Hydration State of Cu²⁺ in Mixed Cu²⁺-Hexadecylpyridinium Montmorillonite by Electron Spin Resonance K. Dyrek¹, Z. Klapyta² and Z. Sojka¹ ¹ Institute of Chemistry, Jagiellonian University, Cracow, Poland ² Institute of Geology and Mineral Deposits, Academy of Mining and Metallurgy, Cracow, Poland **Abstract:** Electron spin resonance (ESR) spectra of Cu^{2+} -hexadecylpyridinium (HDP) montmorillonites were investigated as a function of HDP⁺ content and the hydration state of Cu^{2+} at relative humidities of $p/p_0 = 0.52-8 \times 10^{-7}$ at 298° K. The symmetry of the Cu^{2+} ESR spectra and the intensity of the ESR signal increased upon dehydration of the complex. The HDP⁺ cation caused an increase in the hydration state of Cu^{2+} at a given p/p_0 and an increase in the covalency of the Cu-O bond. **Key Words:** Cation exchange • Copper • Electron spin resonance • Hexadecylpyridinium • Hydration • Montmorillonite Clays and Clay Minerals; June 1983 v. 31; no. 3; p. 223-229; DOI: 10.1346/CCMN.1983.0310308 © 1983, The Clay Minerals Society (www.clays.org)