC). The CCC of both the Na- and Ca-clay systems increased with increasing pH. The effect of pH was greater for the Na-kaolinite (flocculated at pH 5.8 and having a CCC of 55 meq/liter at pH 9.1) than the Na-montmorillonite system (having a CCC of 14 meq/liter at pH 6.4 and a CCC of 28 meq/liter at pH 9.4). A 50/50 mixture of Na-kaolinite and Na-montmorillonite behaved more like montmorillonite (having CCCs of 13 and 33 meq/liter at pH 6.2 and pH 9.0, respectively). The presence of either noncrystalline oxide decreased the CCC over that of the clay(s) alone; the decrease occurred at pHs >7 for Al oxide and at pHs >6.5 for Fe oxide. Aluminum oxide produced a greater decrease in CCC than Fe oxide, especially at pHs >8. The effect of each oxide on CCC was greatest near the PZC, 9.5 and 7.2 for Al and Fe oxide, respectively.

Key Words: Aggregation • Aluminum oxide • Critical coagulation concentration • Dispersion • Flocculation • Iron oxide • Kaolinite • Montmorillonite

Clays and Clay Minerals; June 1987 v. 35; no. 3; p. 220-227; DOI: <u>10.1346/CCMN.1987.0350308</u> © 1987, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)