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ABSTRACT

The formation of nonlinear eddies in unstable 2½-layer, quasigeostrophic jets 
is investigated using a piecewise constant potential vorticity, “contour 
dynamical”  model. Both infinite and semi-infinite jet dynamics are explored, 
considering a potential vorticity configuration with one front in each 
dynamically active layer. Unlike previous studies, the infinite basic jets have a 
double baroclinic mode structure, which allows the lower-layer transport to 
range from westward to eastward (with the upper-layer transport considered 
eastward in all cases). A variety of eddy-shedding events are obtained, and 
dipole vortices can form even with eastward lower-layer flows. For semi-
infinite jets connecting to coastal currents along the boundary, coastal and 
retroflection eddies can be shed when baroclinic instability mechanisms are 
included. However, it seems that the unstable waves must either propagate 
westward or slowly in the eastward direction to allow this process to occur.

1. Introduction 

Contour dynamics (CD) provides a useful framework for the investigation of 
the nonlinear dynamics of quasigeostrophic (QG) jets. As discussed in Stern and
Pratt (1985), geophysical jets are usually associated with potential vorticity (PV) 
fronts (i.e., a front separating regions of significantly different PV values), for 
which a step function is a reasonable approximation. The CD method, based on 
PV conservation, consists exactly of solving initial value problems for piecewise 
constant PV distributions (Pullin 1992; Dritchel and Legras 1993).

The f-plane QG jet model has often been used to gain insight into meandering and eddy formation. Stern (1985) 
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considered a broad barotropic, infinite jet model associated with a single PV front and successfully obtained shingle 
formation, similar to that observed in the Gulf Stream by analyzing the evolution of large amplitude disturbances. The Pratt
and Stern (1986) model examined the dynamics of a 1½-layer (or equivalent barotropic), single PV front zonal jet, which has 
more realistic jetlike characteristics than Stern's (1985) barotropic ones. In Pratt and Stern's (1986) experiments, the 
competition between advection by the background flow and vortex induction mechanisms associated with disturbances 
superimposed on the background flow led to meandering and eddy formation. Pratt et al.'s (1991) model included an 
additional PV front to the Pratt and Stern (1986) 1½-layer jet model. Thus, it allowed the possibility of (equivalent) 
barotropic instability by simply setting the PV jumps to have opposite signs in the two contours (thereby complying with 
Rayleigh's instability theorem). By matching their piecewise constant jet with observations of the Gulf Stream, Pratt et al.
(1991) obtained detached eddies very similar in appearance to the “warm outbreak”  events in that current system. 

Meacham (1991, hereafter referred as M91) used Polvani et al.'s (1989) generalization of the CD method for the two-layer 
model, and examined several infinite jet configurations to understand how baroclinic instability could cause meandering and 
eddy detachment. The simplest baroclinically unstable configuration by Meacham was a double front model (one PV front 
per layer and PV jumps with opposite signs) with an eastward upper-layer jet and a westward-flowing lower layer. Meander 
growth occurred in quite a different fashion than that of Pratt et al.'s (1991) barotropically unstable model. Meacham 
reported that, in this simple configuration, meander occlusion could give rise to a dipole structure (detached meanders with 
opposite signs in each layer) that might advect itself away from the jet structure, as observed in the Gulf Stream eddies. 

The Meacham model described above did not have a background barotropic PV field, presumably because it imposes 
unrealistic jet configurations in the far field. The barotropic jet component associated with a single front has a triangular 
shape, with infinite velocity as the cross-stream coordinate approaches infinity. A consequence of the lack of a background 
barotropic jet is that the lower-layer motion is constrained to flow in the opposite direction to the upper-layer transport. 
Some questions that arise from Meacham's double front model results are: Would the presence of more than one dynamical 
mode in the far-field PV affect the evolution of meanders? How would meander growth and dipole formation differ if the 
transport in both layers were eastward?

To address these and other questions, in this study we use the G. R. Flierl et al. (1999, unpublished manuscript, hereafter 
referred to as FMP) multilayer CD technique to develop a 2½-layer model infinite jet model. The 2½-layer approximation 
eliminates the barotropic mode, so we can only examine PV configurations involving the first and second baroclinic modes. 
Our model vertical structure under this approximation consists of a surface and a thermocline layer overlying an infinitely 
deep motionless third layer (Fig. 1a ). We will focus our attention on a double front model, which according to M91, was 
the one that produced the more realistic meander patterns. We will look at cases in which the lower-layer transport ranges 
from westward to eastward. The upper-layer transport will be eastward in all cases. 

Silveira et al. (1999, hereafter referred to as SFB) employed CD to investigate the dynamics of 1½-layer separating jets. 
These authors essentially connected the Pratt and Stern (1986) jet to a western boundary by a system of converging 
boundary currents. They explored cases with symmetric and asymmetric (in terms of transport) boundary currents. The 
authors also examined the model response relative to changes in the orientation of a rectilinear coastline from the north–
south direction. They found that the dynamical roles of the coastline tilt and current transport asymmetry were similar in 
their model, leading to the development of a slowly evolving meandering pattern in separating western boundary currents. In 
particular, SFB reproduced the retroflection pattern typically observed in the Southern Hemisphere boundary currents. 
However, the model failed to obtain realistic amplitudes and retroflection eddy formation (i.e., eddies pinching off from the 
retroflection lobe). Some questions that arise from their work are: Could geophysical instability explain finite amplitude 
meandering and eddy formation in separating jets? If so, could retroflection eddies be formed and propagate away from the 
current system as observed in the retroflecting Brazil and the North Brazil Currents? If not, could eddies be formed 
downstream, far away from the boundary, as observed in the Gulf Stream? To address these questions, we will build a 
semiinfinite jet model by connecting the zonal 2½-layer jet to a western boundary by system of coastal currents, as in SFB's 
equivalent-barotropic model. The upper-layer coastal currents will be convergent and the zonal jet transport will be eastward. 
The lower-layer flow structure will be varied to allow both converging and diverging coastal currents (the latter sketched in 
Fig. 1 ).

