
Sign in  

AMS Journals Online

AMS Home  Journals Home  Journal Archive  Subscribe  For Authors  Help  Advanced Search            Search

Full Text View
Volume 32, Issue 1 (January 2002) 

Journal of Physical Oceanography
Article: pp. 240–264 | Abstract | PDF (393K) 

Ocean Turbulence. Part II: Vertical Diffusivities of Momentum, Heat, Salt, 
Mass, and Passive Scalars

V. M. Canuto

NASA Goddard Institute for Space Studies and Department of Applied Physics, Columbia University, New York, New York 

A. Howard, Y. Cheng, and M. S. Dubovikov

NASA Goddard Institute for Space Studies, New York, New York

(Manuscript received July 31, 2000, in final form June 21, 2001)

DOI: 10.1175/1520-0485(2002)032<0240:OTPIVD>2.0.CO;2 

 
ABSTRACT

A Reynolds stress–based model is used to derive algebraic expressions for the 
vertical diffusivities K

α
(α = m, h, s) for momentum, heat, and salt. The 

diffusivities are expressed as

K
α
(R
ρ
, N, RiT, )

 

in terms of the density ratio R
ρ
 = αs S/ z(αT T/ z)−1, the Brunt–Väisälä 

frequency N2 = −gρ−1
0 ρ/ z, the Richardson number RiT = N2/Σ2 (Σ is the 

shear), and the dissipation rate of kinetic energy . The model is valid both in 
the mixed layer (ML) and below it. Here R

ρ
 and N are computed everywhere 

using the large-scale fields from an ocean general circulation model while RiT is 
contributed by resolved and unresolved shear. In the ML, the wind-generated 
large-scale shear dominates and can be computed within an OGCM. Below the 
ML, the wind is no longer felt and small-scale shear dominates. In this region, 

the model provides a new relation RiT = cf(R
ρ
) with c  1 in lieu of Munk's 

suggestion RiT  c. Thus, below the ML, the K
α
 become functions of R

ρ
, N, 

and . 

The dissipation  representing the physical processes responsible for the 
mixing, which are different in different parts of the ocean, must also be 
expressed in terms of the large-scale fields. In the ML, the main source of 
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stirring is the wind but below the ML there is more than one possible source of 
stirring. For regions away from topography, one can compute  using a model 
for internal waves. On the other hand, near topography, one must employ 
different expressions for . In agreement with the data, the resulting 
diffusivities are location dependent rather than universal values.

Using North Atlantic Tracer Release Experiment (NATRE) data, the authors 
test the new diffusivities with and without an OGCM. The measured 
diffusivities are well reproduced. Also, a set of global T and S profiles is 
computed using this model and the KPP model. The profiles are compared with 
Levitus data. In the North Atlantic, at 24°N, the meridional overturning is close 

to the measured values of 17 ± 4 Sv and 16 ± 5 Sv (Sv  106 m3 s−1). The 
polar heat transport for the North Atlantic Ocean, the Indo–Pacific Ocean, and the global ocean are generally lowered 
by double diffusion. The freshwater budget is computed and compared with available data.

1. Introduction: Physical motivation  

In Canuto et al. (2001b, hereafter Part I) we employed the Reynolds stress formalism to construct a model for the heat 
and momentum diffusivities. The goal of this paper is to extend the same formalism to include double diffusive processes, 
that is, the possibility that heat and salt diffusivity may differ. Although we are not the first to study this problem (Gargett 
and Holloway 1992; Zhang et al. 1999; Zhang and Schmitt 2000), there are two motivations for a new treatment. First, the 
NATRE data (North Atlantic Tracer Release Experiment: Ledwell et al. 1993, 1998) have provided the first set of measured 
salt, heat, and tracer diffusivities at different ocean depths. The second motivation is of methodological nature: recent 
advances in turbulence modeling allow a unified treatment of momentum, heat, and salt with the same formalism. Thus, the 
use in an OGCM of a diffusivity model that has been tested on the NATRE data may help answer the question of Ledwell et 
al. (1998): how are the heat and salt diffusivities Kh and Ks modulated by the density ratio R

ρ
 and what effect does this 

modulation have on the general circulation?

Using the Reynolds stress formalism, we derive algebraic expressions for the diffusivities Km,h,s (momentum, heat, salt) 

as functions of N (Brunt–Väisälä frequency), R
ρ
 (density ratio), RiT (Richardson number), and  (dissipation rate of kinetic 

energy):

K
α
(R
ρ
, N, RiT, ), α = m, h, s. (1a)

 

Relations (1a) are valid both in the mixed layer (ML) and below it. While the functions R
ρ
 and N are computable 

everywhere using the large-scale temperature and salinity fields from an OGCM, RiT is contributed by both large-scale 
(resolved) and small-scale (unresolved) shear. In the ML (mixed layer), the strongest shear is the wind-generated large-scale 
shear, which is computable within an OGCM. Below the ML, where the wind effects are no longer felt, it is the small-scale 

shear generated by internal waves that dominates. In that regime, the present model provides a new relation RiT = cf(R
ρ
) 

with c  1 in lieu of Munk's suggestion that RiT  c. Thus, below the ML, Eq. (1a) reduces to

K
α
(R
ρ
, N, ), α = m, h, s. (1b)

 

The dissipation , which is not computed by an OGCM, plays a physically important role. Since mixing requires a source 
of energy, there is a necessity to exhibit the energy required to sustain the mixing processes. This point has been discussed 
by Munk and Wunsch (1998), Wunsch (2000), and Egbert and Ray (2000). 

The available sources of energy are different at different depths and in different parts of the ocean and so are the resulting 
diffusivities. In the ML, the primary energy source is the wind shear, while below the ML there are several energy sources. 
Figure 3 of Ledwell et al. (2000) shows deep ocean diffusivities at various locations. For example, at the NATRE site (away 

from boundaries) the diffusivities are around 0.1 cm2 s−1 while values 40 times larger were measured in the Brazilian 
Basin (Polzin et al. 1997). Internal wave breaking processes are thought to be the primary source of mixing in the open 
ocean, and models exist that provide the corresponding  (e.g., the Gregg–Henyey–Polzin model). However, the  
representing tidal dissipation over topography (Bell 1975; Armi and Millard 1976; Müller and Xu 1992; Jayne and St. Laurent 
2001) or geothermal heating on global ocean circulation (Adcroft et al. 2001) requires appropriate models describing those 
processes.
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Over the years, relations (1b) were represented with different models. Gargett and Holloway (1992) used a constant 
Ks/Kh ratio. Large et al. (1994) used Ks/Kh = 1.43 but Merryfield et al. (1999) pointed out that the correct relation is Ks/Kh = 

1.43R−1
ρ
. Zhang et al. (1988, hereafter ZHS) used phenomenological expressions for Kh,s(Rρ) (Schmitt 1981; Kunze 1987, 

1990; Fedorov 1988; Kelley 1984, 1990), but St. Laurent and Schmitt (1999, Fig. 16 ) showed that two such models 
(Kunze 1987, 1990) predict an R

ρ
 dependence not in accord with NATRE data; the ad hoc model by Schmitt (1981) has the 

correct R
ρ
 dependence but is too diffusive. All authors find that double diffusion lowers the meridional transport. 

