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ABSTRACT

Through an idealized model, the authors consider the dynamics of subduction 
along a midocean front and its linkage to the intrathermocline eddies (ITEs). 
The subduction is necessitated by advective–diffusive balance of potential 
vorticity (PV), with its flux mainly a function of the mixed layer depth over 
the normal range of the horizontal diffusivity. The mismatch of PV impedes 
the entry of the subducted water into the interior, resulting in an excess flux 
that peaks at some intermediate mixed layer depth. This mismatch also causes 
the generation of anticyclonic ITEs, whose radius contains no lower bound, 
and a maximum limited by the entrainment rate. Through entrainment cooling, 
ITEs may leave their imprints in the surface temperature, giving rise to a 
meandering appearance of the front, even in the absence of instability.

1. Introduction 

Midocean subpolar fronts separate warm and cold water masses and represent 
outcrops of the thermocline into the mixed layer. Hydrographic observations 
(Pollard 1986) show that the mixed layer water in the frontal zone is often 
subducted into the thermocline, contributing to ventilation of the latter. Moreover, 
recent observations (Riser et al. 1986; Eriksen et al. 1991; Gordon et al. 2002) 
suggest that the subducted water does not just ease into the interior, but 
sometimes manifests as isothermal blobs embedded in the thermocline, hence 
termed “intrathermocline eddies (ITE)”  (Dugan et al. 1982; Kostianoy and Belkin 
1989). An example of ITE is shown in Fig. 1  (reproduced from Fig. 3 of 
Gordon et al. 2002), which lies just south of the subpolar front in the Japan Sea. The section was taken in October 1999, 
but its water can be traced to the winter mixed layer in the frontal zone, suggesting its linkage to the subduction process. 

Why is there subduction? How is the subduction flux constrained by thermal and dynamical balances in the frontal zone? 
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Can the subduction process be linked to the generation of intrathermocline eddies? What is their significance in modifying 
the water mass properties? It is the desire to address these questions—thus furthering our understanding of the 
phenomena—that motivates the present study. 

As regards past studies, it should be noted that the subduction we are concerned with is a frontal phenomenon, thus quite 
distinct from that forced by the large-scale wind curl or surface cooling—a problem that is more widely explored in the 
literature (e.g., Luyten et al. 1983; Marshall and Nurser 1992). For the frontal problem, most modeling studies involve a 
numerical integration of the primitive equations when an initial front is allowed to relax (Wang 1993; Spall 1995; Yoshikawa
et al. 2001). Such fronts are observed to develop instability, and the accompanying transverse motion can force 
subduction—and upwelling—in the frontal zone. Of particular significance, Spall (1995) demonstrated that the subducted 
water might evolve into ITEs when the integration is carried out long enough, supporting a dynamical linkage of the two.

Since subpolar fronts are persistent, albeit time-varying, features, we present here a different view of the subduction 
process based on time-averaged balances. To elucidate the essential physics, we consider a highly simplified model that is 
amendable to analytical treatment. For the organization of the paper, we first describe the model configuration in section 2. 
We then discuss the subduction process in section 3, and its possible linkage to intrathermocline eddies in section 4. The 
main findings of the model are summarized in section 5, as well as additional discussion.

2. Model configuration 

The model configuration is shown in Fig. 2 , which is intended to model a winter front when water masses are more 
sharply defined. As marked in the figure, the frontal zone represents a vertical extension of the thermocline into the mixed 
layer, where vertical mixing has rendered the density and flow fields vertically uniform. We neglect the alongfrontal variation 
and adopt a right-handed Cartesian coordinate system, with positive x and y directions referred respectively as eastward and 
poleward—as for the subpolar front in the Northern Hemisphere. For simplicity, both warm and cold water masses 
straddling the frontal zone are assumed homogeneous in density. For the former, one may invoke mixing by mesoscale 
eddies, which also homogenizes the potential vorticity (PV). For the cold water mass, its homogeneity can be attributed to 
surface cooling and convection—processes that produced the deep water. Since no geostrophic shear may be sustained 
without stratification, and given its great depth, the cold water mass is assumed motionless.

