Synthesis and Properties of Titanium Oxide Cross-Linked Montmorillonite

Johan Sterte

Department of Engineering Chemistry, Chalmers University of Technology 41296 Gothenburg, Sweden

Abstract: Titanium was introduced into the montmorillonite structure by cation exchange with polymeric Ti cations, formed by partial hydrolysis of TiCl₄ in HCl. On further hydrolysis and heating, TiO₂ pillars in the form of anastase were formed between the montmorillonite layers. The resulting TiO_2 -cross-linked montmorillonites possessed surface areas in the range 200-350 m²/g and pore volumes of about 0.2 cm^3 /g and were thermally and hydrothermally stable to 700° C. The basal spacing of products heated at temperatures $> 200^\circ$ C was about 28 Å, as determined by X-ray powder diffraction and by N₂-desorption pore-size analysis. The surface area increased and the pore volume decreased with increasing HCl-concentration in the Ti-solution. The uptake of TiO_2 by the montmorillonite, the surface area, and the pore volume increased with increasing amount of Ti added in the preparation, to about 10 mmoles of Ti/g of montmorillonite. A further increase in the amount of Ti added resulted in a decrease in surface area, but the pore volume and the uptake of TiO_2 remained almost constant. The high porosity and the interlayer spacing of the product are consistent with a structure similar to that previously proposed for smectites, cross-linked with hydroxy-Al oligocations.

Key Words: Cross-linked smectite • Montmorillonite • Pillared interlayer complex • Porosity • Thermal stability • Titanium oxide

Clays and Clay Minerals; December 1986 v. 34; no. 6; p. 658-664; DOI: 10.1346/CCMN.1986.0340606 © 1986, The Clay Minerals Society (www.clays.org)