The structure of the paper is as follows. In sections 2 to 8 we derive the expressions for the diffusivities K
α
 and discuss 

the physics of the model and the role of the dissipation timescales, the weak and strong mixing regimes, the existence of a 
critical R

ρ
(cr) above which one has strong salt fingers, and the inclusion of the internal wave field. In section 10, we 

compare ours with previous models and in section 11 we discuss general features of the diffusivities. In sections 12 and 13 
we compare the model results with NATRE data with and without an OGCM. In section 14 we exhibit the T–S profiles for 
the global ocean (and for different ocean basins), the meridional streamfunction, the polar heat transport, and the freshwater 
budgets. In sections 15 and 16 we present a discussion and future improvements of the model. 

2. Diffusivities: General features  

Global ocean models solve the dynamic equations for the large-scale velocity Ui, temperature T, and salinity S (in 

Cartesian coordinates, i and j take the values 1, 2, 3):

 

Since the velocity, temperature, and salinity fields have also fluctuating components u i, T , s , nonlinear interactions give 

rise to the second order moments u iu
′
j (momentum fluxes or Reynolds stresses), u iT (heat fluxes), and u is  (salinity 

fluxes). The overbar means averaging performed over the grid cell and the time step of the OGCM. A local turbulence model 
(in section 16 we discuss nonlocal models) provides the vertical fluxes:

 

where K
α
(α = m, h, s) are the diffusivities given as a function of

K
α
 = K

α
(R
ρ
, N, RiT, ), (2e)

 

where R
ρ
 is the density ratio and RiT is the total Richardson number:

 



The αT,S are the thermal expansion and haline contraction coefficients and

 

The total shear ΣT = (Σ2 + Σ′2)1/2 is contributed by resolved large scales (that dominate in the ML) and by small 

unresolved scales that dominate below the ML. We have

 

The diffusivities K
ρ
, Kc that enter the mass flux w ρ  and the concentration flux w c :

 

are given by

 

Equation (3e) follows from using ρ /ρ = −αTT  + αss  in the first of (3d) and using both (2d) and (3b). Equation (3f) 

requires some discussion. The competing effects of the T–S fields on the density ρ are reflected in the minus sign in the 
numerator of (3e). Here T–S are active scalars since they couple to ρ, which couples to the velocity, and thus ultimately T–S 
affect turbulence. On the other hand, a passive scalar does not affect either the density or the velocity field. For example, the 
SF6 used at the NATRE site did not affect materially the density or the velocity field by which it was passively transported. 

Equation (3f) assumes that a concentration field behaves like “spiciness,”  which, by definition, is density neutral. 

As shown below, the Reynolds-stress-based model provides the following expressions:

K
α
 = 2E2 −1S

α
, (4a)

 

where E is turbulent kinetic energy,  its rate of dissipation, and the dimensionless functions S
α
 are called “structure 

functions”  (Part I; Burchard and Bolding 2001; Burchard and Deleersnijder 2001). In studies of mixing below the ML, an 
alternative representation is the one due to Osborn and Cox (1972) and Osborn (1980):

 

where τ = 2E/  is the dynamical timescale and Γ
α
 are mixing efficiencies. This representation is particularly convenient for 

it highlights , which is different in different parts of the ocean. For either representation, a model is needed to provide the 
functions E, , S

α
, and Γ

α
. Finally, the mixing model to be discussed below is valid for the following cases: SF (salt fingers: 

S/ z > 0, T/ z > 0, R
ρ
 > 0, RiT > 0, 0 < R

ρ
 < 1); DC (diffusive convection: S/ z < 0, T/ z < 0, R

ρ
 > 0, RiT > 0, 1 < R

ρ
); 

DS (doubly stable: S/ z < 0, T/ z > 0, R
ρ
 < 0, RiT > 0); DU (doubly unstable: S/ z > 0, T/ z < 0, R

ρ
 < 0, RiT < 0). We 

recall that due to the definitions of RiT and N2 in Eqs. (3a,b), RiT > 0 corresponds to dynamical stability while RiT < 0 
corresponds to dynamical instability.

3. The Reynolds stress model  

Historically, the Reynolds stress model (RSM) has been widely used to treat turbulence problems since the early 1940s 
[for a series of review articles, see Gatski et al. (1993)]. In addition to engineering studies, RSM have been widely applied to 
atmospheric and ocean studies, primarily in the ML (Part I). In this paper, we consider mixing due to three gradients U/ z, 



T/ z, and S/ z. In Part I, we treated the case of velocity and temperature while Zeman and Lumley (1982, 1983) treated 
the case of temperature and salinity. Even with three gradients, the final expressions of the diffusivities are still algebraic. 
The overall procedure can be summarized as follows. Consider the Navier–Stokes equations for the velocity field and the 
equations for T, S. The fields are written as the sum of a resolved (large scale) plus an unresolved (small scale) fluctuating 
part. Substituting and averaging leads to the equations for the resolved fields, Eqs. (2a)–(2c). To obtain the dynamic 

equations for the fluctuating u i, T , s  one subtracts Eqs. (2a)–(2c) from the original equations for the full fields. 

Multiplying the equation for T  (s ) by u i and that for u i by T  (s ), and the equations for T  and s  by the same T , s , 

averaging and summing the results, one obtains the dynamic equation for the required second-order moments u iu j, u iT , u

is , T 2, s 2, and T s . Using the notation, Ui,j  Ui/ xj and D/Dt  / t + Ui / xi, the dynamic equations are 

Traceless Reynolds stresses: bij = u iu j − 2/3Eδij  τij − (2/3)Eδij:

 

The tensors Lij, Mij represent buoyancy, Ωij represents shear Σij, and Zij represents vorticity 2Vij  Ui,j − Uj,i. They are 

defined as follows:

 

where λi = −(gρ)−1 p/ xi, p being the mean pressure. Heat flux, Jh
i = u iT :

 

Temperature variance,  = T 2:

 

Salinity variance,  = s 2:



 

Salinity flux, JS
i = u is :

 

Temperature–salinity correlation, T s :

 

In the absence of salt, Eqs. (5)–(11) coincide with those of Part I. In the absence of shear, they coincide with Eqs. (1) of 
Zeman and Lumley (1982, 1983). Before presenting the solution of Eqs. (5)–(11), it is useful to discuss their physical 
interpretation. We begin with Eqs. (8), (9), and (11). The time variation is governed by the combination of a source term 
(the first term in the right-hand side of each equation) and dissipation by molecular forces (the last term). In a thermally 
unstably stratified flow, the z gradient of T in (8) is negative while the z component of the heat flux is positive and the first 
term is positive, acting as a source. An analogous argument applies to the salt variance . In the case of the heat flux, the 
first term in (7), which acts as a source, is given by the interaction of the Reynolds stresses with the T gradient, the second 
term represents the interaction of the heat flux with shear while the third term represents the positive contribution of 

potential energy T 2. Analogous interpretations apply to the other equations. The last terms in Eqs. (5)–(11) represent the 
overall dissipation effects. When written in units of the dynamic timescale τ, they are denoted by

π1,2,3,4,5 = (τps, τsθ, τs, τpθ, τθ)τ
−1, τ = 2E −1. (12)

 

The physical role of the π can be better understood after we have solved Eqs. (5)–(11). 