In our conceptualization, therefore, the frontal zone is not just a thermal feature, but also a transition region whereby the 
flow velocity from the warm side is reduced to zero. It should be stressed that, since the frontal zone is explicitly resolved, 
there can be no discontinuity in buoyancy or velocity at its cold edge. Since in the absence of alongfrontal variations, the 
mass continuity implies that the total cross-frontal transport is zero, whatever the influx of warm water into the frontal zone, 
it must be wholly subducted before the cold edge, and returns within the thermocline. This volume flux (at y = 0) is 
henceforth referred as the subduction flux—the primary property to be determined from the model. Since for the large-scale 
fronts of concern here the cause for the differing water masses is the differential surface heating, there must be a poleward 
buoyancy flux in the steady state, taken to be external to the model. Moreover, given the narrowness of the frontal zone 
(compared with the planetary scale), this flux is assumed a constant across the frontal zone—irrespective of local air–sea 
fluxes. As we shall see later, this poleward buoyancy flux, together with the total buoyancy difference across the frontal 
zone, define the scale of the subduction flux.

To examine the subsequent fate of the subducted water, we assume that internal mixing during the subduction process 
would render the subducted water vertically homogeneous, which may then be described as an intrathermocline “layer.”  
Properties of this layer before it is subjected to significant diabatic exchange with the ambient water define its upstream 
conditions. Such a three-layer configuration (warm, cold, and intrathermocline) represents a reasonable idealization of the 
observed situation, and is the simplest that allows one to address the evolution of the subducted water on its journey into the 
interior. Since the intrathermocline layer is sandwiched between a turbulent warm layer and a quiescent cold layer, its only 
diabatic exchange with the ambient water is assumed through an upward entrainment across its top surface. If the 
intrathermocline layer contains anticyclonic eddies (of extended center core), entrainment would be enhanced, thus affecting 
mass and property balances.

For simplicity, the model derivation will proceed in nondimensional forms. With b  denoting the buoyancy of the warm 
layer (above that of the cold layer), H the unperturbed thermocline depth, f  the Coriolis parameter (assumed constant in the 
frontal zone), and Fb the (constant) poleward buoyancy flux, the scaling rules (indicated by brackets) are defined as [b] = b

, [z] = H, [y] = RC  f−1(b H)1/2 (the Rossby deformation radius), [u] = fRC, [ ] = Fb(b H)−1, [w] = [ ]HR−1
C, [κ] 

(horizontal diffusivity) = [ ] RC, [q] (PV) = fH−1, and wind and frictional stresses by [τ] = ρ0fH[ ]. In the following, we 

shall first consider the problem of subduction, and then its linkage to intrathermocline eddies.

3. Subduction 



The aim here is to examine how the thermal and dynamical balances in the frontal zone, together with the far-field 
conditions, may constrain the subduction flux.

a. Heat balance 

To formulate the heat balance in the frontal zone, we decompose the buoyancy flux into the advective flux associated with 
a mean cross-frontal circulation and the diffusive flux parameterized through a horizontal (eddy) diffusivity. As this 
diffusivity embodies turbulent motions in the mixed layer, its value is inherently uncertain. For simplicity, a constant value is 
nonetheless assigned, which will be varied over a wide range to underscore its uncertainty. As seen in Fig. 2 , the 
advective flux (at any y) is facilitated by a poleward transport V(y) of lighter water of buoyancy b(y) in the mixed layer and a 
return of denser water underneath of equal transport (see section 2). If one neglects the horizontal diffusion below the mixed 
layer, the buoyancy flux carried by the return flow equals that exiting the base of the mixed layer poleward of y, so that 

 

where l marks the width of the frontal zone. One doesn't know how V varies in the frontal zone except, like buoyancy, it 
decreases to zero at the poleward edge. For simplicity, we assume the two to be spatially similar so that 

V/V0 = b, (3.2)
 

where the subscript 0 is used henceforth to denote the value at y = 0, with V0 being the subduction flux to be determined. 

The need to adopt a specific form, such as (3.2), reflects the physics not considered in the model, which however does not 
impact on its main findings. With (3.2), it is trivial to see that the return flow carries a (transport-weighted) mean buoyancy 
half that of the overlying water so that (3.1) becomes 

 

Combining advective and diffusive fluxes, the heat balance thus states 

 

where the subscript y denotes a spatial derivative and 

K = hmκ (3.5)
 

will be referred as the total diffusivity—being the product of the horizontal diffusivity κ and the mixed layer depth hm. 

