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ABSTRACT

The nonlinear dispersion of random, directionally spread surface gravity 
waves in shallow water is examined with Boussinesq theory and field 
observations. A theoretical dispersion relationship giving a directionally 
averaged wavenumber magnitude as a function of frequency, the local water 
depth, and the local wave spectrum and bispectrum is derived for waves 
propagating over a gently sloping beach with straight and parallel depth 
contours. The linear, nondispersive shallow water relation is recovered as the 
first-order solution, with weak frequency and amplitude dispersion appearing 
as second-order corrections. Wavenumbers were estimated using four arrays 
of pressure sensors deployed in 2–6-m depth on a gently sloping sandy 
beach. When wave energy is low, the observed wavenumbers agree with the 
linear, finite-depth dispersion relation over a wide frequency range. In high 
energy conditions, the observed wavenumbers deviate from the linear 
dispersion relation by as much as 20%–30% in the frequency range from two 
to three times the frequency of the primary spectral peak, but agree well with 
the nonlinear Boussinesq dispersion relation, confirming that the deviations 
from linear theory are finite amplitude effects. In high energy conditions, the 
predicted frequency and amplitude dispersion tend to cancel, yielding a nearly 
nondispersive wave field in which waves of all frequencies travel with 
approximately the linear shallow water wave speed, consistent with the 
observations. The nonlinear Boussinesq theory wavenumber predictions 
(based on the assumption of irrotational wave motion) are accurate even 
within the surf zone, suggesting that wave breaking on gently sloping beaches 
has little effect on the dispersion relation.
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1. Introduction 

Ocean surface gravity waves are affected by nonlinear interactions between triads of wave components with frequencies 

(ω) and (vector) wavenumbers ( ) satisfying 

 

The frequencies ωi and wavenumber magnitudes κi = | i| obey the linear dispersion relation for freely propagating waves 

ω
2 = gκ tanh(κh), (2)

 

where g is gravity, h is the water depth, and a nonzero value of either δω or δκ defines a mismatch from resonance.

Triads are resonant (δω = δκ = 0) only for unidirectional waves in the shallow water limit κh  0 (Phillips 1960). In 
deep (κh  1) and intermediate [κh = O(1)] water depths triads are nonresonant (i.e., either δω  0 or δκ  0). Two free 

primary waves (ω1, 1) and (ω2, 2) force secondary wave components (ω1 ± ω2, 1 ± 2) that do not obey the 

dispersion relation (2) and remain small in amplitude. However, the spectral levels of these “bound waves”  can exceed free 
wave spectral levels at high frequencies, and the associated substantial deviations δκ from the linear dispersion relation (2) 
are observed readily (e.g., Mitsuyasu et al. 1979; Donelan et al. 1985; Herbers and Guza 1994). Nonlinear shifts in the 
dispersion relation of free waves result from third-order amplitude dispersion effects (e.g., Longuet-Higgins and Phillips 
1962; Willebrand 1975; Masuda et al. 1979; Laing 1986).

In shallow nearshore waters (κh  1), where frequency dispersion is weak and the angular spreading of waves arriving 
from deep water is reduced by refraction, triad interactions are close to resonance (i.e., |δω/ω|  1, |δκ/κ|  1) and the 
distinct free and secondary-forced waves with much different κ at the same ω that occur in deeper water are no longer 
present. Near-resonant triad interactions cause strong evolution of wave spectra over distances of only a few wavelengths 
(Freilich and Guza 1984) and the characteristic steepening and pitching forward of near-breaking wave crests (Elgar and 
Guza 1985b). These processes are described well by depth-integrated Boussinesq equations for weakly nonlinear, weakly 
dispersive waves in varying depth (Peregrine 1967). Boussinesq model predictions of the evolution of wave spectra over 
alongshore uniform beaches are in good agreement with field observations (e.g., Freilich and Guza 1984; Elgar and Guza
1985a; Norheim et al. 1998). Important developments in Boussinesq models include parabolic approximations for depth 
variations in two dimensions (Liu et al. 1985), matching of the fully dispersive linear solutions in deeper water (e.g., Madsen
et al. 1991; Agnon et al. 1993; Kaihatu and Kirby 1995), higher-order approximations (e.g., Dingemans 1997; Madsen and 
Schäffer 1998; Agnon et al. 1999), fully nonlinear models (Wei et al. 1995), stochastic formulations (e.g., Agnon and
Sheremet 1997; Herbers and Burton 1997), and parameterizations of surf zone dissipation (Mase and Kirby 1992; Schäffer et 
al. 1993; Eldeberky and Battjes 1996). Analyses of field observations indicate that nonlinear triad interactions play a central 
role in the spectral energy balance in the surf zone (Elgar et al. 1997; Chen et al. 1997; Herbers et al. 2000), as well as 
farther seaward.