4. Solution of Eqs. (5)–(11)  

We shall consider the case in which the only nonzero gradients are in the z direction, / xi  δi3
/ z. Even so, the time-

dependent Eqs. (5)–(11) are very difficult to solve or to use in an OGCM. For that reason, we consider a quasistationary 
state that we approximate with / t = 0. Equations (5)–(11) then become a system of linear, coupled, algebraic equations, 
which we solved using the MAPLE V (University of Waterloo, 1981–1990; Symbolic Math Toolboxes available online at 
www.mathworks.com). When w u , w T , and w s  are cast in the form (2d) and each of the K

α
 is written as in (4a), the 

structure functions S
α
 turn out to be momentum:

 

heat:

 

salt:



 

The dimensionless denominator D is given by

 

The dimensionless functions representing stratification, salt gradient, and shear are

 

The variables ak bk and dk depend on the π and are given in appendices A and B.
 

a. Eddy turnover time, τ  

The eddy turnover time τ entering Eqs.(15) is obtained by solving the equation for the turbulent kinetic energy E = τii:

 

where the shear and buoyancy production terms are defined as

 

where we have used the relation ρ /ρ = −αTT  + αSs&PrimeI;. In the stationary limit, Eq. (16a) becomes production 

equals dissipation. Using (2d), (3a,b), and (4a), we obtain

2(τN)−2RiT = Sm − RiT(1 − R
ρ
)−1(Sh − SsRρ). (16c)

 

Using the Sm,h,s, Eq. (16c) yields (τN)2, x, n, c, y, S
α
, and Γ

α
 as functions of RiT and R

ρ
.

 

b. Heat to salt diffusivity ratio Kh/Ks 
 

The ratio of heat to salt diffusivities has a particularly simple form. Using Eq. (3) of appendix A and Eqs. (13b,c), a short 
algebra gives

 

Since x  (τN)2, a large x means that τ > N−1: the shortest timescale is due to the strong stratification, which makes 
turbulence weak. On the other hand, a small x means weak stratification and stronger turbulence. Thus, we have the 
asymptotic regimes weak turbulence:



 

strong turbulence:

 

The first conclusion from (17b,c) is that the timescales π that contribute to the weak and strong cases are different. 
Purely dissipative timescales τs, τθ(π3,5) are expected to affect only the weak case when molecular forces are maximal and 

Eq. (17b) confirms the expectation. On the other hand, in the strong limit, we have only τpθ and τps, which are contributed 

by both molecular and pressure correlations (subscript p). The latter come about as follows. In deriving the dynamic 
equations for the heat and salt fluxes w T′ and w s , one employs the Navier–Stokes equations for w , which entails the 
pressure gradient p / z. Using Poisson's equation, pressure terms can be written in terms of the velocity field so as to 

assure that the latter is nondivergent, u i/ xi = 0. Thus, pressure correlations, when viewed as part of the nonlinear 

interactions, are an important component of the strong limit, as confirmed by Eq. (17c). 

5. Critical R
ρ
 
 

In the ocean, salt fingers coexist with shear, which in the deep ocean and away from boundaries is due to internal wave 
breaking. It is therefore important to define the regimes where shear and salt fingers dominate. As for the latter, Schmitt and 
Evans (1978) have shown that only “modes with R

ρ
  R

ρ
(cr) = 1/2 become strongly established”  and Zhang et al. (1998) 

state that a “reasonable value based on observations”  is R
ρ
(cr) = 0.64 and thus salt fingers are found in the regime:

0.64  R
ρ
  1. (18a)

 

Below R
ρ
(cr), mixing is sustained primarily by shear. To determine R

ρ
(cr), we consider the zero shear limit of Eq. (16c), 

2x−1 = SsRρ − Sh. Using the Ss,h from (13b,c), a series of algebraic steps yields the simple equation:

 

Since R
ρ
(cr) corresponds to zero turbulent kinetic energy, E  0 or x  ∞, Eq. (18b) becomes A = 0 which in turn 

gives



 

6. The dissipative timescales π  

a. General expressions  

It is known that the RSM is unable to determine the dissipative timescales π. This is because the RSM does not provide 
the spectra of the different turbulence variables but only their integral over all wavenumbers while the determination of the 
dissipation timescales requires the spectra. In most geophysical applications (Mellor and Yamada 1982), the π were 
considered adjustable parameters and data were used to quantify them. In the presence of salt, there are three additional 
timescales τps, τsθ, and τs and the data may not be sufficient to determine all the π′s. In addition, even if one could fix a set 

of π′s, there is no guarantee that they would apply in circumstances different from those used for their determination. We 

shall therefore attempt to evaluate the π′s. Since (k2κT)−1 is the thermal timescale of an eddy of size k−1, one has in general 

(Monin and Yaglom 1971, 1975):

 

where ET(k) is the spectrum of the temperature variance. Analogous expressions hold true for salt with the changes κT 

 κs, ET(k)  Es(k), T   s . As for the definition of τpθ, it is arrived at after integrating the two-point closure dynamic 

equations for the spectrum J(k) so that Jh =  J(k) dk. A rather long derivation (Canuto and Dubovikov 1996a,b; 1997, 

hereafter CD) leads to the following results (ν is the molecular viscosity):

 

Here νd(k) and χd(k) are the dynamical or eddy, viscosity, and conductivity, which depend on the wavenumber k. 

Relations (19b–d) are valid for any ν and κT. Since the derivation of relations (19b–d) and of the coefficients a = 0.42 and b 

= 0.72 is rather involved (CD96–97) and cannot be repeated here, we shall try to give a physical interpretation. We begin 

with (19a) and the corresponding one for salt. The molecular diffusivity κT is independent of the size of the eddy k−1 and 

is therefore outside the integral. On the other hand, as already discussed after Eq. (17c), τpθ is contributed by both molecular 

and pressure correlations. The latter become part of the nonlinear interactions whose closure brings about an “enhanced”  
eddy viscosity νd and conductivity χd. Since the latter are the sum of a turbulent part (from the nonlinear interactions) plus a 

molecular part, they are called dynamical (thus the subscript d). Contrary to their molecular counterparts, dynamical 

diffusivities depend on the eddy size k−1, and therefore are inside the integral. 

As for Eq. (19c), the smaller the eddy (the larger the k), the smaller is the integral and the more νd(k)  ν, as indeed 



expected for small eddies. Equation (19c) entails the turbulent kinetic energy spectrum given by Kolmogorov law E(k) = Ko
2/3k−5/3, where 1.5  Ko  1.8. A physical interpretation of (19c) is as follows. Consider the Reynolds number Re = 

ULν−1. Using U  E1/2 and the size of the largest eddy L  k−1
0, we also have Re E1/2k−1

0ν
−1 and Re2  Ek−2

0ν
−2. 

Consider now a spectral Reynolds number squared Re2 (k) defined as

 

This allows us to rewrite (19c) in a more transparent form (we neglect numerical factors)

νd(k) = ν[1 + Re2(k)]1/2. (19f)

 

When Re is small, the eddy viscosity reduces to the molecular ν; when the flow is very turbulent and Re > 1, νd is 

considerably larger than ν. Next, consider Eq. (19d) that yields the dynamical (eddy) conductivity χd(k) once the dynamical 

viscosity is known from (19c). Equation (19d) encompasses two limiting cases that previously had been treated separately. 