Since this depth is controlled mainly by vertical mixing independent of the frontal processes, it is assumed external to the 
model. Partly for this reason, there is no physical basis to adopt a particular distribution of the mixed layer depth across the 
(narrow) frontal zone, which thus is taken to be a constant for simplicity. Given the strong seasonal variation of this depth, 
however, it will be varied over the full range when the parameter dependence of the model solution is examined. One notes 
that because of the scaling, the poleward buoyancy flux on the rhs of (3.4) has a unit magnitude. It is clear from this 
equation that horizontal diffusion is required for resolving the frontal field and hence essential for the model. But with its 
inclusion, the heat balance no longer by itself implies a finite V—or subduction—since the buoyancy flux can be wholly 
accomplished by diffusion. As we shall see next, however, this is not the case for the vorticity balance, which demands a 
subduction in the presence of horizontal diffusion.

b. Vorticity balance 

To formulate the vorticity balance in the frontal zone, let us first define the upper layer as consisting of the warm layer 
above the thermocline (z > −h for y < 0) and the mixed layer within the frontal zone (z > −hm for 0 < y < l), as shaded in 

Fig. 2 . Since the flow contains no vertical shear in this layer (section 2), PV may be defined as a local property of the 
layer and governed by [from (A.8), in dimensional form] 



 

where τ is the wind stress, and F the frictional stress at the base of the layer. If one integrates this equation from the far 
field (y  −∞) to the frontal zone, and nondimensionalizes the variables, one obtains an equation analogous to (3.4) 

 

where 

 

are respectively PV and PV flux in the frontal zone. As discussed in appendix A, (3.6) holds irrespective of entrainment or 
subduction through the base of the layer, as encapsulated in the impermeability theorem of PV (Haynes and McIntyre 1990). 
In other words, the PV flux is more conservative than PV since a diabatic mass flux would alter the horizontal transport in 
inverse proportion to PV so that the PV flux remains unchanged.

Conceptually, one may set the far field at the equator where the PV flux ideally vanishes (due to hemispheric symmetry). 
Given also the shallowness of the mixed layer (compared with the thermocline in the far field), the sign of (3.9) is likely 
determined by the stresses in the frontal zone. Since the alongfrontal flow is seen later to be eastward, the frictional stress is 
positive, which would favor subduction. The wind stress, on the other hand, can be of either sign (or zero), and hence may 
or may not drive subduction [in fact, the subpolar front is typically situated under westerly—opposite of that required for 
subduction via (3.7)]. To underscore the fundamental nature of the subduction as inherent to the frontal phenomenon, we 
shall therefore concentrate on the case of zero PV flux and show that indeed the solution is characterized by subduction. 
The effect of a nonzero (but constant) PV flux—due to wind or frictional stress—will be discussed later (section 3d) in the 
context of how the basic solution is modified.

c. Solution 

We now have Eqs. (3.2), (3.4), (3.7), and (3.8) governing the variables b, V, q, and u, which can be solved subjected to 
the boundary conditions discussed below (see section 2). Since buoyancy and PV are assumed homogenized in the warm 
layer, they are of unit magnitude by scaling definitions, or 

b = q = 1 at y = 0. (3.10) 

Assuming additionally that u in the warm layer satisfies the Margules equation, it is seen in appendix B to have the 
magnitude 

u = 1 − hm at y = 0, (3.11)
 

which is thus stronger when the mixed layer is shallower. At the cold edge of the front, we have on the other hand 

b = u = 0 at y = l, (3.12) 

where the frontal width l is as yet unknown. As seen in appendix C, the model is hereby closed, and an analytical solution 
can be obtained given the external (dimensionless) parameters: the mixed layer depth hm, the horizontal diffusivity κ, and the 

PV flux Fq. It is noted that no boundary condition is imposed on q at the cold edge. This is because PV may be defined as 

(3.8)—and hence governed by (3.7)—only where there is an upper layer; and, with PV undefined beyond the cold edge, no 
matching condition is required.

Before we present the solution, it is recalled that the model is more applicable to the winter front (section 2), and as 
representative of such a front, one may take a total temperature difference across the frontal zone to be 10 K so that the 

buoyancy of the warm layer is b  = 1 cm s−2. Setting H = 200 m and f  = 10−4 s−1, one estimates RC  14 km, [u]  1.4 

× 102 cm s−1, and [q]  5 × 10−9 cm−1 s−1. Using a poleward heat flux of 1.3 × 1011 W km−1 (see, e.g., Voorhis et al. 

1976), one estimates additionally [ ]  1.5 cm s−1, [w]  2.1 × 10−2 cm s−1, [τ]  3 dyn cm−2, and [κ]  2 × 106 cm2 

s−1. A typical mixed layer depth is 100 m, which would yield hm = 0.5. For the horizontal diffusivity, we follow Taylor 



(1915) and use velocity and spatial scales of 10 cm s−1 and 10 km for eddies to yield a diffusivity of 107 cm2 s−1, or in 
dimensionless units, κ = 5.