Wave phase speeds observed within and seaward of the surf zone suggest that, in addition to causing spectral energy 
transfers, nonlinearity affects the dispersion relation (e.g., Thornton et al. 1976; Thornton and Guza 1982; Stive 1984). The 
theory for the nonlinear dispersion of periodic waves in uniform depth is well established [see Whitham (1974) for a review] 
and has been used to heuristically correct wave phase speeds in linear refraction models (Dingemans 1997, and references 
therein). Nonlinear dispersion effects on random waves in shallow water are less well understood. Freilich and Guza (1984) 
and Elgar and Guza (1985a) compared the observed phase evolution of nonbreaking shoaling waves with linear theory [Eq.
(2)] and with a nonlinear Boussinesq model for unidirectional waves. For energetic narrowband swell, large errors were 
noted in the linear phase predictions at frequencies corresponding to harmonics of the primary swell peak, whereas nonlinear 
model predictions were accurate. Observed wave phase speeds, estimated from measured phase differences between closely 
spaced sensors in a cross-shore array, indicated that high-frequency harmonic components in a narrowband wave field 
travel with the same (or slightly larger) speeds as the dominant swell components, consistent with the Boussinesq model 
predictions. In contrast, for low-energy, broadband wave fields the linear model was more accurate than the Boussinesq 
model, possibly because directional effects were neglected in the nonlinear model.

Here, nonlinear effects on the dispersion relation of random waves in shallow water are examined further by including 
directional spreading in both the Boussinesq theory and in the analysis of extensive new field observations. Additionally, an 
explicit theoretical dispersion relation is derived that clarifies the relationship between nonlinear dispersion and the wave 
spectrum and bispectrum.

In the linear approximation the wavenumber magnitude κ of each wave component, defined here as the local gradient | S| 



of the phase function S, depends only on the frequency ω and water depth h [Eq. (2)]. Weak nonlinear interactions with 
other components cause deviations from the linear dispersion relation. There is no unique relation between ω and κ in a 
directionally spread, nonlinear wave field because two wave components with the same frequency ω that propagate in 
different directions undergo different interactions, and thus experience a different net nonlinear wavenumber shift. That is, 
sea surface fluctuations at frequency ω contain a range of wavenumber magnitudes rather than a single κ value. An average 
wavenumber magnitude at frequency ω, κrms(ω), is defined here as a local root-mean-square average of κ over all 

directional components with frequency ω 

 

with E(ω, ) the local wavenumber–frequency spectrum. In section 2 an expression for κrms(ω) is derived from 

Boussinesq theory. Accurate estimates of κrms(ω), within and seaward of the surf zone, were obtained with four arrays of 

near-bottom pressure sensors deployed for four months along a cross-shore transect on a gently sloping, sandy beach 
(section 3). Observed wavenumbers are compared with the linear dispersion relation (2) and with nonlinear Boussinesq 
theory predictions for three case studies (including both nonbreaking and breaking waves) in section 4, and for the entire 
dataset in section 5. Boussinesq wavenumber predictions are generally within 5% of the observations, including high-energy 
conditions when deviations from the linear dispersion relation (2) are as large as 20%–30%. The results are summarized in 
section 6.