When molecular effects are negligible, Eq. (19d) gives χd = b−1νd. In the opposite case, Eq. (19c) yields νd  ν and 

substitution in (19d) shows that χd = κT. Finally, we remark that the k integrations in Eqs. (19b,c) extend up to the 

dissipation wave scale λd = (ν3 −1)1/4 and that the ratio L/λd depends on Re because of the (model independent) relation L/λd 

= Re3/4. The larger Re, the larger the ratio L/λd and the wider is the interval over which one must integrate the spectra. As 

the above relations indicate, to proceed one needs to know the various spectra, a topic that we discuss next.

b. Weak turbulence  

In a low Re regime L/λd  O(1), and the spectra are so narrow as to be almost delta functions, E(k) = Eδ(k − k0), which 

is Prandtl's mixing length model where one large eddy prevails. Equations (19) and the ones for salinity, then yield (Zeman 
and Lumley 1982, 1983):

 

The appearance of ν is due to the fact that τ = 2E/  where by definition  = 2ν  k2E(k) dk. Use of (20a) in (17b) gives

 

as expected. However, with Eq. (20a), Eq. (18d) has only one admissible root:

 

Weak turbulence allows a salt finger range much wider than what is observed [Eq. (18a)]. 

c. Strong turbulence  



Next, we consider a regime opposite to the one in section 6b, namely when molecular effects are negligible. In such a 
case, we must have

τ
θ
 = τS, τpS = τpθ, (21a)

 

which considerably reduces the problem. To discuss τsθ, consider the correlation C:

 

Using Eqs. (8), (9), and (11), Eq. (21b) can be rewritten as

τsθ = τs(Ks/Kh)1/2(1 + Ks/Kh)−1C. (21c)

 

Using (21c) in (17a), the latter becomes a quadratic equation in (Kh/Ks)
1/2 with only one physical root. Since the 

maximum value of C is unity, such solution is Kh = Ks. This is better than (20c) but still not correct since the NATRE data 

show that Ks = 1.6Kh. Furthermore, once Ks = Kh is substituted in (21c) and (18d), it gives

 

Contrary to the weak turbulence case (20c) that allows too wide a margin for salt fingers, this model has the opposite 
problem, it allows salt fingers only for R

ρ
 = 1, which contradicts (18a). Thus, even if we know how to compute τ

θ
 and τpθ, 

we could not use (21d) and we must search for a new model for τsθ. 

d. Moderate turbulence  

Since we do not have a theory capable of encompassing both weak and strong regimes, we must search for a 
compromise. We suggest the following: we adopt (21a) even in the case of moderate turbulence but not (21d), which we 

discuss last. To determine τ
θ
 and τpθ, we proceed as follows. Using the T-variance spectrum ET(k) = Ba −1/3χTk−5/3, where 

Ba is the Batchelor constant, Eq. (19a) gives

 

where we have used τ = 3Ko(k2
0 )−1/3. Next, in the limit of strong turbulence and with a Kolmogorov spectrum for E(k), 

Eq. (19c) gives νd(k) = (3/20Ko3)1/2 1/3k−4/3. In the strong limit, Eq. (19d) gives χd = b−1νd. If we use the spectrum J(k) 

 k−n with n = 7/3, as suggested by numerical simulations and two-point closure models (CD97), Eq. (19b) then yields

 

Thus, we have determined four of the needed timescales. As for π2( τsθ/τ), we use (21a) in Eq. (18d) but treat π2 as a 

free variable. In Fig. 1  we plot R
ρ
(cr) versus π2. One branch corresponds to salt finger while the symmetric one 

corresponds to diffusive convection. One can see that for a range of salt fingers to exist, τsθ < τsθ(max). In particular, if we 

decrease π2 by 10%, τsθ(max)/τ = τs/τ = 0.36, to τsθ/τ = 1/3, we obtain

R
ρ
(cr) = 0.62, 0.62  R

ρ
  1, (22c)

 

which is close to (18a). The complete model for the πs is therefore



 

7. The critical Ri  

In analogy with R
ρ
(cr), there is also an RiT(cr) above which the effect of stable stratification is stronger than the mixing 

due to shear. As discussed in Part I, when R
ρ
 = 0 we have RiT(cr)  O(1). How is RiT (cr) affected by R

ρ
  0? Since SF 

and DC add destabilizing agents, one expects that, in the presence of double diffusion, RiT(cr) is larger than without it. As in 

the case of R
ρ
(cr), we obtain RiT(cr) by taking the E  0 limit of (16c). The problem can be treated analytically. 

Substituting the expressions for Sh, s from (13b,c), a relatively lengthy algebra leads to the following result:

RiT(cr) = f(R
ρ
). (23a)

 

The explicit form of the function f(R
ρ
) is given in appendix C. The result is shown in Fig. 2  where we plot iso-

contours of Sh beginning with Sh = 0 below which there is “no mixing”; that is, the Sh = 0 curve depicts the function

RiT(cr)  N2Σ−2|cr. (23b)

 

In the absence of double diffusion R
ρ
 = 0, one observes that RiT(cr)  1, as suggested by Munk (1966). In the presence 

of double-diffusion and when R
ρ
 is positive, the value of RiT(cr) increases rather slowly at first with R

ρ
 and then steepens, 

the asymptote occurring at R
ρ
(cr) = 0.62. Since mixing is now enhanced by double diffusion, the overall mixing lives longer, 

the maximum extent being given by the value of RiT(cr). An interesting feature of Fig. 2  is the difference that occurs 
above and below R

ρ
(cr). In the upper curves, where R

ρ
 > R

ρ
(cr), at fixed R

ρ
, in going from right (small shear) to left (large 

shear) on the horizontal axis, the diffusivities (Sh) decrease as shear increases. In the lower region, where R
ρ
 < R

ρ
(cr), at a 

fixed R
ρ
, the opposite occurs, in going from right to left, the diffusivities increase as the shear increases. In the last case, 

when shear is “constructive,”  mixing is governed mostly by a wave regime (symbol WR) rather than by double diffusion 
(SF for salt fingers). In the WR regime, we follow Munk's (1966, 1981) suggestion that “the internal wave shear is 

associated with Richardson numbers of order unity,”  RiT  RiT(cr)  O(1). However, because of double diffusion, RiT(cr) 
is no longer a constant but a function of R

ρ
. We shall therefore take

RiT = cRiT(cr) = cf(R
ρ
), (23c)

 

where c is a constant of order unity. The sensitivity of the results to the parameter c is exhibited in Fig. 7b . 

8. Internal wave field  

Below the ML, the shear generated by the external wind is too weak to generate the observed mixing (Ledwell et al. 1993, 
1998). On the other hand, a random superposition of internal waves may give rise to a finite probability that local values of 

Ri fall well below the critical value, for example, RiT < 1/4 (Desaubies and Smith 1982). Nonlinear wave interactions have 
been extensively studied (McComas and Müller 1981; Henyey et al. 1986; Moum and Osborn 1986; Gregg 1989; Polzin et al. 
1995; Kunze and Sanford 1996; Gregg et al. 1996; Polzin 1996; Toole 1998; Sun and Kunze 1999a,b; D'Asaro and Lien 
2000a,b). In particular, Polzin (1996) has analyzed the dissipation rate  resulting from NATRE data and concluded that the 
WKB model of Kunze et al. (1990) provides an “effective parameterization of  for a broad range of variability in the 
background.”  However, since OGCM do not resolve the pertinent scales, such a model cannot be employed here. Analyzing 



several of the suggested models for the  versus N relations, Polzin et al. (1995) concluded that the scaling   N3/2 is not 

consistent with the data while   N2 is (their Fig. 4 ). Using Sargasso Sea data, Kunze and Sanford (1996, KS96) 
suggest what they call the Gregg–Henyey–Polzin parameterization (cgs units, A is dimensionless):

 

Here, ‹V2
z›  is the shear variance referred to the GM background (Garrett and Munk 1975, hereafter GM) and R

ω
 is the 

shear to strain ( z) ratio which for GM is 3. The explicit form of f(R
ω

) is given by Eq. (5) of KS96 where Fig. 5  shows 

that over the entire depth of the ocean, even with f(R
ω

) = 1, A varies at most by a factor of 2 in the stratified interior 

(Polzin et al. 1995; Kunze and Sanford 1996; Gregg et al. 1996; Polzin 1996; Toole 1998). 