The solution using above dimensionless values and zero PV flux (hm = 0.5, κ = 5, Fq = 0) is plotted in Fig. 3 . As 

expected, there is a poleward volume flux in the mixed layer V, which is depleted by subduction in the frontal zone. With the 
corresponding poleward decrease of the advective buoyancy flux, the diffusive flux must increase to accommodate the same 
total flux (3.4), causing a sharpening of the density gradient. As noted in (3.11), there is an eastward flow (and negative 
current shear) just outside the frontal zone. As this current decreases to zero at the cold edge, the negative shear gives way 
to positive shear, resulting in a velocity maximum in the frontal zone. The poleward increase of the cyclonic shear gives rise 
to an increase in PV—with the relative vorticity attaining a magnitude comparable to the Coriolis parameter. In other words, 
the dynamics in the frontal zone may not be quasigeostrophic, and one needs to be cautious in inferring the vertical velocity 
based on such assumption.

For an observational validation, Pollard and Regier (1992), for example, clearly shows the presence of a frontal jet, which 
moreover would support a poleward increase of PV. A direct comparison of the latter however cannot be made since most 
calculations of PV are carried out for density intervals, rather than for the upper layer. When converted to dimensional units, 

the solution shown in Fig. 3  is quite sensible. The frontal jet has a peak speed of 1 m s−1, the frontal width is 40 km, and 

the maximum poleward velocity is 3 cm s−1. 

Based on the above solution, we offer a simple explanation of the subduction as inherent to the frontal phenomenon: The 
shoaling of the thermocline to the mixed layer depth and the increase of the cyclonic vorticity as the frontal jet adjusts to 
zero cause a poleward increase of PV and, hence, a diffusive flux toward the warm side. In the absence of wind or frictional 
stress, this diffusive flux must be balanced by poleward advection of the lower PV water, which is then subducted via 
continuity. It is noted that with zero PV flux, the vorticity equation (3.7) is homogeneous, containing no forcing terms. Nor 
have we considered the mechanics that drives the ageostrophic cross-frontal flow. But to the extent that the solution is 
uniquely determined, the subduction may be regarded as forced by turbulence that gives rise to horizontal diffusion in the 
frontal zone and the large-scale processes that set up the far-field conditions. 

While the above argument based on the vorticity balance offers a qualitative explanation of subduction, it gives no 
indication as to the magnitude of the subduction flux, which requires consideration of the buoyancy balance as well, as seen 
in the next section.

d. Parameter dependence 

We plot in Fig. 4  the subduction flux (solid lines) and the frontal width (dashed lines) as functions of the 
dimensionless parameters for the case of zero PV flux. The solid circle marks the solution shown in Fig. 3 . One notes 
first of all that as diffusivity or mixed layer depth (hence the total diffusivity) decreases, the frontal zone narrows. This 
dependence can be surmised from the heat balance (3.4) by noting that the diffusive flux is bounded above by unity, so a 
smaller total diffusivity would be accompanied by a sharper gradient and hence a narrower frontal zone. Quantitatively, it is 
seen that for a diffusivity of the order estimated earlier, the frontal zone spans a few Rossby deformation radii.

For the subduction flux, it is a weak function of the diffusivity, which can be explained as follows: At a given mixed layer 
depth, PV attains the same maximum at the cold edge if one neglects the relative vorticity for a moment and, since a larger 
diffusivity is associated with a wider front, the diffusive PV flux remains unchanged, and so is the subduction flux needed 
for the balance. If one now includes the relative vorticity, the maximum PV would be slightly smaller with larger diffusivity 
(since the front is wider), thus weakening the diffusive flux. This implies a smaller subduction flux, which can account for 
the slight tilt of the solid lines.

To explain the dependence of the subduction flux on the mixed layer depth, one notes first of all that a deeper mixed layer 
implies a weaker eastward jet outside the frontal zone (3.11). Reinforced by a wider frontal zone, the cyclonic vorticity at 
the cold edge, hence the PV there, is smaller. This would weaken the vorticity diffusion—hence the subduction flux—as the 
depth effects on the total diffusivity (3.5) and PV (3.8) otherwise cancel out. This variation of the subduction flux 
notwithstanding, it is of O(1) over the medium range of the mixed layer depth—in support of its scaling by the poleward 
buoyancy flux.

