Absorption of Infrared Radiation by D_2O and HDO Mixed with Montmorillonite¹

J. Sallé de Chou, P. F. Low and C. B. Roth

Department of Agronomy, Purdue University West Lafayette, Indiana 47907

¹Journal Paper No. 7591, Purdue University Agricultural Experiment Station.

Abstract: The frequency, v, for O-D stretching in D_2O films between the superimposed layers of different micas and montmorillonites was measured at several film thicknesses and temperatures of 2° and 25° C by infrared spectroscopy. The molar absorptivity, ε , for O-D stretching in HDO films between the montmorillonite layers was also measured at different film thicknesses and 25° C. It was found that v is related to m_w/m_m , the mass ratio of D_2O to mica or montmorillonite, by the equation $v = v^0 \exp \beta/(m_w/m_m)$ where v^0 is the O-D stretching frequency in pure D_2O and β is a constant. Since m_w/m_m is proportional to a, the area under the absorption peak, m_w/m_m can be replaced by a in this equation. It was also found that ε decreased dramatically as the thickness of the water film between the montmorillonite layers decreased. These results were interpreted to mean that the structure of the interlayer water is perturbed by the interlayer cations and/or silicate surfaces.

Key Words: Absorption • Deuterium • Infrared • Molar absorptivity • Montmorillonite • Water

Clays and Clay Minerals; April 1980 v. 28; no. 2; p. 111-118; DOI: 10.1346/CCMN.1980.0280206 © 1980, The Clay Minerals Society (www.clays.org)