However, near rough topography, A changes by two to three orders of magnitude (Polzin et al. 1997; Kunze and Toole 
1997). Thus, through the presence of , the present model can account for the different stirring mechanisms that occur in 
different parts of the ocean, a flexibility that is required for there is no universal stirring mechanism. Moreover, since the 
diffusivities depend on the efficiency Γ

α
, which are also not constant, one needs a turbulence model to compute them. 

9. The full model  

The fluxes entering Eqs. (2a–c) for the resolved fields are given by Eqs. (2d) and the diffusivities K
α
 are given by Eqs. 

(4b). The structure functions S
α
 are given by Eqs. (13)–(15) and the variable (τN)2 is obtained by solving the algebraic 

relation (16c). The dimensionless variables y, n, and c entering the S
α
 are then known functions of the large-scale fields. The 

above procedure is valid both in the ML and below it. As for the dissipation , one must use different treatments in the ML 
and below it.

The distinction between the two regimes is made on the basis of the value of RiT(resolved)  N2Σ−2 [see Eq. (3a)]. We 

use the ML model when RiT(resolved)  RiT(cr). Since the latter is  1, what is referred to as ML actually includes part of 
the upper thermocline.

a. Mixed layer  

One may adopt the Kolmogorov-type law

 = E3/2 −1 = 8 2τ−3, (24a)

 

where τ is given by solving (16c). Equation (24a) requires a model for the length scale . Using a two-point closure 
Cheng and Canuto (1994, CC94) derived an expression for  [Eqs. (38) of CC94], which we found to be well represented 
by the empirical relations (Blackadar 1962; Deardorff 1980):

 

which are easier to employ than Eq. (38) of CC94. Here, q2 = E, κ = 0.4 is the von Kármán constant and B1 = 16.6. In 

the present case l0 = 0.17H, where H is the mixed layer depth determined by the relation g[ρ(H) − ρ(surface)]ρ(H)−1 = 3 × 

10−4 m s−2. Other authors (Burchard and Bolding 2001) have employed a differential equation for . 

b. Below the mixed layer  

On the one hand, Eq. (24a) does not seem appropriate because it is hard to define a meaningful mixing length , while on 



the other hand use of a differential equation for  led to underpredicting  (Burchard et al. 1998), a situation that was 
remedied by a cutoff in E. D'Asaro and Lien (2000a,b) point out that there is a more basic conceptual problem since the E 
and  equations, especially the latter, do not naturally account for a basic ingredient of stably stratified flows, the existence 
of internal waves. Since we arrived at the same conclusion, we decided to consider  as an input function that may be due 
to internal waves or to more complex processes, as discussed in section 8. 

10. Comparison with previous models  

Since the Osborn–Cox (1972) and the Osborn (1980) models (called OC models) have been widely used to translate 
measurements into diffusivities (Davis 1994a,b), it is important to compare ours with the OC models. The most 
distinguishing features are 1) the OC models employ production equals dissipation, as we do; 2) the OC models were not 
intended to describe double diffusive processes, which are the primary subject of this paper; 3) the OC models do not 
compute the mixing efficiencies Γ, which are assigned values around 0.2 as indicated by a variety of data, whereas this 
model computes them.

To make the comparison physically transparent, consider the mass diffusivity K
ρ
, Eq. (3d). It can be written as (Rf is the 

flux Richardson number):

 

Next, if one writes the heat diffusivity as Kh = κTCT (Gregg 1987), where CT is the Cox number, Γ
ρ
 can be rewritten as

Γ
ρ
 = κTCTN2 −1(K

ρ
/Kh). (24d)

 

When K
ρ
 = Kh, Eq. (24d) becomes Gregg's Eq. (49). Using (3e), we now have

ΓDD
ρ
 = ΓOCG

ρ
(1 − KsRρ/Kh)(1 − R

ρ
)−1, (24e)

 

where DD and OCG stand for double diffusion and Osborn–Cox–Gregg. In salt fingers, Ks > Kh while in diffusive 

convection Kh > Ks so that we have the relations:

SF: ΓDD
ρ
 < ΓOCG

ρ
, DC: ΓOCG

ρ
 < ΓDD

ρ
. (24f)

 

The primary focus of most recent work has been to assess the relative contributions of turbulence and wave breaking 
(McDougall and Ruddick 1992; St. Laurent and Schmitt 1999). The latest model by Walsh and Ruddick (2000, WR00) can 
be formulated as

 

where γf is the heat-to-salt flux ratio and the letter t stands for turbulence. In Eq. (25b), γf is taken from the linear stability 

analysis (Stern 1975; Kunze 1987; Schmitt 1994) while turbulence yields identical heat and salt diffusivities. 

In terms of the model presented in this paper, Eqs. (25) are equivalent to summing the weak and the strong turbulence 
models discussed earlier. Our model does not impose such a separation and computes γf from the full nonlinear problem 

(Fig. 6 ). The rationale behind our model is to try to represent the effects of both processes (double diffusion and 
turbulence) averaged together over space and time. Our view is that, although locally and temporarily there are sometimes 
salt fingers growing in such a way as to approximate the weak turbulence model as well as laboratory experiments without 
shear and at other times a random superposition of internal waves may produce so strong a shear that the mixing is well 
described by a strong regime Kh = Ks, neither of these situations is either ubiquitous or permanent. Rather, fingers form and 

grow for a while but they are disrupted by temporary bursts of high shear that subside and allow the fingers to form and 
grow again, the two processes eventually reaching equilibrium. The diffusivities Kh and Ks produced by salt fingering, 

internal wave shear mixing, and the interaction of the two have spatial and temporal scales larger than those of the two 



separate processes. Whereas in the previous approaches (St. Laurent and Schmitt 1999; Walsh and Ruddick 2000), the 
prevalence of salt fingers versus strong turbulence must be computed at each point from the microstructure data, our 
approach (intended for use in OGCMs where such small-scale information is not available), determines the balance between 
salt fingering and shear mixing using the large-scale R

ρ
. The variation in the relative strengths of the two phenomena at 

different locations is attributed to the variation in R
ρ
. 