2. Theory 

The sea surface elevation (x, y, t) of surface gravity waves propagating over a beach with straight and parallel depth 
contours [h = h(x)] has the general Fourier representation: 

 

where ωp = pΔω and lq = qΔl are the frequency and alongshore wavenumber (with Δω and Δl the separation of adjacent 

bands), x and y are cross-shore and alongshore coordinates, and t is time. The complex function Ap,q incorporates the 

cross-shore variation of both the amplitude and phase of component p, q. Three small parameters, dispersion δ, nonlinearity 
, and medium variations γ, are defined as 

 

where κ0, a0, h0, and β0 are a representative wavenumber, wave amplitude, water depth, and bottom slope, respectively. 

Using the standard Boussinesq approximation and assuming that appreciable depth variations occur over the same scale as 
nonlinear energy exchanges, 

δ
2    γ,

 

the evolution equation for Ap,q in dimensional form is [Eq. (11) in Herbers and Burton 1997] 



 

Imaginary terms inside the brackets yield wave amplitude changes, whereas real terms yield phase changes that define the 
local cross-shore wavenumber k. The leading-order term gives the fast phase changes of the lowest-order unidirectional, 

shallow water wave motion with wavenumber ω/(gh)1/2. The remaining terms are slow amplitude and phase changes that 

are O(γ), O(δ2), or O( ) smaller than the leading term. The second term [O(γ)] describes amplitude variations associated 

with linear shoaling (i.e., changes in wave group speed). The third term [O(δ2)] is a phase correction that describes the 
increase of k caused by frequency dispersion. The fourth term reduces k for obliquely propagating waves. Owing to 

refraction the alongshore wavenumber l is O(δ) smaller than k, yielding a term of the same order [O(δ2)] as the frequency 
dispersion term. Nonlinear amplitude and phase changes are given by the last term [O( )] in Eq. (6). The underlying 
assumptions of weak dispersion and alongshore uniformity limit applications of Eqs. (4) and (6) to a narrow shallow water 
region near the shore (depths less than about 7 m for typical ocean wave conditions) on beaches with alongshore depth 
variations that are at least O(δ) smaller than cross-shore variations (nominally dh/dy  0.3 dh/dx).

To determine a root-mean-square average wavenumber magnitude κrms(ω) as a function of frequency [Eq. (3)], sea 

surface slope statistics are evaluated. The x and y derivatives of Eq. (4) are 

 

The frequency–alongshore wavenumber spectra of x(E xp,q) and y(E yp,q) are obtained by squaring and time 

averaging the Fourier transforms of Eqs. (7a) and (7b), substituting Eq. (6) (using the symmetry relations ω−p = −ωp, l−q = 

−lq, and A−p,−q is the complex conjugate of Ap,q), and retaining terms to orders δ2, , and γ, yielding 

 
(Click the equation graphic to enlarge/reduce size)

where angle brackets indicate the expected value, Re{ } denotes the real part, and the spectrum E and bispectrum B 
describe the second-, and third-order statistics of the sea surface elevation amplitudes: 

 

Bottom slope effects do not appear in Eq. (8a) because the linear shoaling gradient of Ap,q [the O(γ) term in Eq. (6)] is in 

quadrature with the O(1) phase variation of Ap,q. Amplitude variations resulting from both linear shoaling and nonlinear 

interactions [the imaginary part of the O( ) term in Eq. (6)] contribute to Eq. (8a) at higher order ( 2, γ, and γ2), and are 

neglected here. To the present order, all terms retained in the slope spectrum E xp,q represent phase variations, and thus a 

local root-mean-square average value of the cross-shore wavenumber kp,q of waves with frequency ωp and alongshore 

wavenumber lq can be obtained by substituting E xp,q = k2
p,qEp,q into the left-hand side of Eq. (8a).



