| EGU.eu |

Home

Online Library HESS

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library HESSD

Alerts & RSS Feeds

General Information

Submissio

Review

Productio

Subscription

Comment on a Paper

```
Journal Metrics
```


■ Volumes and Issues ■ Contents of Issue 3 ■ Special Issue Hydrol. Earth Syst. Sci., 11, 1207-1226, 2007 www.hydrol-earth-syst-sci.net/11/1207/2007/ doi:10.5194/hess-11-1207-2007 © Author(s) 2007. This work is licensed

under a Creative Commons License.

Accounting for global-mean warming and scaling uncertainties in climate change impact studies: application to a regulated lake system

B. Hingray, N. Mouhous, A. Mezghani, K. Bogner, B. Schaefli, and A. Musy

Abstract. A probabilistic assessment of climate change and related impacts should consider a large range of potential future climate scenarios. Stateof-the-art climate models, especially coupled atmosphere-ocean general circulation models and Regional Climate Models (RCMs) cannot, however, be used to simulate such a large number of scenarios. This paper presents a methodology for obtaining future climate scenarios through a simple scaling methodology. The projections of several key meteorological variables obtained from a few regional climate model runs are scaled, based on different global-mean warming projections drawn in a probability distribution of future global-mean warming. The resulting climate change scenarios are used to drive a hydrological and a water management model to analyse the potential climate change impacts on a water resources system. This methodology enables a joint quantification of the climate change impact uncertainty induced by the global-mean warming scenarios and the regional climate response. It is applied to a case study in Switzerland, a water resources system formed by three interconnected lakes located in the Jura Mountains. The system behaviour is simulated for a control period (1961-1990) and a future period (2070-2099). The potential climate change impacts are assessed through a set of impact indices related to different fields of interest (hydrology, agriculture and ecology). The results obtained show that future climate conditions will have a significant influence on the performance of the system and that the uncertainty induced by the inter-RCM variability will contribute to much of the uncertainty of the prediction of the total impact. These CSRs cover the area considered in the 2001–2004 EU funded project SWURVE.

Final Revised Paper (PDF, 930 KB)

Citation: Hingray, B., Mouhous, N., Mezghani, A., Bogner, K., Schaefli, B., and Musy, A.: Accounting for global-mean warming and scaling uncertainties in climate change impact studies: application to a regulated lake system, Hydrol. Earth Syst. Sci., 11, 1207-1226, doi:10.5194/hess-11-1207-2007, 2007. Bibtex EndNote Reference Manager XML

| EGU Journals | Contact

Search HESS Library Search

News

Proposal for a Special Issue: Towards Theories that Link Catchment Structures and Model Structures

Recent Papers

01 | HESSD, 23 Jul 2010: A multiple threshold method for fitting the generalized Pareto distribution and a simple representation of the rainfall process

02 | HESSD, 23 Jul 2010: Reference crop evapotranspiration derived from geo-stationary satellite imagery – a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

03 | HESSD, 22 Jul 2010: Exploiting the information content of hydrological