As for the implementation in OGCM, three approaches were used to treat mixing below the ML. One treats the K
α
 as 

adjustable background diffusivities, for example in the NCAR OGCM (Large et al. 1997) Km = 16.7 cm2 s−1 and Ks = Kh = 

0.5 cm2 s−1 while other authors (e.g., Merryfield et al. 1999) use a different set of values. It should be remarked that the 
above Km is much larger than one provided by this model (Fig. 8 ) and so are the values of Kh,s compared with 0.07 of 

Polzin et al. (1995, Fig. 3 ), 0.1 of Kunze and Sanford (1996, Fig. 5 ), and the NATRE data (Figs. 9 and 10 ). 
Zhang et al. (1998, hereafter ZSH) and Merryfield et al. (1999, hereafter MGH) used model (25) for heat and salt in the form

K = K[R
ρ
, R

ρ
(cr)] + K(waves). (26a)

 

The first term was taken from the phenomenological models of Schmitt (1981), Fedorov (1988), and Kelley (1984, 1990) 
and R

ρ
(cr) = 0.64 (section 5). As for the second term in (26a), two models have been adopted both of which are 

independent of R
ρ

:

KZSH(waves) = K
∞

 = const, KMHG(waves) = a0N−1. (26b)

 

In the present model the internal wave contribution depends on R
ρ
 since schematically

K(waves) = K(RiT, R
ρ
, ) = K(cRiTcr, Rρ, ) = K(R

ρ
, ). (26c)

 

11. Turbulent diffusivities: General properties  

Figures 3–4  exhibit the dimensionless structure functions Sh,s versus stable RiT for salt fingers and diffusive 

convection. Consider first the case of salt fingers. At a fixed RiT, the structure function increases as R
ρ
 increases. This 

behavior is physically understandable since the instability is generated by salt and the stronger the source, the larger the 

diffusivity. Next, consider the dependence on RiT and in particular the value of RiT(cr) above which turbulent mixing ceases 

to exist as indicated by the vanishing of the S's. For R
ρ
 = 0 (lowest curve, no salt instabilities), RiT(cr)  O(1), as found in 

Part I. As salt instabilities begin to appear and R
ρ
 > 0, the value of Ri(cr) becomes increasingly larger implying that turbulent 

mixing can exist longer than without salt instability processes. At R
ρ
 = R

ρ
(cr), the value of RiT(cr) become exceedingly 

large, see Fig. 2 . For values of R
ρ
 > R

ρ
(cr), there is no longer an RiT(cr) since the structure functions no longer vanish 

for any RiT. This implies that even without shear RiT  ∞, there is finite mixing due to the chaotic nature of the salt 

instabilities themselves. We notice that below R
ρ
(cr), the larger the shear (RiT  0), the larger the diffusivities. In other 

words, both salt and shear contribute to the instability. Above R
ρ
(cr), the situation is reversed, the larger the shear (RiT  

0), the smaller the diffusivity, which implies that shear and salt fingers interfere. Next, consider the DC cases. At a given 

RiT, as R
ρ
 increases, the structure function decreases; just the opposite of the SF case. This is in accordance with the fact 

that in this case salt acts as a sink of mixing (which in turn is caused by an unstable temperature gradient), and thus, the 
stronger the sink, the lower the level of mixing, a circumstance that is reflected in the decrease of the diffusivity. As for the 
effect of shear, we notice that here too, above R

ρ
(cr), the larger the shear, the larger the diffusivities while the opposite 

occurs for values of R
ρ
 larger than that critical value. Finally, we recall that RiT > 0 corresponds to dynamical stability while 

RiT < 0 corresponds to dynamical instability. Understandably, the DS cases correspond to the lowest diffusivity because 
both salt and temperature gradients are stabilizing. The only source of instability is shear and thus turbulent mixing dies when 
stratification is too strong. In the DU side, the opposite occurs in the sense that both T and S are unstable and the resulting 
diffusivities are the largest. In Figs. 5a–c  we plot the ratios Km/Kh and Ks/Kh, which show that Kh and Ks are indeed 

different. In stable salt fingers, Fig. 5b , Ks is larger than Kh in accord with measured data. 



The stable R
ρ
 = −1 case shown in Fig. 5c  has been studied with a 2D numerical simulation by Merryfield et al. (1998, 

Fig. 3b ). The results of Fig. 5c  are only valid in the regime Re  1 where they agree, as expected, with the 2D 
results (above the dotted lines in their fig. 3b). Intermediate values of Re correspond to a region in which molecular effects 
are still relevant and one must therefore employ Eqs. (20c) for the π's. It is easy to see that the present model yields Kh/Ks = 

4 for Fr  28, which agrees pretty well with the corresponding values in Fig. 3b  of the 2D simulation (we recall that our 

x = 4Fr−2). 

In Fig. 6  we plot the heat-to-salt flux ratio (Kh/Ks)R
−1
ρ
. Since R

ρ
(cr) = 0.62 and since for R

ρ
 < R

ρ
(cr), we have a 

wave dominated regime (WR), while for R
ρ
 > R

ρ
(cr) we have salt fingers (SF), we notice that in the SF region, the model 

results agree with the reported data (see Figs. 5b and 10 of St. Laurent and Schmitt 1999). In the wave region (WR), the 
presence of the additional mixing due to shear increases both Kh and Ks, making their ratio become closer to unity than in 

the SF regime. The behavior in Fig. 6  is in agreement with the model of Walsh and Ruddick (2000, Fig. 2 ). 

In Fig. 7a  we plot Γh = KhN2 −1 versus R−1
ρ
 − 1 for different values of stable RiT. The lowest curve is for RiT = 0.1, 

while the upper curve is for RiT = 20. As expected from Fig. 2 , in the SF regime (R
ρ
 > 0.62), the larger the shear, the 

lower the value of Γh. The largest RiT curve corresponds to the points to the extreme right of Fig. 2  and the 

corresponding R
ρ
(cr) = 0.62. As we consider increasingly smaller values of RiT, we are sliding down the dividing line in Fig. 

2 , which corresponds to smaller R
ρ
(cr) and this moves the last point of the curves in Fig. 7a  to the right. This 

general trend is in keeping with the NATRE results of Fig. 9 of St. Laurent and Schmitt (1999, hereafter SLS) where the 

smaller the value of RiT, the wider the range of R
ρ
 allowed. In particular, from Fig. 9f of SLS we see that for RiT > 5, the 

range of allowed R
ρ
 is 0.5  R

ρ
  1, in agreement with both Figs. 2 and 7a . We also notice from Figs. 9a–f of SLS 

that the larger the RiT, the larger the Γh, a feature that is also reproduced in our Fig. 7a . In Fig. 7b  we exhibit Γh 

versus stable RiT for different R
ρ
. The two lines A and B correspond to different choices of c in Eq. (23c): A(c = 0.85) and 

B(c = 1). One can see that for a given R
ρ
, the choice of c does not greatly influence the resulting value of Γh. In Fig. 7c  

we exhibit Γ
ρ
 versus R

ρ
 for different stable RiT. The Osborn–Cox model employs Γ

ρ
 = 0.2, which the present model 

reproduces in the WR regime.

12. Testing the model without an OGCM  

Though the ultimate goal is to employ the new diffusivities in an OGCM, it would be very helpful and less affected by the 
unavoidable complexities of any OGCM, if one could use the NATRE data to test the model directly. This is indeed possible. 
In the deep ocean, the present model yields diffusivities (1b) that depend on R

ρ
, N, and . Due to the location of the NATRE 

experiments,  can be modeled with (23d). Thus, the comparison with NATRE data can be carried out without running an 
OGCM: using R

ρ
 (data) in our model expressions, one obtains K

α
 (model), which is then compared with K

α
 (data). Some of 

the results are presented in Figs. 9a,b . We extracted the errors in R
ρ
 and Kh from St. Laurent and Schmitt (1999) and 

thus both data and model results are shown with error bars. The K
α
 are sensitive to π2 and we verified that a slightly larger 

π2 would improve the agreement. The procedure faces a practical difficulty since NATRE data fall within a small interval of 

R
ρ
 that cluster around R

ρ
(cr). As one can see from Fig. 7a , in this small interval Γh is a steep function of R

ρ
 and a small 

error in R
ρ
 can give quite different Γh. 