In the limit of infinitesimal separation between adjacent spectral components, a continuous density spectrum 

Ep,q  E(ωp, lq)ΔωΔl
 

and bispectrum 

 

can be defined, and the slope spectra [Eqs. (8a,b)] are 

 
(Click the equation graphic to enlarge/reduce size)

The root-mean-square average wavenumber κrms(ω) of spectral components with frequency ω (Eq. 3) can be expressed in 

terms of the slope spectra as 

 

Substitution of Eqs. (10a,b) in Eq. (11) yields the dispersion relation: 

κrms(ω) = κsw(ω)[1 + βfr(ω) − βam(ω)]1/2, (12)

 

where the leading order term κsw(ω) is the linear shallow water dispersion relation 

 

and βfr(ω) and βam(ω) describe second-order frequency and amplitude dispersion effects, respectively: 

 

with E(ω) and B(ω1, ω2) the frequency spectrum and bispectrum of . The amplitude dispersion term βam(ω) depends 

inversely on the energy level at frequency ω and is proportional to the real part of the bispectrum integrated over all triads 
involving frequency ω. For a single (ω1, ω2, ω3) triad, the nonlinear interaction changes the wavenumbers of all three 

components, and the least energetic component has the largest relative change [Eq. (14b); see also Freilich and Guza
(1984)]. Although Eqs. (12)–(14) do not depend explicitly on the wave directional properties or the bathymetry h(x), the 
shoaling evolution of the spectrum E(ω) and bispectrum B(ω1, ω2) depends on these parameters. Locally measured values 

of E(ω) and B(ω1, ω2) are used here to evaluate βam.

The theoretical dispersion relationship for random, weakly nonlinear, and directionally spread waves in shallow water 
[Eqs. (12)–(14)] is verified with field measurements described next. 

3. Field experiment and analysis 

Detailed measurements of shoaling waves on an ocean beach were collected at the U.S. Army Corps of Engineer's Field 
Research Facility located near Duck, North Carolina (Elgar et al. 2001). The present study uses data from four arrays, each 



consisting of six bottom-mounted pressure sensors in a compact two-dimensional configuration with sensor spacings 
between 4 and 12 m (Fig. 1 ). The arrays, denoted 4, 5, 6, and 7, were located along a cross-shore transect about 100, 
150, 300, and 400 m from the shoreline, in nominal depths of 2.5, 3.5, 4.0, and 5.5 m, respectively. Data were collected 
nearly continuously with a sample frequency of 2 Hz from 2 August through 4 December 1997. Array 4 did not operate 
from 17 to 29 October and from 2 to 11 November. Array 6 did not operate from 14 November through the end of the 
experiment. Mean horizontal currents were measured with electromagnetic current meters at each array. Measurements of 
the offshore incident wave field were acquired with a directional wave buoy in 20-m depth, 5 km from shore. Local winds 
were measured with anemometers mounted on a nearby pier.

The bathymetry in the instrumented region was gently sloping (<0.02) in the cross-shore direction and approximately 
uniform in the alongshore direction (Fig. 1 ). A shore-parallel sand bar remained relatively stationary between arrays 6 and 
5 with its crest submerged about 3.5 m below sea level. The bathymetry inshore of array 5 was more dynamic, with a 
transient shore-parallel bar near array 4 that was submerged about 1.5–2 m below sea level. 

A root-mean-square average wavenumber as a function of frequency, κrms(ω) (Eq. 3), was estimated with an existing 

method (Herbers and Guza 1994; Herbers et al. 1995). The array aperture D is assumed small compared with the scales of 

depth variations and nonlinear energy exchanges (κD  γ−1, −1) so that the wave field over the array can be approximated 
as spatially homogeneous: 

 

where dZ(ω, ) is a Fourier–Stieltjes amplitude. The cross-spectrum Hij(ω) of a pair of sensors at locations i and j is 

given by 

 

where E(ω, ) is the wavenumber–frequency spectral density 

 

The wavenumber κrms(ω) was estimated with a linear sum of the normalized cross-spectra 

 

where N is the number of array sensors and αij are weighting coefficients. Substitution of Eq. (16) in Eq. (18) yields 

 

with the kernel function F( ) given by 

 

Optimal coefficients αij were determined a priori through a least squares fit of the function F( ) to | |2 [cf. Eqs. (19) 

and (3)] using an expansion of the exponential terms in Eq. (20) for small · ( i −  j) [see Herbers et al. (1995) for 



details]. The wavenumber estimates are restricted to the frequency range (0.05–0.25 Hz) of the dominant swell and sea 
waves, corresponding to wavelengths (20–130 m) that are resolved well by the arrays and are more than four times the 
water depth. The frequency resolution of 0.01 Hz ensures statistically stable estimates (approximately 70 degrees of freedom 
for the 1-h-long data records), while still resolving the main spectral features. 

