Interpretation of Solid State ¹³C and ²⁹Si Nuclear Magnetic Resonance Spectra of Kaolinite Intercalates

John G. Thompson

Geology Department, James Cook University of North Queensland Townsville, Queensland 4811, Australia

Abstract: ¹³C and ²⁹Si nuclear magnetic resonance spectroscopy with magic-angle spinning bas been used to study the shortrange ordering and bonding in the structures of intercalates of kaolinite with formamide, hydrazine, dimethyl sulfoxide (DMSO), and pyridine-*N*-oxide (PNO). The ²⁹Si chemical shift indicated decreasing levels of bonding interaction between the silicate layer and the intercalate in the order: kaolinite: formamide ($\delta = -91.9$, ppm relative to tetramethylsilane), kaolinite: hydrazine (-92.0), kaolinite: DMSO (-93.1). The ²⁹Si signal of the kaolinite: PNO intercalate (-92.1) was unexpectedly deshielded, possibly due to the aromatic nature of PNO. The degree of three-dimensional ordering of the structures was inferred from the ²⁹Si signal width, with the kaolinite: DMSO intercalate displaying the greatest ordering and kaolinite: hydrazine the least. ¹³C resonances of intercalating organic molecules were shifted downfield by as much as 3 ppm in response to increased hydrogen bonding after intercalation, and in the kaolinite: DMSO intercalate the two methyl-carbon chemical environments were nonequivalent ($\delta = 43.7$ and 42.5).

Key Words: Dimethylsulfoxide • Formamide • Hydrazine • Intercalate • Nuclear magnetic resonance • Ordering • Pyridine-*N*-oxide

Clays and Clay Minerals; June 1985 v. 33; no. 3; p. 173-180; DOI: <u>10.1346/CCMN.1985.0330302</u> © 1985, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)