This paper is organized as follows. The PV inversion relationships and a discussion on the vertical structure parameters 
for the 2½-layer model are presented in section 2. The infinite zonal jet models are discussed in section 3. The “separating”  
jet models, where a western boundary is included, are examined in section 4. A summary of our main findings is presented 
in section 5.

2. The 2½-layer model formulation  

The flow in a contour dynamics model is governed by conservation of PV. Using the scales in Table 1 , we can write 
conservation statements for PV in each of the two active layers in a nondimensional form to get 



 

The ith layer velocity components are related to the ith-layer streamfunction i in the usual way, while i can be found 

from the 2½-layer PV inversion formula 

Mij j  [ 2
δij + Zij] j = qi, (2)

 

where Z is the vertical structure matrix given by 

 

The layer thickness ratio δ, the upper-layer Froude number μ, and the density jump ratio  are defined in Table 1 . The 
parameter μ can also be thought of as the “rigidity”  of the interface between the first and the second layers, as in Polvani et 
al. (1989).

The 2½-layer model has two vertical modes with associated deformation radii; these are associated with the 
eigenfunctions and eigenvalues of Z: 

ZF = −FΓ2, (4)

 

where Fim gives the amplitude of the mth dynamical mode in the ith layer and 

 

is the eigenvalue matrix. The eigenvectors can be normalized by requiring that 

hiFimFin = δmn, (6)
 

where hi is the ith-layer nondimensional thickness (when the fluid is at rest). The eigenvalue γ2m is defined in the literature 

as the inverse square of the mth internal deformation radius (Flierl 1978; Pedlosky 1979). Nondimensionalization using the 

scales of Table 1  leads to γ21 = 1 and γ22 = R. 

To use this model, we must choose values for μ, δ, and R (or ) to properly (and consistently) represent a continuously 
stratified ocean with the 2½-layer approximation. We employ the ideas in Flierl's (1978) and Silveira et al. (2000) for the 
following simple calibration scheme:

● The parameter R is chosen to match observations. In other words, we force the eigenvalues in Eq. (4) to match the 
first and the second deformation radii estimated from data. See Houry et al. (1987) for a numerical method to 
compute the deformation radii from CTD data.

● The parameter δ or  is chosen from previous knowledge of the study region. It is probably easier (and perhaps more 
accurate) to choose the layer thickness ratio δ based on water mass criteria and/or observed velocity structure than 
the density jump ratio .

● The parameter μ, given R, is calculated from 

det(Z + Γ2) = 0. (7)

 

If R and δ are given, the solution for μ is 



 

An expression for  can also be obtained from manipulating Eq. (7), yielding 

 

Notice from Eq. (8) that, since μ must be real, δ is restricted to satisfy 

 

We estimate from Houry et al.'s (1987) work that R ranges from 2.5 in the Tropics to 6.5 at midlatitudes. The layer 
thickness aspect ratio range is probably 0 < δ  1. The calibration scheme above provides two sets of values for μ and  
[see Eq. (8)]. The choice between the two sets may rely on the set that satisfies  > 1. There are cases, however, in which 
both roots of Eq. (8) satisfy that condition. In those cases, the smaller μ value is associated with a larger  value [via Eq.
(9)], implying that the vortex stretching/squashing of the second layer is due primarily to interactions with the upper layer. 
The larger μ root is usually associated with  = O(1), which implies that the changes in the lower interface are of the same 
order as the upper interface. The smaller μ values will have much larger density ratios so that we can expect that such a 
model will behave more like the 1½-layer case. 

3. Infinite jets 

In this section, we present the formalism and numerical results for f-plane infinite jets. The derivation that follows is 
based on FMP's method for multilayer, piecewise uniform jets. It is applied to the double front model in which there is one 
front in each active layer.

For this model, the PV field is given by 

qi = q0i
 + Δi (y − yi −  i), (11)

 

where q0i
 is the qi value south of the front (contour) on the ith layer, Δi is the vorticity jump from south to north in layer 

i, and  is the Heaviside step function. The mean latitudinal position of the front is yi, while i represents the time-

dependent deviations.