Nonlinear theory-based estimates of κrms(ω) were obtained by substituting local observations of h, E(ω), and B(ω1, ω2) 

in Eqs. (12)–(14). The E(ω) and B(ω1, ω2) estimates (averaged over the six sensors of the array to enhance statistical 

stability) assume a hydrostatic pressure-surface elevation transfer function. The neglected second-order terms in this 
transfer function that account for the weak vertical decay of pressure [e.g., Eq. (A6b) in Herbers and Burton 1997] obey the 
shallow water dispersion relation [Eq. (13)] of the lowest-order wave motion, and thus do not affect κrms(ω) to the present 

order. The nonlinear interaction integral [Eq. (14b)] was evaluated for the frequency range 

 

with a cutoff frequency ωmax/2π = 0.5 Hz that includes the energy-containing part of the wave spectrum.
 

4. Observed and predicted dispersion relations: Case examples 

Nonlinear effects on the dispersion relation of shallow water waves are illustrated here with three case studies selected 
from a wide range of conditions encountered during the four-month-long experiment (Fig. 2 ). Cases II and III were 

collected during storms when the offshore significant wave height Hs( 4(‹ 2›  )½) exceeded 2 m and several of the arrays 

were within the surf zone. The nonlinearity parameter  [estimated as arms/h with the root-mean-square amplitude arms 

given by the narrowband approximation arms  (2‹ 2›  )½] in these cases ranged between about 0.13 and 0.17. These cases 

with pronounced nonlinear effects on the dispersion relation are contrasted with case I collected during calm conditions 
(offshore Hs = 0.3 m) with weak nonlinearity (  about 0.016–0.038). The observed wave spectrum E(f) (single-sided with f  

 ω/2π) at each array and corresponding wavenumber estimates κrms(f) are shown for the three cases in Figs. 3–5  (in 

each case, one nonoperating array was excluded from the comparisons).

The observed κrms(f) [Eq. (18)] are compared with both the linear finite depth dispersion relation [Eq. (2)] and the 

nonlinear Boussinesq dispersion relation [Eq. (12)]. To isolate the contributions of frequency dispersion βfr [Eq. (14a)] and 

amplitude dispersion βam [Eq. (14b)], the linear shallow water dispersion relation κsw(f) [Eq. (13), neglecting both βfr and 

βam] and the linearized Boussinesq dispersion relation [Eq. (12) excluding βam] also are included in Figs. 3–5 . 

Differences between the linear finite depth and linearized Boussinesq dispersion relations, that result from neglecting O(δ4) 
dispersion terms in the Boussinesq theory, are small. The maximum dispersion error is about 7% at the deepest array (7) and 
highest frequency (0.25 Hz) included in the present comparisons.

a. Case I. 20 November 

Low-energy swell with a peak frequency of 0.07 Hz (Fig. 3a ), an offshore significant wave height of 0.3 m, and a 

mean direction within 15° of normal incidence, was observed in light wind conditions (speeds <5 m s−1). The surf zone was 

well inshore of the shallowest array and mean currents were weak (<0.05 m s−1). The small increases in variance observed 

between arrays 7 and 5 (9%) and between arrays 5 and 4 (19%) are consistent with linear shoaling (i.e., the  h1/2 
decrease in group speed in shallow water). Observed wavenumbers agree well with the linear finite depth dispersion relation, 
and also with nonlinear and linear Boussinesq dispersion relations (Figs. 3b–d ), confirming the expected linearity of the 
wave motion in benign conditions. Amplitude dispersion is weak, but detectable at the highest frequencies, where the 
nonlinear Boussinesq theory predictions (and the observations) deviate slightly (5%) from the linear dispersion relation. 