To assess the effect of wind or frictional stress on the subduction, we have plotted in Fig. 5  the solution 
corresponding to Fig. 3 , but with Fq = −1. As seen from (3.9), for a mixed layer depth of 0.5, this PV flux can be 

achieved by a combination of zero PV flux in the far field, an eastward wind stress of 1.5 dyn cm−2 and zero frictional 
stress. Compared with Fig. 3 , it is seen that the subduction flux is reduced, the reason being that the diffusive flux in 
(3.7) is now partially balanced by the PV flux on the rhs, thus weakening the subduction. The weakened advection in turn 
implies via (3.4) a sharper density gradient and hence a narrower frontal zone. It is interesting to see that instead of 



producing a frontal convergence, an eastward wind actually curtails the poleward flow in the frontal zone to weaken the 
subduction. It should be pointed out that the Ekman dynamics does not apply in the frontal zone, but is supplanted by the 
more general balance (3.7). Based on this solution, effects of other processes can be inferred: The frictional stress, for 
example, would generate a positive PV flux, thus enhancing the subduction and widening the frontal zone.

Given the noisy frontal environment, testing the above dependence from observation is obviously difficult. Although the 
frontal width can be monitored, say, by remote sensing of the surface temperature, its strong dependence on the highly 
uncertain diffusivity has lessened the significance of its prediction. The subduction flux, on the other hand, is more difficult 
to measure observationally, but its insensitivity to diffusivity and strong dependence on the mixed layer depth—which varies 
seasonally—may offer a better prospect for an observational assessment. One however is mindful of the seasonal variation 
of the poleward buoyancy flux that defines the scale of the subduction flux; the greater buoyancy flux in winter, for 
example, may (or may not) overcome the effect of a deepening mixed layer in weakening the subduction.

With above discussion, we have concluded our examination of the frontal balances and how they may constrain the 
subduction flux. We now proceed to examine the subsequent fate of the subducted water, and its possible linkage to the 
intrathermocline eddies.

4. Intrathermocline eddy 

As alluded to in section 2, the departure point of the following discussion is the “upstream”  intrathermocline layer, which 
has been rendered vertically homogeneous by internal mixing during subduction, but not yet modified by diabatic exchange 
with the ambient water.

a. Upstream condition 

Since internal mixing does not change fluxes of buoyancy or PV, one may set their upstream values to the transport-
weighted means of the subducted water exiting the base of the mixed layer (hence labeled by the subscript m). These mean 
properties are derived in appendix D, based on the frontal solution. For the buoyancy, it turns out that 

 

or the mean buoyancy of the subducted water is simply half that of the warm layer.

The expression for the mean PV (D.2) is more complicated, containing both the subduction flux V0 (via α of [C.2]) and 

the PV flux Fq. For the case of zero PV flux, it has however a simple expression 

 

Since, as seen in Fig. 4 , the subduction flux is insensitive to changing diffusivity, its value along the dotted line (κ = 5) 
is redrawn in Fig. 6  along with the mean PV (4.2). As expected from discussion in section 3d, the mean PV is greater 
for a shallower mixed layer, but unlike the subduction flux, which is bounded above by the buoyancy balance, the mean PV 
can in principle increase indefinitely as the mixed layer shallows.

With the specification of the upstream condition of the intrathermocline layer, one now proceeds to examine its 
downstream evolution.

b. Excess subduction flux 

As we have discussed in section 2, the diabatic exchange between the intrathermocline layer and its ambient is through an 
entrainment across its upper surface. Since such entrainment does not change the density of the source water, the latter 
retains its upstream value. With the subscript i denoting the “interior”  value (i.e., where the thermocline remains 
unperturbed), one has then 

bi = bm = 1/2. (4.3)
 

For the PV, on the other hand, it is conserved only if the entrainment is weak (relative to advection), which will be 



assumed later to be the case. But as discussed above, a more general conservation principle, as entailed in the impermeability 
theorem, is that of the PV flux, which holds regardless the strength of the entrainment. For the present application, we 
follow the same steps as those leading to (3.7), but with the end points of integration being the upstream point of the 
intrathermocline layer and its downstream mergence with the unperturbed thermocline. Recalling that we have neglected the 
horizontal diffusion in the subsurface layer and neglecting also the frictional stresses acting on the layer, the vorticity balance 
then becomes 

V0qm = Vi
−1, (4.4)

 

where Vi is the (unknown) volume flux into the interior thermocline and  the thickness of the unperturbed thermocline—

an external parameter. Rearranging the above equation, one has 

Vi = qmV0; (4.5)
 

the volume flux entering the interior thermocline thus may differ from that of the subducted water if there is a mismatch 
in PV. Let this difference be denoted by ΔV, one has then 

 

It is seen in particular 

ΔV > 0 if qm < 1; (4.7)
 

that is, if the interior thermocline is sufficiently thin, it would block out a portion of the subduction flux, an excess that 
must be disposed of by entrainment into the warm layer. It is important to distinguish therefore between the subduction flux 
that exits the base of the mixed layer and the flux that actually enters the interior thermocline and contributes to its 
ventilation—a distinction perhaps not sufficiently emphasized in the literature. 