The PV field is then split into a basic-state part qi and a perturbed part q′i and their associated streamfunctions: 

 

A PV inversion formula for the basic zonal flow ui can be obtained by simply taking − / y of Eq. (12): 

Mijuj = −Δiδ(y − yi). (14)
 

The temporal evolution of the contour on the ith layer is then computed using the kinematic equations 

 

We shall use the methods of FMP for solving the linearized versions of Eqs. (13), (14), and (15) to determine the basic jet 



profiles and linear stability properties. The nonlinear equations will be stepped forward numerically, using the approach of 
Pratt and Stern (1986).

a. Linear stability 

Equations (13), (14), and (15) can be linearized around yi and solved by considering solutions proportional to eik(x−ct). In 

doing so, one obtains 

 

The matrix M(k) is defined as 

 

Equations (16) and (17) can be solved using the Green's functions, which satisfy 

M(k)
ijG

(k)
jm(y | y′) = δimδ(y − y′). (19)

 

According to FMP, the elements of the G(k) matrix have the form 

 

Hence, by applying Eq. (20) to Eqs. (16) and (17), we get 

 

and can solve for c in Eq. (18) by evaluating ( ′
i, ui) at yi. In addition, following FMP, we specify the basic jet velocities 

at the contours rather than the Δi and find the latter by inverting Eq. (22). 

b. The nonlinear model 

The full nonlinear system is also solved using Green's functions. In that case, the solution of Eq. (13) becomes 

 

where r  |x − x′| and Aj is the area between the curves yj + j and yj. The elements of the Green's function matrix 

now take the form of 

 



The expressions for the perturbed velocities are obtained by differentiating Eq. (23) using the symmetry properties of the 
Green's function and applying the divergence theorem (Pratt and Stern 1986; Wang 1992). Following Polvani et al. (1989), 
we integrate by parts to avoid problems with the logarithmic singularity at r = 0. The result is 

 

The numerics of the contour algorithm described next follows Pratt and Stern (1986). The algorithm tracks the contour 
as a set of Lagrangian points with the positions advancing according to Eq. (15). A second-order Runge–Kutta scheme is 
employed in time, with the basic jet velocity u calculated from Eq. (22). The perturbed velocities u′ and ′ are evaluated 
from Eq. (25), which has been discretized using a midpoint integration rule, according to Zou et al. (1988) and Polvani
(1988). We have not employed sophisticated contour surgery (see Dritschel 1988, 1989) to maintain the model's resolution 
and to separate or reconnect eddies and PV filaments from the fronts. Rather, we use a simple particle insertion–deletion 
scheme to keep the particle separation within a predefined range.

c. Numerical experiments 

In order to reduce the large parameter space of the 2½-layer infinite jet model, we will restrict our experiments to 
baroclinically unstable configurations in which

● The mean front latitudinal positions y1 and y2 are zero.
 

● The upper-layer centerjet velocity u1(0) is 1.0, and the lower-layer centerjet velocity u2(0) is varied.
 

● The eigenvalue ratio R is 6.25, a value typical of the North Atlantic midlatitudes and one that corresponds to a 50-km 
first deformation radius and a 20-km second deformation radius. This choice for R sets the two length scales 
involved as far apart as they can realistically be (see section 2 for discussion on R ranges).

● The layer thickness aspect ratio δ is 0.2 (experiment set 1). The δ = 1.0 case is covered in Silveira (1996).

● The jets are perturbed with (equivalent) barotropic disturbances of the form 

(x, 0) = Ae−x2/w2
, (26)

 

where A = 2, w = 2 for all study cases in experiment set 1. The disturbance with these A and w values contains 
significant power in wavenumbers k  2.0 and, as we shall see later, within the unstable k range for all the cases to 
be discussed in this section.

1) CALIBRATED VERTICAL PARAMETERS AND LINEAR MODEL RESULTS 

The calibration scheme provides two sets of values for μ( ) that satisfy the  > 1 condition 

 

As noted in section 2, the first set of values is more likely to behave as a two-layer system, so we shall use this choice. 
(We have looked at the second calibration and found very small growth rates.)

Our choices for u2(0) and the corresponding vorticity jumps computed by the linear model for experiment set 1 are listed 

in Table 2 . The lower-layer transport ranges from westward (run inf1) to eastward (run inf4). The basic jet profiles and 
corresponding phase speeds and growth rates are shown on the left-hand panels of Figs. 2–4 . The presence of the two 
dynamical modes is evident in the background jet profiles, particularly in the lower-layer jets with counterflow regions. 
Shifting the lower-layer transport from retrograde to prograde (relative to the upper layer) reduces the growth rates and 
increases the scale of the most unstable waves.

It is possible to relate growth rates and transport directions to magnitudes of the layer-integrated PV jumps |hiΔi|. For 

cases that have |h2Δ2| > |h1Δ1| (run inf1), we obtain the largest westward lower-layer jet transports and the highest growth 



rates. As |h2Δ2| is decreased relative to |h1Δ1|, the westward lower-layer transport decreases and the most linearly unstable 

waver gets longer. When |h2Δ2| = |h1Δ1|, the net lower layer transport is zero, and there is no unstable long-wave cutoff 

(see the run inf2 curve in Fig. 2 's left panel). For increasing |h2Δ2| < |h1Δ1|, the net lower-layer transport is eastward 

and neutral linear stability is approached (this progression is noted in runs inf3 and inf4 PV configurations, Figs. 3 and 4 
).

2) NONLINEAR MODEL RESULTS 

The results of the temporal evolution of the initial disturbance given by Eq. (26) for all cases are summarized in Table 2 
 and shown on the right-hand panels of Figs. 2–4 . It can be seen that different kinds of eddy shedding events can be 

obtained from the same initial disturbance, and dipole formation can occur on either side of the fronts. The most unstable jet 
configurations, such as runs inf1 and inf2 (Fig. 2 ) shed dipolar eddy structures from the primary crest (i.e., from the 
initially Gaussian disturbance). As the lower-layer transport becomes eastward and the jets less unstable, the dipole pinches 
off from the primary trough (i.e., from the first trough to the right of the initial disturbance) as in run inf3's results (Fig. 3 

) or even from the secondary crest. As the jet configurations approach neutral linear stability, short-lived eddies and/or 
shingles are shed in the lower layer only, and the upper-layer meander disperses quickly eastward, as run inf4 (Fig. 4 ). 

