Multiple-Ion Diffusion—I. Techniques for Measuring and Calculating Apparent Self-Diffusion Coefficients in Heteroionic Systems*

D. A. Brown[†], J. E. Dunn and Ben Fuqua

Department of Agronomy, University of Arkansas, Fayetteville, Ark. 72701

Abstract: This investigation was designed to integrate the quick-freeze technique for ion diffusion with two computer programs to permit the simultaneous measurement and calculation of the diffusivity of a variable number of ions in heteroionic soil system. Kaolinite clay was prepared so as to have the following percentage saturations of the CEC, Sr²⁺65, Mg²⁻15, Rb⁺10, Na⁺5 and H⁺5. A quadruplicate radioisotope tag consisting of ⁸⁵Sr, ²⁸Mg, ⁸⁶Rb, and ²²Na was used to measure the diffusivity of each ion. The complex spectra were resolved by use of Schonfeld's revised Alpha-M computer program. A probit-transformation procedure was formulated into a computer program to enable the calculation of each diffusion coefficient. These programs are described and illustrated with the diffusivity of ⁸⁶Rb in kaolinite clay.

Clays and Clay Minerals; December 1969 v. 17; no. 5; p. 271-277; DOI: 10.1346/CCMN.1969.0170504
© 1969, The Clay Minerals Society
Clay Minerals Society (www.clays.org)

^{*} Contribution from the Department of Agronomy, Arkansas Agricultural Experimental Station, Fayetteville, Arkansas.

† Professor Agronomy, Associate Professor Mathematics, and Graduate Assistant in Agronomy, respectively.