Vapor-Phase Sorption Kinetics for Methanol, Propan-2-OL, and 2-Methylpropan-2-OL on Al³⁺-, Cr³⁺-, and Fe³⁺-Exchanged Montmorillonite

C. Breen¹, A. T. Deane, J. J. Flynn and D. Reynolds

School of Chemical Sciences, National Institute for Higher Education Glasnevin, Dublin 9, Ireland School of Mathematical Sciences, National Institute for Higher Education Glasnevin, Dublin 9, Ireland

¹ Current address: Chemistry Department, Sheffield City Polytechnic, Pond Street, Sheffield S1 1WB, United Kingdom.

Abstract: The rate of sorption of methanol (MeOH), propan-2-ol (i-PrOH), and 2-methyl-propan-2-ol (t-BuOH) onto a Wyoming montmorillonite saturated with Al^{3+} , Cr^{3+} , or Fe³⁺-cations has been studied by isothermal gravimetry in the temperature range $18^{\circ} - 105^{\circ}$ C using samples of differing weights and grain-size distributions. The rate of sorption for all the alcohols increased with decreasing sample and grain size, demonstrating that inter-, rather than intraparticle mass transfer was the rate-limiting process. Optimization of the sample parameters (2 mg sample of < 45-µm grain size, pretreated at 120° C yielded integral diffusion coefficients at 18° C of 1.1×10^{-4} m²/s for t-BuOH for the Cr^{3+} -form and 2.0×10^{-14} m²/s for MeOH and i-PrOH for the Al^{3+} -form. In general, the rate of alcohol sorption decreased as MeOH \ge i-PrOH > t-BuOH, but no temperature dependence of the sorption rate was observed. The alcohol sorption rate was dependent on the cation present, with Fe³⁺ < Cr³⁺ < Al³⁺.

Key Words: Adsorption • Alcohol • Diffusion • Grain size • Mass transfer • Montmorillonite

Clays and Clay Minerals; October 1987 v. 35; no. 5; p. 336-342; DOI: <u>10.1346/CCMN.1987.0350502</u> © 1987, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)