The results above show that dipole formation from an initially equivalent barotropic Gaussian meander is possible when 
the transports in the two layers are either in the same or opposite directions. In particular for eastward flowing lower layers, 
the eddy shedding occurs when the jet core is westward (such as in run inf2) or stagnant (as in run inf3). The dipole 
formation process was very similar to Meacham's experiments, even though the most unstable waves are somewhat shorter 
than a corresponding δ = 0.2 two-layer, double front model would be.

To examine whether dipole formation can occur with prograde lower-layer flows, we have examined different initial 
conditions. Experiment set 1 used the Gaussian disturbance Eq. (26) (with A = w = 2), which contains power distributed in 
the range k  2.0. As Figs. 2–4  indicate, the most unstable wavenumbers are mostly in this range but get smaller as we 
approach neutral stability. We can target the the most unstable wavenumber of the run inf4 jet, k  1.25, by starting with a 
more complicated disturbance shape: 

(x, 0) = 3e(−x2/w2) cos(k0x). (27)

 

This multilobed anomaly, formulated by Pratt (1988), sets k0 as the dominant wavenumber, and the width w determines 

the extent to which wavelengths neighboring k0 are present. We choose k0 = 1.25 and w = k0/2π. The disturbed jet evolution 

obtained can be seen in Fig. 5 . The upper layer evolves similarly to Pratt's (1988) experiments with equivalent barotropic 
jets, with some moderate growth on secondary crests. The lower-layer crest grows fringes that interact with the upper-layer 
crest. The upper-layer primary crest pinches off an eddy. Its interaction with the elongated lower-layer primary crest and its 
fringes propel the upper-layer anticyclonic eddy away from the jet. Unfortunately, our crude CD insertion–deletion particle 
routine does not allow us to carry the integration much further to determine what happens to the lower-layer primary crest. 
However, we believe that this experiment demonstrates that everywhere prograde, weakly unstable jets can still generate 
propagating eddies.

4. Separating jets 

In section 3, we showed how meander evolution and eddy detachment occur in 2½-layer infinite zonal jets. In this 
section, we include a western boundary by connecting the zonal jet to a coastal current system. The formulation to be 
described in the next subsections follows SFB's equivalent-barotropic model. Also it should be emphasized that far away 
from the coast, the jet profile is identical to those given by Eq. (22). We restrict our investigation to configurations with 
converging upper-layer coastal currents that form an eastward separating jet. In SFB, a series of balanced and unbalanced 
configurations were examined to investigate the effect of the boundary on the jet dynamics and the form of separation in 
western boundary currents. Here, the goal is to understand if/how baroclinic effects change the results obtained by SFB. In 
particular, we want to verify whether coastal eddy shedding is possible in double front, 2½-layer jets. 

We start by redefining the coordinate system and rotating the frame of reference described in section 3 by an angle θ to 
make the y axis parallel to the western boundary. Hence, 

 

where x and y are the cross-shore and alongshore coordinates, with x = 0 corresponding to the boundary and the solution 
domain being x > 0. As in SFB, we limit the study to cases where θ = 0 and θ = π/4.



The PV field is still given by Eq. (11). However, in contrast to the infinite jet case, q0i
 is not a free parameter and its value 

alters the background flow pattern. For example, if q0i
 = −½Δi, the southern and northern coastal currents are symmetric, 

or a mirror image of each other and the potential vorticity has the same magnitude and opposite sign on either side of the 
front. In cases where q0i

 = −½Δi − αi, the flow is asymmetric, with one coastal current stronger than the other. The 

formalism and numerical experiments for the symmetric case are presented in section 4a, while the asymmetric jet model is 
treated in section 4b.

a. The symmetric model 

1) MODEL FORMULATION 

As previously discussed, the PV field for the symmetric model is obtained by rewriting Eq. (15) using q0i
 = −½Δi. This 

yields 

 

where 

y = y(x) = x tanθ. 

By setting y(0) = 0, we can see that the PV front is connected to the coast in both layers.

Silveira et al. (1999) showed that, when θ  0, an alongshore momentum imbalance is introduced. For this case, the 
coastline tilt acts as a forcing, creating a steady PV anomaly close to the confluence region that drives linearly growing wave 
patterns, and makes steady states not possible. However, given the linear nature of the inversion formula Eq. (2), we can 

still, for any θ, split the qi field into a background and time-independent part qi, and a part q′i associated with the time-

dependent deviations from qi. It should be emphasized that qi is not (necessarily) a steady state, and we take it as being 

associated with the “straight”  position of the front. By partitioning the PV field, analogous expressions to Eqs. (12) and (13) 
can be written for the symmetric, semiinfinite jet model considered in this section. The background (or straight) flow pattern 
is much more complex here than in the infinite jet case, making an analytical solution such as Eq. (22) difficult; therefore, 
we solve for the i field numerically by iteration (SFB). We take advantage of that formulation by rewriting the equations in 

terms of the modal PV and streamfunction m  (F−1)mj j and treating each modal flow as a 1½-layer system, applying 

the boundary conditions 

 

with the condition that as x  ∞, the background velocity structure is identical to the infinite jet model (just rotated by 

the angle θ). Once m is determined, we can map the i = Fim m fields and compute the velocities ui and i using a finite 

difference approximation.