The predicted κrms(f) vary smoothly with frequency, but the observed κrms(f) show some scatter at frequencies below 

about 0.1 Hz. Previous observations at the same field site show that wave reflection from shore is significant at swell 
frequencies in low energy conditions (Elgar et al. 1994). The resulting partial standing wave patterns likely contribute 
significant errors to κrms(f) estimates based on the assumption of a progressive wave field (e.g., Elgar and Guza 1985a). 

b. Case II. 7 November 

Swell with a peak frequency fp = 0.08 Hz, offshore significant wave height Hs = 2.3 m, and mean direction close to 

normal incidence was observed when local wind speeds were less than 10 m s−1, indicating that the waves arrived from a 
remote source. Wave breaking was minimal between the 20-m depth buoy and the deepest array 7, but significant breaking-
induced dissipation between the arrays is evident in the observed decrease in swell variance between arrays 7 and 6 (17%) 

and between arrays 6 and 5 (43%). Mean currents at the arrays were less than about 0.3 m s−1, much smaller than the wave 



phase speeds (about 5–7 m s−1). At all three arrays the observed κrms(f) diverge from the linear finite depth dispersion 

relation at frequencies higher than about 2fp. At the highest frequency considered (0.25 Hz, approximately 3fp) the observed 

κrms(f) are about 25% below the linear dispersion relation (Figs. 4b–d ). Nonlinear Boussinesq theory predictions are in 

excellent agreement with the observed wavenumbers over the entire frequency range. The observed and predicted 
wavenumbers are close to the shallow water dispersion relation, indicating that the frequency (βfr) and amplitude (βam) 

dispersion terms in Eq. (12) approximately cancel, yielding a nondispersive wave field in which all components travel with 

the shallow water wave speed (gh )½. 

c. Case III. 19 October 

The most energetic waves were observed during the passage of a nor'easter storm with local wind speeds up to 18 m s−1. 
The offshore significant wave height was about 3.6 m, with a mean direction within 10° of normal incidence. The observed 
swell variances decreased by 32% between the offshore buoy and array 7, 45% between arrays 7 and 6, and 50% between 
arrays 6 and 5 (Fig. 5a ), indicating that all arrays were located within the surf zone. Similar to case II, the observed κrms

(f) are in good agreement with the linear finite depth dispersion relation at the spectral peak frequency (0.1 Hz), but 
increasingly diverge from linear theory at higher frequencies, with discrepancies as large as 30% at the deeper arrays 6 and 7 
(Figs. 5b,c ). The nonlinear Boussinesq theory predictions are (as in case II) close to the shallow water dispersion 
relation, indicating canceling frequency and amplitude dispersion effects. The agreement between nonlinear Boussinesq 
theory predictions and observed wavenumbers is not as good as in case II (cf. Fig. 4  with Fig. 5 ), and observed 
wavenumbers are about 5%–15% smaller than predicted at high frequencies. Mean currents were strong in case III (up to 

1.35 m s−1), but nearly perpendicular to the dominant wave directions at all frequencies, and thus Doppler shifts were small. 
The cause of the increased errors in case III is unknown, but neglected higher-order nonlinear effects and wave breaking 
may be a significant source of errors in this most energetic case.

5. Accuracy of predicted dispersion relations 

The limited validity of the linear finite depth dispersion relation (2) and the improved accuracy of the weakly nonlinear 
Boussinesq dispersion relation (12)–(14) are demonstrated here for the entire dataset. To relate the accuracy of dispersion 
relations to wave energy levels, the data for each array were binned into 10 equal log-spaced classes of local wave variance. 
For each class the mean and standard deviation of the ratio between predicted and observed κrms(f) were computed at the 

peak (fp) and harmonic (2fp, 3fp) frequencies (Fig. 6 ). 