One also perceives the other possibility of qm > 1 when (4.6) implies a transport deficit. How might this reconcile with 

the one-way entrainment? Since in this case, the interior thermocline poses no impediment to the entry of the subducted 
water, one may argue that the latter is simply embedded in the former, so there is no deficit in the transport. One may also 
argue that the excessive thickness of the thermocline, since not propped up by the incoming water, would simply be eroded 
away by local mixing. In any event, given the observed thinness of the thermocline (when compared with the winter mixed 
layer), such occurrences are likely infrequent.

Since both V0 and qm in (4.6) are mainly functions of the mixed layer depth (Fig. 6 ), so is the excess flux ΔV, which 

is plotted in the same figure for  = 0.1. As expected, except for very shallow mixed layer not likely realized in winter, ΔV is 
positive. Moreover, this excess flux peaks at some intermediate depth, the reason for which is as follows: As the mixed layer 
deepens, there is a greater mismatch of PV of the subducted water to that of the interior thermocline, which would dam out 
a greater portion of the subduction flux; but, since the subduction flux itself is smaller, the absolute excess flux thus exhibits 
a local maximum.

This excess flux can be disposed of by entrainment into the upper layer, and, since the entrainment rate is higher across a 
shallower interface, one expects a part of the excess flux to recirculate in the vicinity of the frontal zone where thermocline 
shoals. But if, for some reason, the subduction route is punctuated by anticyclonic eddies with their domed surfaces, the 
recirculation cell can extend farther into the interior. The generation of these eddies as an integral part of the subduction 
process is the subject to be examined next.

c. Eddy generation 

As discussed in the introduction, ITEs have been observed near the front and they have been linked to the subduction 
process through water-mass properties. Dynamically, as explored extensively in the literature (Flierl 1979; Dugan et al. 1982; 
Spall 1995), conservation of PV as the subducted water seeks to merge with a thin thermocline induces a negative vorticity, 
and hence intrathermocline eddies of an extended center core. Common to the solutions cited above, the eddy radius is a free 
parameter, whose selection obviously requires other considerations. In Spall's (1995) initial-value problem, for example, 
eddies are the byproduct of baroclinic instability, and hence their size is scaled by the Rossby deformation radius.

Since the condition for the generation of anticyclonic eddies is precisely that for the existence of the excess subduction 
flux (4.7), we propose a different scenario for the generation of ITEs based on steady-state balances: as the mixed layer 
water is subducted, only a part of it may enter the interior thermocline because of the vorticity constraint. The rest would be 
dammed up in the form of anticyclonic eddies. These eddies would grow in size until the entrainment loss through their 



domed surfaces equals the excess flux that feeds the eddies. This balance holds even if the eddy is moving along the front 
(by advection or self-propagation), which would set an upper bound on the eddy size. The reason why it is an upper bound 
is because eddies need not graze one another and, as mentioned earlier, some of the excess flux may recirculate without 
going through the eddies. For a crude scale derivation, let this maximum radius be denoted by R and the entrainment rate by 
we (all are nondimensionalized as before), the above mass balance states then 

 

in which the overbar indicates an areal average. Rearranging (4.8) yields 

 

The eddy radius thus is proportional to the excess flux ΔV divided by the mean entrainment rate across the top of the 
eddy.

Although the entrainment rate is highly uncertain, some qualitative points can nevertheless be made from (4.9). First of all, 
there is no lower bound on the eddy size since the excessive flux can be zero; the model thus can account for the 
submesoscale eddies discussed by McWilliams (1985). Second, other than its dependence on the mixed layer depth, the 
eddy size is limited above only by the entrainment rate. An ITE anchored in a deep thermocline thus can achieve great size, 
which may possibly explain the large eddy observed by Bane et al. (1989) in the Sargasso Sea. Third, although the mixed 
layer depth undergoes seasonal change, the observed eddies should bias toward the maximum size since the dissipative 
timescale is long compared with seasons. That is, while one may observe eddies of different sizes at various stages of 
growing and decaying, there is always the relic of the largest eddy allowed by the mixed layer depth.

For a quantitative assessment of (4.9), we invoke Pollard and Regier (1992, their Fig. 15a) to assign an entrainment rate 

of order 10−2 cm s−1, which has a dimensionless value of 0.5 (see section 3c). Based on Fig. 6 , the maximum eddy 
radius thus is about twice the Rossby deformation radius or 30 km, which is not inconsistent with the observation shown in 
Fig. 1 . One, of course, recognizes that the entrainment rate may vary over orders of magnitude, so the above 
comparison does not validate the proposed balance (4.9), but merely supports its plausibility.