The perturbed “layer”  streamfunction solution is given by Eq. (23). However, since we also require that ′
i(0, y, t) = 0, 

the Green function needs to be modified to satisfy that condition: 

 

with   ((x + x′)2 + (y − y′)2 )½.

 

Expressions for u′i and ′
i are obtained by using Eq. (31) in Eq. (25). The contour evolution equations are identical to 



Eq. (15), but including a i contribution due to the coastal currents and the coastline tilt (i.e., dyi/dx). 

The CD code is also identical to the one for the infinite jets (see section 3b, last paragraph), with the only difference being 
that ui and i are now interpolated from the values on the grid obtained by the iterative scheme. 

2) NUMERICAL RESULTS 

We limit our investigation of the symmetric model to three of the four PV front structures of experiment set 1. The 
coastline tilt parameter θ is either 0 or π/4. The initial conditions used are

● a A = w = 2 half-Gaussian disturbance [Eq. (26)] placed at x = 0 for the cases with a meridionally oriented coastline 
(θ = 0);

● (x, 0) = 0 for the cases with a tilted coastline (θ = π/4), given that no steady state is known.

The results are summarized in Table 3 .

In runs sym1 (θ = 0) and sym2 (θ = π/4), the jet configuration is as in run inf1 far from the boundary (Fig. 6 , left 
panel). The upper layer eastward (lower layer westward) jet is connected to the coast by converging (diverging) coastal 
currents. The run sym1 has a known steady state with a rectilinear front. The description of the evolution of the half-
Gaussian meander placed at the coast deserves some detail (Fig. 6 , right panel). We see that, as soon as the model is 
turned on (t = 0), the lower-layer meander is sheared out northward by the lower-layer coastal current. This establishes a 
vertical phase shift, and the meander in both layers start to grow (t = 10). In the upper layer, the lobe at the coast interacts 
with both the lower-layer PV patch and its wall image, creating a northward tendency that overcomes a possible squashing 
by the southward coastal current (t = 15). In the lower layer, the meander interaction with its image creates a southward 
tendency that is overcome by both the northward advection by the lower-layer coastal current and the northward motion 
through interaction with the upper layer. The result is that a coastal dipolar eddy is pinched off as the primary trough 
reaches the boundary (t = 20). The eddies tend to continue propagating northward. The westward propagation of 
baroclinically unstable waves (Fig. 6 , center-left panel) in this experiment accounted for a coastal eddy shedding not 
possible in SFB's equivalent-barotropic model (see their Fig. 2, upper-left panel). 

Run sym2 (θ = π/4) is the tilted coastline version of run sym1. When the model is turned on, waves are excited in 
response to the coastline tilt forcing. A temporally growing retroflection pattern develops and coastal eddies are shed 
similarly to run sym1.

In runs sym3 (θ = 0) and sym4 (θ = π/4), we look at the case in which, away from the coast, the jet configuration gives 
waves that propagate eastward, as in run inf2 (Fig. 2 ). In the meridional boundary case run sym3 (Fig. 7 , right 
panel), a wave structure develops similarly to SFB's equivalent-barotropic model. The meander in both layers is slowly 
squashed against the y axis (t = 10). The eastward traveling waves form a spatially damped pattern, with shorter 
wavelengths outrunning the longer ones. Since meander dispersion occurs faster in the upper layer, a vertical phase shift 
develops on the offshore side of the bump, triggering baroclinic instability (t = 25). The meanders then grow and the original 
bump is zonally stretched in both layers to about five deformation radii wide at t = 40. The primary trough necks off in both 
layers and forms a dipolar vortex (t = 50). The dipole is shed at a distance from the coast (x > 5) where it feels very little 
effect of the boundary. This may be a case in which the presence of the boundary inhibits dipole formation. SFB showed 
that the cross-shore gradient in the cross-shore velocity is responsible for the zonal stretching of the initial meander, 
favoring long-wave patterns. This seems to be what happens with the upper-layer meander, which by t = 10 is about five 
deformation radii wide.

In contrast to its meridional boundary case counterpart, we obtain retroflection eddies in run sym4 (θ = π/4, Fig. 8 ). 
Dipole formation on the primary crest apparently can occur in this case because the meander growth due to baroclinic 
instability adds to the linear growth due to the steady input of alongshore momentum (as in the wave pattern of SFB's 
model). These combined effects control the widening of the primary crest, allowing the pinch-off (the primary crest is about 
35% narrower at t = 25 than in the θ = 0 case). Figure 8  (lower panel) suggests that, sometime later, the whole 
retroflection lobe will pinch off in both layers when the primary trough reaches the coast. The simple point adjustment code 
did not allow us to follow the eddies after detachment or the retroflection lobe motion along the boundary. Since the dipolar 
vortex is shed about four deformation radii from the coast, we expect that its self-induced motion will prevail over the 
opposing coastal currents and it will move northwestward. If the dipole approaches the coast, it will feel a stronger upper-
layer coastal current, but also the image effect will be enhanced.

In runs sym5 (θ = 0) and sym6 (θ = π/4), away from the coast, the jet configuration is as in run inf3. There is no 
westward flow in either of the layers and the waves propagate eastward faster than in run sym3 configuration. The results 
obtained for runs sym5 resemble those of run sym3. The faster eastward traveling waves cause a faster dispersion of the 



initial meander toward the ocean interior. There is little vertical phase shift on the anomalies close to the coast. A similar 
dipolar vortex is formed on the primary trough, but at about ten deformation radii from the boundary, where the jet can be 
regarded as a free jet. The tilted boundary version run sym6 results are similar to those of runs sym5 and a dipole is shed at 
about x = 10. An eddy pinches off from the retroflection lobe on the lower layer, probably to be reentrained in the jet later.