At the peak frequency fp (Figs. 6a,b ), both linear and nonlinear theory predictions agree well with observations. At the 

maximum variance levels the linear dispersion relation overpredicts the observed wavenumbers by about 5%, whereas the 
nonlinear wavenumber predictions are slightly more accurate, indicating that nonlinearity causes a small decrease in 
wavenumber (i.e., increase in wave speed). Standard deviations of predicted/observed wavenumbers (not shown) are similar 
for the linear and nonlinear models and range from 0.16 at array 4 in low energy conditions to less than 0.01 at array 7 in 
high energy conditions. As discussed above, scatter in observed wavenumbers may result from partial standing wave 
patterns that are most pronounced for small amplitude waves close to shore. These results indicate that nonlinear effects on 
the dispersion relation are weak at the spectral peak frequency.

Nonlinear effects on the dispersion relation are more evident in the systematic large discrepancies (up to 30%) between 
observed wavenumbers and linear theory predictions at the harmonic frequencies 2fp and 3fp (Figs. 6c–f ). At all arrays, 

the linear wavenumber is consistently larger than the observed wavenumber, and this bias (i.e., the deviation of the 
predicted/observed ratio from 1) increases with both increasing frequency and increasing wave variance. The nonlinear 
wavenumber predictions have small bias (less than a few percent, Figs. 6c–f ) and low scatter (standard deviations less 
than 1%, not shown).

To summarize the overall agreement of observed and predicted wavenumbers, the observed bulk (i.e., frequency-
integrated) average wavenumber κrms 

 

is compared with predictions of κrms based on linear finite depth and nonlinear Boussinesq theories (Fig. 7 ). At each 

array the linear wavenumber predictions have a positive bias that is less than 5% in low energy conditions and increases to 
about 10%–15% in high energy conditions. The bias is largest at the deeper arrays 6 and 7 for reasons that are not 



understood. The nonlinear wavenumber predictions generally are within a few percent of the observed wavenumbers in low 
to moderate energy conditions. The approximately 5% overprediction at the highest energy levels may be owing to higher-
order nonlinearity or to wave breaking.

6. Summary 

Nonlinear effects on the dispersion relation of surface gravity waves in shallow water predicted by weakly nonlinear, 
weakly dispersive Boussinesq theory agree well with extensive field observations. A theoretical analysis of directionally 
spread waves propagating over a gently sloping seabed with straight and parallel depth contours yields a nonlinear dispersion 
relation between a root-mean-square average wavenumber κrms [Eq. (3)] and the wave frequency ω that depends on the 

local water depth, wave spectrum, and bispectrum [Eqs. (12)–(14)]. The linear shallow water dispersion relation is 
recovered as the first-order solution, with second-order correction terms for the (usually competing) effects of frequency 
dispersion (e.g., wave speed decreases with increasing frequency) and amplitude dispersion (e.g., wave speed increases 
with increasing amplitude).

Four arrays of pressure sensors were deployed between 2 and 6-m depth on a gently sloping ocean beach (Fig. 1 ) 
during a four-month period that spanned a wide range of conditions (Fig. 2 ). Estimates of κrms(ω) from 1-h-long array 

records were compared with the linear finite depth dispersion relation and with nonlinear Boussinesq theory predictions. In 
low energy conditions the observed wavenumbers are close to both the linear and nonlinear dispersion relations, consistent 
with the predicted weak amplitude dispersion (Fig. 3 ). In high energy conditions the observed wavenumbers deviate 
significantly from the linear dispersion relation, and generally agree well with the nonlinear dispersion relation (Figs. 4, 5 

). The predicted effects of frequency and amplitude dispersion tend to cancel, so that all components of the wave 
spectrum travel with approximately the linear shallow water wave speed, consistent with the observations. Wave breaking, 
not included in the theoretical predictions of κrms(ω), does not appear to distort substantially the dispersion relation on this 

gently sloping beach.

Analysis of the entire dataset shows that deviations from the linear finite depth dispersion relation increase systematically 
with increasing total wave energy (Fig. 7 ), with discrepancies as large as 20%–30% at frequencies between two and 
three times the spectral peak frequency (Fig. 6 ). At all wave energy levels and frequencies, the nonlinear Boussinesq 
theory predictions are within 2%–7% of the observed wavenumbers. 