13. Testing the model with an OGCM  

We employed a 3D global ocean model, the NCAR CSM Ocean Model produced by the University Corporation for 
Research, National Center for Atmospheric Research, Climate and Global Dynamics Division. We used the stand-alone 3° × 
3° configuration with 25 levels (Large et al. 1997). Details can be found in Part I. 

In Figs. 10a–d , we present momentum, heat, salt, mass, and concentration diffusivities versus the NATRE data 
[diamonds from SLS99 and triangles from Ledwell et al. (1998); Watson and Ledwell (2000)]. In Fig. 10d , the triangle 
to the left corresponds to the first six months of the experiment while the one to the right corresponds to the next two years 
of measurements. The error bars of the NATRE data are also shown. The agreement between the model results and the data 
is satisfactory. In Fig. 11 , we show the density ratio R  versus z using the same NATRE data. 



ρ

14. Global ocean results  

Using the new model for the Ks, we obtain the results presented in Figs. 12–18 . In Figs. 12–15 , the Levitus et al. 

(1994) data are represented by the full line. We ran the code with both the K parameter parameterization (KPP) model (Kh = 

Ks and adjustable background diffusivities; Large et al. 1997) and our model. The diamonds correspond to the KPP model 

and the asterisks correspond to the present model. In Fig. 12  we plot the global average temperature. The new model 
yields a closer fit to Levitus data than previous models especially in the first 1 km. As for the salinity (Fig. 13 ), the new 
model improves the correspondence with Levitus data in the upper kilometer. In the Arctic Ocean (Fig. 14 ), the 
temperature profile is improved versus the KPP model; as for the salinity (Fig. 15 ), the new model brings about a 
considerable improvement over the KPP model in the ML where the KPP model indicated a freshening of the water masses. 
In Figs. 16 , we present the North Atlantic overturning streamfunction (in Sv) with double diffusion (a) and without it 
(b). At 24°N, the presence of double diffusion yields a better fit to the measured values 16 ± 5 Sv and 17 ± 4 Sv (Roemmich 
and Wunsch 1985; Macdonald and Wunsch 1996). In Fig. 17 , we show the polar heat transport in the North Atlantic 
(a), Indo–Pacific Ocean (b) and global ocean (c). The data, the symbols, and the error bars are from Macdonald and 
Wunsch (1996). As one can notice, while the agreement is generally acceptable, the presence of double diffusion has 
lowered the polar heat transport, a fact noticed by previous authors. To be more realistic, one must change the salinity 
boundary conditions from “restoring,”  as used in part in the NCAR–CSM ocean model, to “natural”  (Huang 1993) so as to 
ensure that there is no salt flux across the air–sea interface, as the physics of the problem requires. Jiang et al. (1999) used 
these boundary conditions, together with an updated set of E − P values, and showed that the heat transport increases by 
23% while at 24°N the thermohaline circulation increases from 12 Sv to 27 Sv. These values correspond to the case of a 
horizontal diffusivity; if the latter is substituted with the Gent–McWilliams model, the 27 Sv value decreases to 21 Sv, which 
will get closer to the measured values once the effect of double diffusion is included. Finally, in Fig. 18 , we present the 
model results for the freshwater budgets, which were computed as in Danabasoglu and McWilliams (1994). Generally, the 
new model gives similar results to KPP, but the magnitude of the transport in the North Atlantic has been noticeably 
reduced.

15. Discussion  

Given the relevance of double-diffusion processes in the ocean, several authors have studied the phenomenon and its 
implications on ocean dynamics (Gargett and Holloway 1992; Zhang et al. 1998; Merryfield et al. 1999; Zhang and Schimtt 
2000). While laboratory data on salt fingers (SF) are quite extensive, their utilization in an OGCM is not straightforward 
since oceanic SF occur in a complex environment where, for example, there are wave breaking processes. To account for 
both processes is a difficult task and different authors have used different approaches. The most recent model, Eqs. (25), is 
based on the following assumptions:

1. SF (salt fingers) and WR (wave regime, called turbulence) exist simultaneously,

2. SF and WR dominate in different regions separated by a critical R
ρ
(cr) below which WR dominate and above which 

SF dominate,

3. the expression for the SF diffusivities is taken from phenomenological models (e.g., Schmitt 1981; Fedorov 1988; 
Kelly 1984, 1990), 

4. the value of R
ρ
(cr) is empirically determined to be 0.64,

 

5. the term in (26a) contributed by wave braking has been taken alternatively as a constant or a function of the type a/N, 
Eq. (26b). 

The present model is not based on the above assumptions and double diffusion and stirring by waves are treated within 
the same formalism, which also yields the value of R

ρ
(cr). Interestingly enough, the results of the present model shown in 

Fig. 6  are very close to those of Fig. 2 of Walsh and Ruddick (2000). This is however more than a theoretical validation 
of model (25) since the latter is only valid for salt fingers whereas the present model encompasses all double diffusion 
processes. In addition, the combination SF + WR is not the only one in the ocean since, as discussed earlier, there is a 
variety of stirring sources in addition to wave breaking.

At a more basic level, there is a methodological difference. We have adopted an Osborn–Cox-like approach based on the 
dynamic equations, which we enlarged to include all the dynamic equations relevant to the presence of velocity, temperature, 
and salinity fields. The only methodology capable of doing so is the Reynolds stress model.



We have derived the expressions for the diffusivities of momentum, heat, and salt as a function of the Richardson number 

RiT, density ratio R
ρ
, Brunt–Väisälä frequency N, and rate of dissipation of turbulent kinetic energy . The model 

encompasses salt fingers, diffusive convection, and doubly stable and doubly unstable cases as well as shear. The latter, 
though of different origin at different depths, is always present in the ocean. Within the mixed layer, it is due to external 
winds while in the ocean interior, it may be due to a variety of sources. The model is valid in both the ML and below it in the 

sense that the functional dependence of the diffusivities on the variables RiT, R
ρ
, N, and  is the same throughout the vertical 

extent of the ocean. What is different between the ML and thermocline (and below it) is the modeling of RiT and . 

16. Future improvements of the model  

The major difficulty in constructing this model was the evaluation of the dissipation timescales. Since the presence of salt 
fingers is an indication that molecular effects are important, one is called upon to construct a model that is atypical since 
most turbulence models assume negligible molecular effects. The weak and strong turbulence models presented earlier 
represent two extremes and neither one is representative of ocean mixing. What is required is a model that encompasses 
both limits but such a model is still not available. In our approach, the molecular/turbulence interface is represented by a 
single variable, the correlation timescale τsθ whose value from the turbulence model was slightly too large. A 10% decrease 

was sufficient to reproduce the correct value of R
ρ
(cr). The theoretical challenge is how to compute τsθ from a two-point 

closure model.

The present model is local since Eqs. (5)–(11) do not contain the third-order moments (TOM), for example, u iT
2, that 

would appear in the left-hand side of Eq. (7). The presence of nonlocal terms would change the heat flux expression in (2d) 
to

 

where Γ, known as the countergradient term, is a function of the TOMs. Since a new, algebraic expression for the TOMs 
has recently been derived (Canuto et al. 1994; Canuto et al. 2001a), the present model can be made nonlocal. 