The results of run sym5 and sym6 confirm that either westward or weakly eastward propagating waves are a necessary 
condition for dipole formation on the primary crest of separating symmetric jets. More precisely, we can say that 
retroflection/coastal eddy formation seems possible when the dynamical system satisfies Farrell's (1982) criteria for absolute 
instability. Based on the “the pinch singularity method”  (which is related to stationary phase), he defined a system to be 
absolutely unstable when the local pulse growth rate ν is positive for x/t = 0. The wave envelope then grows as exp(νt) at 
the point of excitation. The calculated ν distributions (Fig. 9 ) show that indeed runs sym5 and sym6 are the only cases 
that are not absolutely unstable.

b. The asymmetric model 

1) MODEL FORMULATION 

Now we consider cases in which q0i
 = −½Δi − αi so that one coastal current is stronger than its counterpart. We 

formulate the asymmetric model similarly to the symmetric model, following SFB. The qi, i field is split into a background 

part, qi, i associated with a specified position of the front and a time-dependent part, q′i, 
′

i. The jet profile in the ocean 

interior is still given by Eq. (22). However, a consequence of having an asymmetric coastal current configuration is that the 
centerjet streamline does not correspond to i = 0 but depends upon the asymmetry parameter αi. Since the model requires 

that i(0, y) = 0 at the boundary, the front cannot be connected to the coast. If there is a steady asymmetric front, it should 

have a hyperbolic shape and will asymptotically approach some distance xi(αi) from the coast, extending northward or 

southward, depending on the value of αi. Another important characteristic of the asymmetric model is that, unlike the 

symmetric cases, the maximum velocity of the coastal currents is not at the coast, but rather at x = xi(αi). For computational 

purposes, it is simpler to specify xi instead of αi since i is determined numerically using finite differences. More exactly, 

we choose x1 and x2 to be in the midpoint between two grid values. Therefore, including asymmetry adds two more 

parameters (x1 and x2) to the parameter space of the symmetric separating jet model. In general, the methodology for the 

asymmetric model is analogous to the symmetric model: it is convenient to solve for the modal background streamfunctions 
instead of using the layer system directly.

In the simplest of the asymmetric cases, both fronts approach the same distance x1 = x2 = x0 from the coast, as y  −

∞. There are two converging coastal currents in the upper layer and we take the southern current to be stronger. In the 
lower layer, the presence of counterflows and more complex jet patterns makes general statements regarding transport 
strengths difficult, and we shall discuss them on a case-by-case basis.

For the x1 = x2 = x0 case, the modal asymmetric parameters are set by 

Fijaj = αi, FijDj = Δi, (32)
 

and the PV inversion at the southern end of the domain (for a front along that boundary) becomes 

 

Using the assumptions m(0, y) = 0 and m(x0, −∞) = am/γm
2, we find 



 

where the constants c1, c2, and c3 are 

 

The expression for x0 is given by 

 

We can now invoke again the linear nature of Eq. (2) to define a new “basic state”  position of the front ym(x, y) by the 

asymptotes of a hyperbolic centerjet streamline m = am/γm
2, yielding 

 

The m field, as in the symmetric model, is determined numerically by iteration, subject to the boundary conditions, Eqs. 

(29) and (34). As mentioned previously, in order to avoid accuracy problems in the iteration scheme, it is preferable to 
choose x0 and invert Eqs. (35) and (32) to obtain the am and αi respectively. 

The formulation for the background streamfunctions in cases where x1  x2 is not as straightforward as the x1 = x2 case, 

since the layer PV fields q1 and q2 have two PV value regions as before, but the modal PV has three regions with different 

values in each, and there is no simple relationship between between xi and am (or αi). But, after some tedious algebra and 

some switching back and forth between the layer and mode spaces, one can derive expressions for i in terms of qi and xi 

with 

i(xi, −∞) = i(∞, yi).
 

We then solve a 4 × 4 linear system for the αi values using these two expressions and the two constraints stating that Δi is 

the jump across the front in each layer (i = 1, 2). This gives us enough information to determine m and thereby the 

background velocities.

The calculation of the perturbed streamfunction is unaltered when asymmetry is included, and therefore is given by Eqs.
(23) and (31). The numerics of the CD algorithm for the asymmetric model also follows those for the symmetric case 
described in section 4a.



2) NUMERICAL RESULTS 

As mentioned previously, the asymmetric model has six parameters to be spanned: u2(0), R, δ, θ, x1, and x2. As our goal 

here is the verification of retroflection eddy formation in presence of asymmetry, we limit ourselves to the discussion of a 
few cases in which the jet profile in the ocean interior is the one used in run inf2 [u2(0) = −0.125, R = 6.25, and δ = 0.2]. 

We use as initial conditions the shape of the respective background centerjet streamlines in the two layers. Table 4  
summarizes the experiments performed.

In order to isolate the effect of asymmetry, we describe mainly the results where a meridional boundary (θ = 0) is 
considered.