5. Summary and discussion 

Although the model is highly idealized, some qualitative deductions seem robust, as summarized below:

● A poleward flow in the frontal zone—and hence subduction—is necessitated by a backward diffusion of PV toward 
the warm side as the frontal jet adjusts to zero value at its cold edge.

● The subduction flux is insensitive to the horizontal diffusivity, but mainly a function of the mixed layer depth, being 
smaller (in dimensionless units) when the mixed layer is deeper.

● Because of the mismatch in PV, only a portion of the subducted flux may enter the interior thermocline, with the 
excess flux peaking at some intermediate mixed layer depth.

● The above mismatch of PV also causes the generation of anticyclonic ITEs, which provide a pathway for dispensing 
the excess flux through enhanced entrainment across their domed surfaces.

● The mass balance may place a constraint on the eddy radius, which contains no lower bound, and a maximum limited 
by the entrainment rate.

● Given the seasonal change of the mixed layer depth and slow decay of the ITEs, the observed eddy radius should bias 
toward this maximum.

Through this study, we have presented a view of subduction as inherent to the frontal phenomenon, which is generally 
accompanied by ITEs based on time-mean balances. As such, the eddies may span a wide range in size, which nonetheless 
are predominantly anticyclonic—both in contrast to eddies generated by baroclinic instability. Also of interest, the deeper 
mixed layer, in fact, would reduce the subduction rate, which may still be greater in winter owing to the increased buoyancy 
flux across the frontal zone. The reason that subduction is more pronounced in winter is due paradoxically to its greater 
impediment to enter the interior, resulting in ITEs of more extended center core.



With entrainment—hence cooling of the surface water—enhanced over their domes, ITEs may leave imprints in the 
surface temperature, which seems to be the case in Japan Sea (Gordon et al. 2002, comparing their Figs. 2 and 6). It is 
suggested therefore that the observed meandering of the subpolar front simply reflects the presence of ITEs, and need not 
be indicative of frontal instability. As the movement of these eddies are likely impeded by topography, they may account for 
the semistationary appearance of the meanders.
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APPENDIX A 

6. Vorticity Equation of the Upper Layer 

We are concerned with the vorticity equation in the upper layer (shaded in Fig. 2 ), which consists of the warm layer 
above the thermocline and the mixed layer in the frontal zone. One assumes that vertical mixing has rendered the flow 
vertically uniform so that a potential vorticity q may be defined as 

q  h−1 (f  + ), (A.1)

 

where 

  k ·  × v (A.2) 

is the relative vorticity. One begins with the momentum equation of the form 

 

where h is the layer depth, τ the wind stress, and F the frictional stress associated with the current shear at the base of 
the layer. If one takes the curl of this equation, its vertical component is 

 

The continuity equation for the layer is given by 

 

where we is the diabatic vertical velocity across the base of the layer (positive for entrainment and negative for 

subduction). For the turbulent fields (denoted by primes) that are inviscid and adiabatic, (A.4) and (A.5) combine to yield the 
conservation of PV 

 

so that the turbulent flux of PV may be parameterized in terms of diffusivity κ (Young 1987) 

 

where overbars denote the time means. Now taking the time mean of (A.4), neglecting terms involving h′, and applying 
(A.7), one obtains the equation governing the mean PV (dropping overbars hereafter) 

·[h(vq − κ q)] = k ·  × [h−1(τ − F)], (A.8)

 

which states that divergence of the PV flux (by mean and turbulent flows) is balanced by the torque exerted by wind and 
frictional stresses. It is important to note that this equation holds irrespective of the diabatic vertical velocity we. This is 

because such velocity would alter the volume transport in inverse proportion to PV so that the mean advective flux remains 
unchanged. This is the essence of the impermeability theorem of PV (Haynes and McIntyre 1990).



APPENDIX B 

7. Solution in the Warm Layer 

In the warm layer, PV is homogenized to unity by scaling definition so that 

 

Given that the warm layer has unit buoyancy and that the alongfrontal velocity satisfies the Margules equation, one has 

u = −hy. (B.2)
 

The two equations (B.1) and (B.2) can be combined to yield an ordinary differential equation governing the thermocline 
depth 

hyy − h = −1. (B.3)
 

Subjected to the boundary conditions that 

 

the solution is 

h = 1 − (1 − hm) ey. (B.6)

 

Substituting this solution into (B.2), one derives that 

u0 = 1 − hm, (B.7)
 

which links the alongfrontal velocity at the warm edge of the frontal zone (hence the subscript 0) to the mixed layer 
depth.

