Syntheses of Disordered and Al-rich Hydrotalcite-Like Compounds

I. Pausch, H.-H. Lohse, K. Schürmann and R. Allmann

Fachbereich Geowissenschaften, Lahnberge, D-3550 Marburg Federal Republic of Germany

Abstract: Hydrotalcite-like compounds, $[Mg_{1-x}Al_x(OH)_2]^{x+} [xX^- \cdot nH_2O]$, where $X^- = \frac{1}{2} CO_3^{2-}$ or OH⁻, were prepared by hydrothermal syntheses at $P_{H_2O} = 100$ MPa and $T = 100^\circ - 350^\circ$ C. Starting materials were MgO, γ -Al₂O₃, H₂O, and MgC₂O₄· 2H₂O. The synthesis depended on temperature, pressure, the Al/(Al + Mg) ratio x, and the CO₂ content of the starting material. Previously an Al content of x = 0.33 was thought to be the upper limit in these double-layer compounds, but by using pressure the Al-content was increased to x = 0.44. Up to x = 0.33, a_0 decreased linearly to about 3.04 Å, but for x ≥ 0.33 , a_0 remained nearly constant at this value. For the synthesized products the layer thickness c' varied between 7.40 and 7.57 Å in contrast to the natural phases wherein c' varies from 7.60 to 7.80 Å. At higher temperatures CO₂-free syntheses, i.e., those without Mg-oxalate, resulted in a disordered hydrotalcite-like phase. The transition temperature between the ordered and the disordered hydrotalcite-like phase depended on the Al-content, x.

Clays and Clay Minerals; October 1986 v. 34; no. 5; p. 507-510; DOI: <u>10.1346/CCMN.1986.0340502</u> © 1986, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)