(i) The x1 = x2 cases
 

In run asy1 (run asy2) we consider southern coastal current systems that are 30% (80%) stronger than their opposing 
northern counterparts. In the lower layer, the transport of both northern and southern coastal currents is southward, with 
the northern current being also about 30% (80%) stronger. These configurations exemplify a major difference in the lower-
layer flow structure of these experiments relative to the analogous symmetric case. As in run sym3 (Fig. 7 ), the layer-
integrated PV jumps are equal, and the lower-layer transport of the zonal jet in the ocean interior is approximately zero. The 
northward (southward) counterflows compensate for the opposing coastal jet core in the southern (northern) borders. In the 
present case (Fig. 10 , left panel), the asymmetry causes the jet core to be displaced to the x1 (x2) position, as y 

approaches −∞ in the upper (lower) layer. The lower-layer southern coastal current transport then becomes negative, as 
does the northern coastal current transport since the northward jet core at the coast is weakened. As shown by SFB, 
asymmetric coastal current configurations with a zonal jet in the ocean interior also have an alongshore momentum 
imbalance that triggers linearly growing long waves, similar to the effect of tilting the coastline. The results of run asy2 in 
Fig. 10  (right panel) show the effects of this imbalance: after the model is turned on (t = 0), slowly eastward propagating 
long waves are excited and the retroflection pattern develops (t = 20). As these long waves are unstable, the vertical phase 
shift induces baroclinic growth (t = 45). A retroflection dipolar vortex pinches off at about x = 5 (t = 65). It seems that as in 
run sym4, the linear growth (due to asymmetry here) and baroclinic instability combine in controlling the retroflection lobe 
widening, which allows the tip to neck off. It should be noticed that in these two cases the dipole is shed at about the same 
distance from the coast: roughly five deformation radii.

(ii) The x1  x2 cases
 

We consider two cases here, one with the lower-layer PV front asymptotically approaching x = x2(∞) = 0.15 in the 

northern part of the domain (run asy3), and the other with x = x2(−∞) = 0.15 in the southern part of the domain (run asy4). 

In both cases, we consider the upper-layer PV front extends to the south, x1(−∞) = 0.55. 

For run asy3, the upper-layer southern coastal current is about 50% stronger than its northern counterpart. The transports 
of both northern and southern lower-layer coastal currents are southward, with the northern coastal current being only 30% 
stronger than the southern. The lower-layer southern coastal current jet core is 1.5 times more intense than in the previous 
cases (compare the left-hand panels of Figs. 10 and 11 ). The associated counterflows are also about two times broader 
and more intense, creating a strong anticyclonic circulation cell on the southwest side of the domain. The lower-layer 
northern coast current core is centered at x2(∞) instead of the coast (as in the previous experiments). It is observed that, as 

the model is turned on (t = 0, Fig. 11 ), the retroflection pattern begins to develop, and the tip of the lower layer is 
captured by the intense southward coastal current in the lower half of the domain (t = 10). This part of the lower-layer front 
is then quickly advected southward, as the meanders offshore grow (t = 25). The final result is a dipole being shed in the 
primary trough (t = 65). This result suggests the absence of retroflection eddy formation is due to the complex lower-layer 
coastal current pattern: in run sym1 (Fig. 6 ), the necking off process in the lower-layer retroflection lobe begins on its 
western side by developing a trough. In the present case (Fig. 11 ), however, the formation of this west side trough 
seems to be inhibited by the southward advection of the intense lower-layer northern coastal current. Similar results for 
meander development were obtained in run asy4 (the coastal current systems are very similar to run asy3 despite the 
different PV distribution).

5. Summary and conclusions 

In this paper we have investigated eddy formation and detachment in piecewise-constant, baroclinically unstable f-plane 
quasigeostrophic jets. Using FMP's multilayer CD technique, we have built a 2½-layer version of Meacham's double front, 
two-layer infinite jet model. We also connect the 2½-layer jet to a western boundary by a system of boundary currents. 
Thus, we obtain a baroclinic version of SFB's equivalent-barotropic separating jet model. Our goal in this work is basically to 
answer two questions:



● M91's double front model has a background jet configuration in which only the first baroclinic mode structure is 
present. A consequence of such a condition is that it constrains the lower-layer transport to the opposite direction of 
the upper layer. In the 2½-layer model, we can include two baroclinic modes and thereby allow the lower-layer 
transport to be in any desired direction. Does the eddy shedding and dipolar vortex formation still occur?

● SFB's model was able to reproduce some characteristics of separating boundary currents, such as the development 
of a retroflection pattern. However, it lacked the formation of coastal or retroflection eddies, which are known to 
occur in real current systems (e.g., the Brazil Current). Can baroclinic instability mechanisms combine with SFB's 
physics to produce coastal/retroflection eddy shedding?

To obtain the answer to the first question, we explored the 2½-layer infinite jet model choosing eastward flowing upper-
layer jets and restricting the deformation radius (or eigenvalue) ratio to 6.25. The results show that eddy shedding and dipole 
formation occur when the net lower-layer transport is westward, zero, or eastward. Even weakly unstable jet configurations 
are able to shed dipolar vortices when initial conditions targeting the most unstable wavenumber (determined by linear 
theory) are used. Nevertheless, the meander evolution in all study cases that led to dipole formation occur in a very similar 
way to the cases reported by Meacham with his two-layer model. Linear theory shows that the most unstable wavenumbers 
in all cases analyzed in this work are somewhat larger than the ones of Meacham's model. An interesting characteristic of 
the 2½-layer cases analyzed in this work is that when the centerjet velocities are chosen to provide approximately equal layer 
integrated PV jumps, the net lower-layer transport is close to zero and there is no unstable long-wave cutoff, such as M91's 
double front model.