Finally, the treatment of wave–turbulence interaction can also be improved. In fact, one may further split any turbulent 
variable  as

 = t + w, (27b)

 

where the subscripts t and w stand for turbulence and waves. This has already been done in the atmospheric context 
(Finnigan and Einaudi 1981) and it could also be applied here with an unavoidable increase in the number of equations to 
solve. However, it may be an effort worth pursuing because of the new physical insight one may gain from it.
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APPENDIX A  

17. Functions in Eqs. (13)–(14)  

Using the abbreviated notation:

 

the functions ak, bk, and dk entering Eqs. (13)–(14) are given by





 

APPENDIX B  

18. Values of the Constants in Eqs. (13)–(15)  

In the present model, the πs are given by Eqs. (22d):

π1 = π4 = 0.08372, π2 = 1/3, π3 = π5 = 0.72, (B1)
 

and

p1 = 0.832, p2 = 0.545. (B2)
 

Thus, the pk, ak, bk, and dk of appendix A take the numerical values:

 



APPENDIX C  

19. The Function f(R
ρ
), Eq. (23a) 

 

The function f(R
ρ
) of Eq. (23a) is given by

 

where

 

Figures  

 
Click on thumbnail for full-sized image. 

FIG. 1. The function R
ρ
(cr) given by Eqs. (18d) with π2 = τsθ/τ treated as a free variable. The full line corresponds to salt fingers 

while the dashed line corresponds to diffusive convection. If we take π2 = 1/3 (dotted line), for the case of salt fingers R
ρ
(cr) = 

0.62, Eq. (22c), while for diffusive-convection R
ρ
(cr) = (0.62)−1 
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FIG. 2. Contour plots of the stability function Sh, Eq. (13b), in the RiT–R
ρ
 plane. The zero contour Sh = 0 yields RiT(cr) above 

which mixing is no longer present [the values correspond to Eq. (23a) and appendix C]. The value of R
ρ
(cr) is also shown 
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FIG. 3. (a) The dimensionless stability function Sh for heat diffusivity, Eq. (13b), vs stable RiT for different values of R
ρ
. Local 

model, Eq. (16c). Salt fingers (solid line). Diffusive convection (dashed line). We recall that RiT > 0 corresponds to dynamical 

stability while RiT < 0 corresponds to dynamical instability. (b) As in (a) but for the DU and DS cases [see definitions after Eq. 
(4b)]. The values R

ρ
 = 0, −0.2, −1, −5 yield nearly identical results 
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FIG. 4. (a) Same as in Fig. 3a  but for the salinity stability function Ss, Eq. (13c). Note that the curves for the SF and DC cases 

have exchanged places as compared with Fig. 3a . (b) As in (a) but for the DU and DS cases [see definitions after Eq. (4b)] 
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FIG. 5. (a: top left) The ratio Km/Kh vs RiT; R
ρ
 = 0 corresponds to the laboratory data discussed in Part I. Salt fingers (solid 

line); diffusive convection (dashed line). (b: top right) The ratio Ks/Kh vs RiT for different R
ρ
. Salt fingers (solid line). Diffusive 

convection (dashed line). (c: bottom left) The ratio Ks/Kh vs RiT for different R
ρ
. Cases DU and DS [see definitions after Eq. 

(4b)] 
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FIG. 6. The heat-to-salt flux ratio (Kh/Ks)R
−1
ρ
 vs R−1

ρ
. In the SF region, we have taken RiT very large while in the WR (wave-

dominated region), RiT is computed using (23c). This result compares well with Fig. 2 of Walsh and Ruddick (2000) 
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FIG. 7. (a: top left) The heat mixing efficiency Γh = KhN2 −1 vs R−1
ρ
 − 1 for different stable RiT. Using NATRE data, St. Laurent 

and Schmitt (1999, Fig. 8 ) have suggested a way to interpret the dependence of Γh on RiT. Although it is not easy to make a 

one-to-one correspondence with their work, the general trend predicted by the model in the SF region agrees with the data: the 

smaller the shear, the larger the Γh. (b: top right) The heat mixing efficiency Γh = KhN2 −1 vs stable RiT for different R
ρ
. The 

two lines A and B correspond to c = 0.85 and c = 1, where c is the parameter entering Eq. (23c). Since the curves bend over, their 
sensitivity to c decreases. For a given R

ρ
, the effect of changing c on Γh is not large. In this paper, c = 0.85. (c: bottom left) The 

mass mixing efficiency Γ
ρ
 = K

ρ
N2 −1 vs R−1

ρ
 − 1 for different stable RiT. In the WR regime a value Γ

ρ
 = 0.2 is usually employed in 

the literature (Osborn and Cox 1972; Schmitt 1994; St. Laurent and Schmitt 1999). Here, it is derived within the model. 
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FIG. 8. The five diffusivities for momentum (m), heat (h), salt (s), mass (ρ), and passive scalar (c) vs depth for the location 
corresponding to the NATRE measurements
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FIG. 9. (a) Testing the diffusivity model without an OGCM. Mass diffusivity K
ρ
 compared with NATRE data (diamonds with 

error bars; St. Laurent and Schmitt 1999). Model results are represented by squares with error bars. (b) Same as (a) but for the 
concentration diffusivity Kc [triangles from NATRE data from Ledwell et al. (1993, 1998)] 
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FIG. 10. Testing the diffusivity model with an OGCM. (a) Heat diffusivity Kh compared with NATRE data [diamonds with error 

bars from St. Laurent and Schmitt (1999)]. Model results are represented by a solid line. (b) As in (a) but for salt diffusivity Ks. (c) 

As in (a) but for mass diffusivity K
ρ
. (d) As in (a) but for the concentration diffusivity Kc [triangles from NATRE data from 

Ledwell et al. (1993, 1998)] 
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FIG. 11. Profile of the density ratio R
ρ
. NATRE data (diamonds with error bars) and model results (full line)
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FIG. 12. The global ocean temperature using the NCAR OGCM. The Levitus et al. (1994) data are represented by a solid line. 
We have also run the code with the KPP model (Ks = Kh, Large et al. 1994) the results of which are represented by diamonds 

while the present model results are indicated by asterisks
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FIG. 13. As in Fig. 12  but for the global salinity profile 
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FIG. 14. As in Fig. 12  but for the Arctic Ocean temperature profile 
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FIG. 15. As in Fig. 12  but for the Arctic Ocean salinity profile 
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FIG. 16. The North Atlantic overturning streamfunction (in Sv) with double diffusion (a) and with the present model (b) but with 
Ks = Kh 
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FIG. 16. (Continued) 
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FIG. 17. Polar heat transport vs latitude for (a) the North Atlantic Ocean, (b) the Indo–Pacific Ocean, and (c) the global ocean. 
The data from different authors and the error bars are from Macdonald and Wunsch (1996). Solid line (KPP model, Ks = Kh), 

dotted line (present model with Ks = Kh), dashed line (present model with Ks  Kh). Double diffusion (Kh  Ks) lowers the value 

of the heat flux, a conclusion in agreement with previous authors

 
Click on thumbnail for full-sized image. 

FIG. 18. Freshwater budget. The WSBS curve corresponds to the measurements of Wijffels et al. (1992) as presented in Large et 
al. (1997) 
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