APPENDIX C 

8. Solution in the Frontal Zone 

Substituting (3.2) into (3.4) and rearranging, one obtains 

K (α2b2 − 1)−1 db = dy, (C.1)

 

in which we have defined 

α  (V0/2)1/2, (C.2)

 

with the subduction flux V0 yet to be determined. Integrating (C.1), one obtains 

 

which can be inverted (graphically) to render b(y). Substituting (3.2) into (3.7) and using (C.1), one obtains 

 



Dividing this equation by (1 − α2b2)2 leads to 

 

which can be integrated to yield 

 

Integrating (3.8), one has 

 

Substituting from (C.6) and performing the integration, one obtains 

 

To determine the subduction flux V0, we apply the boundary conditions (3.12) to (C.3) and (C.8) to yield two equations 

governing the frontal width l, 

 

Eliminating l from (C.9) and (C.10), one obtains an equation linking the subduction flux V0 to the external parameters hm, 

κ, and Fq. For practical calculations of the solution, we select particular values of V0 and K, then calculate successively l 

[from (C.9)], hm [from (C.10)], and κ [from (3.5)], which then allow the graphing of V0 and l as functions of hm and κ, as 

depicted in Fig. 3 . Once V0 is calculated, one may then calculate b, V, q, and u as functions of y from (C.3), (3.2), 

(C.6), and (C.8) successively.



APPENDIX D 

9. Mean Properties of the Subducted Water 

Let bm be the (transport weighted) mean buoyancy of the subducted water, one derives 

 

which sets the “upstream”  buoyancy of the intrathermocline layer. Similarly, using (C.6), a straightforward integration 
yields 

 

which links the “upstream”  PV of the intrathermocline layer to the subduction flux and the PV flux in the frontal zone. It 
is noted, in particular, that 

 

which is the value plotted in Fig. 6 .

Figures 



 
Click on thumbnail for full-sized image. 

FIG. 1. Reproduced from Fig. 3 of Gordon et al. (2002) showing an ITE in the Japan Sea. The data are from the Hakuho-Maru 
section (the long section in the inset), obtained in Oct 1999. (a) The potential temperature, (b) salinity, and (c) σ0 density. 

Superimposed on the density section is the geostrophic velocity relative to 1000 db

 
Click on thumbnail for full-sized image. 

FIG. 2. The model configuration and symbols used in the model. The frontal zone represents an outcrop of the thermocline into 
the mixed layer. It is a transition region whereby buoyancy and flow of the warm layer decrease to zero at its cold edge. As such, 
the influx V0 of warm water into the frontal zone is wholly subducted and returns within the thermocline. Because of mismatch of 

PV of the subducted water to that of the interior thermocline, part of the subduction flux is dammed up in the form of anticyclonic 
eddies, and expended by entrainment into the warm water

 
Click on thumbnail for full-sized image. 

FIG. 3. Solutions in the frontal zone for the case of Fq = 0, hm  = 0.5, and κ = 5. As the eastward velocity u adjusts to zero at the 

cold edge, cyclonic vorticity is generated, which, together with shoaling of the thermocline, cause a poleward increase of the 
potential vorticity q. The resulting diffusive flux toward the warm side is balanced by the poleward flux V of the low PV warm 
water. As this flux is depleted by subduction, gradient of the buoyancy b is sharpened to accommodate the poleward buoyancy 
flux

 
Click on thumbnail for full-sized image. 

FIG. 4. Subduction flux V0 and the frontal width l as functions of the mixed layer depth hm  and horizontal diffusivity κ, for the 

case of zero PV flux (Fq = 0). The frontal zone narrows for decreasing diffusivity or mixed layer depth, but the subduction flux is 

mainly a function of the mixed layer depth over the normal range of diffusivity. The solid circle marks the solution shown in Fig. 3 
. Properties along the dotted line are plotted in Fig. 6 
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FIG. 5. Same as Fig. 3  but for the case of Fq = −1. This PV flux can be achieved by a combination of zero PV flux in the far 

field, an eastward wind stress of 1.5 dyne cm−2, and zero frictional stress (see section 3c). It is seen that the subduction flux and 
the frontal width have decreased from that shown in Fig. 3 
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FIG. 6. The subduction flux V0, the excess flux ΔV, and the mean PV of the subducted water qm , plotted as functions of the 

mixed layer depth hm  for Fq = 0 and κ = 5 (i.e., along the dotted line in Fig. 4 ). It is seen that the excess flux has a maximum at 

some intermediate mixed layer depth due to the decreasing trends in both V0 and qm  as hm  increases 
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