The answer to the second question is also affirmative. As in SFB's experiments, we examine balanced and unbalanced 
configurations of the semi-infinite jet model, bounded by the western boundary. The model allows various (rectilinear) 
coastline orientations and asymmetry in the boundary current transports. We obtain coastal and/or retroflection eddy 
shedding when baroclinic instability mechanisms are present. Also, more realistic meander amplitudes for retroflecting 
currents are obtained. However, these phenomena seem to be contingent on a combination of relatively high growth rates 
and either westward or slowly eastward propagating unstable waves. When the unstable waves travel westward, the wall 
effect (in which the vortex anomaly pairs with its image) dominates over meander growth due to baroclinic instability and 
cause the detachment of a dipole that propagates northward along the boundary after occlusion. When the unstable waves 
travel slowly eastward and unbalanced configurations are considered, it is possible that a dipolar vortex is shed from parts of 
the retroflection lobe. Baroclinic instability mechanisms dominate the process for those cases. Coastal/retroflection eddies 
occurred with absolutely unstable systems, based on Farrell's (1982) pinch singularity method.
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Tables 

TABLE 1. Scales and corresponding nondimensional quantities 
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TABLE 2. Experiment set 1: infinite jets (δ = 0.2, R = 6.25, μ = 5.0, and  = 1.04) 
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TABLE 3. Experiment set 2: symmetric separating jets (δ = 0.2, R = 6.25, μ = 5.0, and  = 1.04) 
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TABLE 4. Experiment set 3: asymmetric separating jets [δ = 0.2, R = 6.25, μ = 5.0,  = 1.04, 2(∞, 0) = −0.125]
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Figures 
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FIG. 1. (upper panel) The quasigeostrophic 2½-layer model vertical structure. (lower panels) Schematic representation of a 2½-
layer semi-infinite jet model configuration, with a separating jet in the upper layer, and a bifurcating jet in the (active) lower layer 
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FIG. 2. Run inf2 [u1(0) = 1.0, u2(0) = −0.125]. (left) Linear stability properties: background jet profiles for upper (solid) and lower 

(dashed) layers, real (solid) and imaginary (dotted) phase speeds, and growth rates. Nonlinear model results for t = 0, 10, 15, 35, 
and 45
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FIG. 3. Run inf3 [u1(0) = 1.0, u2(0) = 0.0]. (left) Linear stability properties: background jet profiles for upper (solid) and lower 

(dashed) layers, real (solid) and imaginary (dotted) phase speeds, and growth rates. Nonlinear model results for t = 0, 20, 40, and 
60
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FIG. 4. Run inf4 [u1(0) = 1.0, u2(0) = 0.175]. (left) Linear stability properties: background jet profiles for upper (solid) and lower 

(dashed) layers, real (solid) and imaginary (dotted) phase speeds, and growth rates. Nonlinear model results for t = 0, 20, 40, and 
60
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FIG. 5. Run inf6 [u1(0) = 1.0, u2(0) = 0.175]. Initial disturbance given by the Pratt (1988) meander [Eq. (27)]. Results for t = 0, 15, 

30, and 40
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FIG. 6. Run sym1 [u1(∞,0) = 1.0, u2(∞,0) = −0.5, θ = 0]. (left) Linear stability properties for the currents far from the coast: 

background jet profiles for upper (solid) and lower (dashed) layers, real (solid) and imaginary (dotted) phase speeds, and growth 
rates. (right) Nonlinear model results for t = 0, 10, 15, and 20
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FIG. 7. Run sym3 [u1(0) = 1.0, u2(0) = −0.125, θ = 0]. (left) Background meridional velocity [solid (dashed) lines represent 

northern (southern) border boundary currents]. (right) Nonlinear model results for t = 0, 10, 25, and 50. Linear stability properties 
for the currents far from the coast are the same as run inf2, shown on Fig. 2 .
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FIG. 8. Run sym4 [u1(0) = 1.0, u2(0) = −0.125, θ = −π/4], model results for t = 0, 25, 45, and 55. Linear stability properties for the 

currents far from the coast are the same as run inf2 in Fig. 2 .
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FIG. 9. Farrell's (1982) pinch sigularity method: the local pulse growth rate ν, corresponding to u2(∞, 0) = −0.5 (solid curve, runs 

sym1 and sym2), −0.125 (dashed curve, runs sym3 and sym4), and 0.0 (dotted curve, runs sym5 and sym6)
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FIG. 10. Run asy2 [u1(0) = 1.0, u2(0) = −0.125, θ = 0, x1(−∞) = 0.55, x2(−∞) = 0.55]. (left) Background meridional velocity [solid 

(dashed) lines represent northern (southern) border boundary currents]. (right) Nonlinear model results for t = 0, 20, 45, and 65. 
Linear stability properties for the currents far from the coast are the same as run inf2 in Fig. 2 . This experiment corresponds to 
the x1 = x2 asymmetric version of the symmetric run sym3 
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FIG. 11. Run asy3 [u1(0) = 1.0, u2(0) = −0.125, θ = 0, x1(−∞) = 0.55, x2(∞) = 0.15]. (left) Background meridional velocity [solid 

(dashed) lines represent northern (southern) border boundary currents]. (Right) Nonlinear model results for t = 0, 20, 45, and 65. 
Linear stability properties for the currents far from the coast are the same as run inf2 in Fig. 2 . This experiment corresponds to 
the x1  x2 asymmetric version of the symmetric run sym3 
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