Quantitative Biology > Populations and Evolution

Oscillatory Dynamics in Rock-Paper-Scissors Games with Mutations

Mauro Mobilia

(Submitted on 28 Dec 2009 (v1), last revised 26 Jan 2010 (this version, v2))

We study the oscillatory dynamics in the generic three-species rockpaper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit cycle resulting from a Hopf bifurcation; (c) in the absence of mutations, there is a region where heteroclinic cycles yield oscillations of large amplitude (not robust against noise). After a discussion on the main properties of the mean-field dynamics, we investigate the stochastic version of the model within an individual-based formulation. Demographic fluctuations are therefore naturally accounted and their effects are studied using a diffusion theory complemented by numerical simulations. It is thus shown that persistent erratic oscillations (quasi-cycles) of large amplitude emerge from a noise-induced resonance phenomenon. We also analytically and numerically compute the average escape time necessary to reach a (quasi-)cycle on which the system oscillates at a given amplitude.

Comments:	25 pages, 9 figures. To appear in the Journal of Theoretical Biology
Subjects:	Populations and Evolution (q-bio.PE) ; Statistical Mechanics (cond-mat.stat-mech); Adaptation and Self-Organizing Systems (nlin.AO); Physics and Society (physics.soc-ph)
Journal reference:	J. Theor. Biol. 264, 1-10 (2010)
DOI:	10.1016/j.jtbi.2010.01.008
Cite as:	arXiv:0912.5179v2 [q-bio.PE]

Submission history

From: Mauro Mobilia [view email] [v1] Mon, 28 Dec 2009 15:07:55 GMT (342kb) [v2] Tue, 26 Jan 2010 14:00:03 GMT (342kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context: **q-bio.PE** < prev | next > new | recent | 0912

Change to browse by:

cond-mat cond-mat.stat-mech nlin nlin.AO physics physics.soc-ph q-bio

References & Citations

• CiteBase

Bookmark(what is this?)
CiteULike logo
Connotea logo
BibSonomy logo
× Mendeley logo
Facebook logo
🗙 del.icio.us logo
▼ Digg logo