Structural Studies of Nontronites with Different Iron Contents by ⁵⁷Fe Mössbauer Spectroscopy

C. M. Cardile and J. H. Johnston

Chemistry Department, Victoria University of Wellington Private Bag, Wellington, New Zealand

Abstract: The ⁵⁷Fe Mössbauer spectra of a series of untreated and Ca-saturated nontronites showed a predominant Fe³⁺ resonance which was computer-fitted with two Fe³⁺ doublets defining iron in non-equivalent cis-FeO₄(OH)₂ octahedral sites. In most spectra a doublet indicating tetrahedral Fe³⁺ was fitted and in one untreated sample a doublet indicating interlayer Fe³⁺ was identified. In a further untreated sample the interlayer iron was present as Fe²⁺. Upon Ca-saturation the interlayer iron was displaced. It also appears that the interlayer iron was present in at least two different interlayer sites. From the computer-fitted data it was clear that the interlayer cations have a significant effect on the Mössbauer resonances of iron in the two non-equivalent cis-octahedral and the tetrahedral sites of nontronite.

Key Words: Interlayer cation • Iron • Mössbauer spectroscopy • Nontronite • Structural sites

Clays and Clay Minerals; August 1985 v. 33; no. 4; p. 295-300; DOI: <u>10.1346/CCMN.1985.0330404</u> © 1985, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)