The dispersion relation presented here [Eq. (12)] clarifies and quantifies the effect of nonlinearity on the wavenumbers of 
random waves in shallow water. This simple spectral relation potentially is useful for evaluating the local wavenumber 
properties in stochastic wave shoaling models, and may improve methods for interpreting in situ and remote sensing 
observations of waves in shallow water that rely on the linear dispersion relation.
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Figures 
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FIG. 1. (a) Plan view of the four arrays (numbered 4–7), each consisting of six bottom-mounted pressure sensors (filled circles). 
Locations are given in the local beach coordinate system of the Field Research Facility. Solid curves indicate depth contours in m 
(relative to mean sea level), based on a survey conducted on 23 Oct 1997. (b) Beach profiles along the instrumented transect 
obtained from four surveys that span the duration of the experiment
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FIG. 2. Wave variance observed at the four arrays vs time during Oct and Nov 1997. The variance estimates were obtained by 
transforming the measured pressure spectra to surface elevation spectra with linear finite depth theory, and then integrating over 
the swell–sea frequency range, 0.05–0.25 Hz. Three case studies analyzed in Figs. 3–5  are indicated with vertical dotted lines 
labeled I–III 
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FIG. 3. Comparison of observed with predicted wavenumbers for case I (0200–0300 EST 20 Nov). (a) Observed surface elevation 
spectra E(f) at each array (estimated from the pressure measurements using linear finite depth theory). The corresponding 
variances (in the range 0.05–0.25 Hz) are listed. (b–d) For each array, the observed root-mean-square average wavenumber, as a 
function of frequency, κrms(f) (asterisks) is compared with the dispersion relation of linear finite depth theory [solid curve, Eq. (2)] 

and with a prediction based on nonlinear Boussinesq theory [circles, Eqs. (12)–(14)]. Also included are the linear shallow water 
dispersion relation (dashed curve) and the linearized Boussinesq dispersion relation (dash–dot curve) 



 
Click on thumbnail for full-sized image. 

FIG. 4. Comparison of observed with predicted wavenumbers for case II (0200–0300 EST 7 Nov). The format is the same as in 
Fig. 3 
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FIG. 5. Comparison of observed with predicted wavenumbers for case III (1600–1700 EST 19 Oct). The format is the same as in 
Fig. 3 
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FIG. 6. Ratio of predicted to observed wavenumber vs local wave variance. The data are binned in 10 equal log-spaced classes 
of total (0.05–0.25 Hz) wave variance that contain between 24 and 527 data records. For each variance bin the mean value of the 
ratio of the linear finite depth theory prediction [Eq. (2)] to the observed wavenumber is indicated with a circle, and the mean 
value of the ratio of the nonlinear Boussinesq theory prediction [Eq. (12)–(14)] to the observed wavenumber is indicated with an 
asterisk. Results for arrays 7 (left) and 4 (right) are given at frequencies: (a–b) fp (excluding cases with fp > 0.25 Hz), (c–d) 2fp 

(excluding cases with 2fp > 0.25 Hz), and (e–f) 3fp (excluding cases with 3fp > 0.25 Hz). Results for the other two arrays (not 

shown) are similar
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FIG. 7. Ratio of predicted to observed bulk average wavenumber κrms [Eq. (21)] vs total wave variance for all four arrays. No 

data are excluded. The format is similar to Fig. 6 

 

 

* Woods Hole Oceanographic Institution Contribution Number 10061.

 

Corresponding author address: Dr. Thomas H. C. Herbers, Department of Oceanography, Code OC/He, Naval Postgraduate School, Monterey, 
CA 93943-5122. E-mail: thherber@nps.navy.mil 



 

 

© 2008 American Meteorological Society Privacy Policy and Disclaimer 
 Headquarters: 45 Beacon Street Boston, MA 02108-3693  
  DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 
 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718 
Allen Press, Inc. assists in the online publication of AMS journals.  

 


