Alkali Cation Selectivity and Fixation by Clay Minerals

Dennis D. Eberl

Department of Geology, University of Illinois, Urbana, Illinois 61801

Abstract: Two variables must be considered when calculating exchange free energies (ΔG^0 ex) for 2:1 clays: (1) anionic field strength, as expressed by equivalent anionic radius (r_a), and (2) interlayer water content, as expressed by interlayer molality. For smectites that are in a state of high hydration, interlayer molality is determined by the cations undergoing exchange. Thus ΔG^0 ex for an exchanging cation pair can be calculated solely from measurements of r_a . r_a is related to layer charge per half unit cell (C) and ab unit cell area(A) by: $r_a = (-A/8\pi C)^{1/2}$. The layer charge necessary for cation fixation can be predicted by calculating the r_a at which cation exchange with an illite structure expresses a ΔG^0 ex equal to that of exchange with a smectite structure. The theory can also be applied qualitatively to understand the high selectivity of illite for Cs^+ , the fixation of K^+ rather than Na^+ in shales during diagenesis, the stability of illite over muscovite in the weathering environment, and cation segregation in smectite.

Key Words: Cation exchange • Cation fixation • Cation selectivity • Equivalent anionic radius • Free energy of exchange • Illite • Smectite

Clays and Clay Minerals; June 1980 v. 28; no. 3; p. 161-172; DOI: 10.1346/CCMN.1980.0280301 © 1980, The Clay Minerals Society (www.clays.org)