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ABSTRACT

In idealized models that aim to understand the temporal variability of the 
wind-driven ocean circulation, low-frequency instabilities associated with so-
called oscillatory gyre modes have been found. For the double-gyre case, the 
spectral origin of these modes as well as the physical mechanism of the 
instability is explained. In a barotropic quasigeostrophic model, the low-
frequency modes arise spontaneously from the merging between two 
nonoscillatory eigenmodes. Of the latter two, one is called here the P-mode 
and is responsible for the existence of multiple steady states. The other is 
called the L-mode and it controls the intensity of the gyres. This merging 
turns out to be robust over a hierarchy of models and can even be found in a 
low-order truncated quasigeostrophic model. The latter model is used to 
determine the physical mechanism of the instability. The low-frequency 
oscillation results from the conjugate effects of shear- and symmetry-
breaking instabilities and is free of Rossby wave dynamics.

1. Introduction 

Over the last decade, much work has been dedicated to determining the 
physics of low-frequency (interannual and longer timescale) variability in the 
midlatitude wind-driven ocean circulation. Modeling studies of the wind-driven 
ocean gyres have shown that intrinsic variability on a wide range of timescales, 
from seasonal up to interdecadal, exists (Jiang et al. 1995; McCalpin and
Haidvogel 1996; Spall 1996; Berloff and McWilliams 1999; Meacham 2000). 
Time-dependent fluctuations of external wind forcing are not needed to generate this low-frequency behavior. It arises 
spontaneously through nonlinear processes within the subtropical and subpolar gyres and the midlatitude jet system.

Many steps are necessary to fully understand the observed large-scale and low-frequency fluctuations of the major 
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western boundary currents, such as the Gulf Stream or Kuroshio. Fortunately, there is a rich and subtle hierarchy of models 
available to make progress toward this goal. At the low end of this hierarchy, there are single-layer barotropic 
quasigeostrophic (QG) (Cessi and Ierley 1995; Sheremet et al. 1997) as well as shallow-water models (Jiang et al. 1993, 
1995; Speich et al. 1995). It has now become a classical problem in physical oceanography to study solutions of these 
nonlinear models.

These flows are usually forced by a steady idealized cosine wind stress shape leading to the appearance of only the 
subtropical gyre (called the “single-gyre case”) or both the subtropical and subpolar gyre (the “double-gyre”  case). 
Multilayer models with an idealized geometry represent the next step to understand the behavior of fully three-dimensional 
ocean models. Baroclinic physics indeed appears to play a role in low-frequency variability (Dijkstra and Katsman 1997; 
Berloff and McWilliams 1999; Ghil et al. 2002, hereafter GFS; Nauw and Dijkstra 2001; Simonnet et al. 2001a, submitted to 
J. Phys. Oceanogr.; Simonnet et al. 2001b, submitted to J. Phys. Oceanogr., hereafter SGITW). The effect of asymmetric 
wind stress profiles (McCalpin and Haidvogel 1996; Berloff and McWilliams 1999) and continental geometry and/or 
bathymetry (Dijkstra and Molemaker 1999; Schmeits and Dijkstra 2000; SGITW; Nauw and Dijkstra 2001) has also gained 
attention.

When the time-dependent solutions of these models are considered in a highly nonlinear regime, one easily finds low-
frequency variability. However, to pin down the responsible dynamical mechanisms is difficult. Studies on the route to 
complex behavior of these flows through successive bifurcations have indicated several dynamical possibilities. A first 
possibility is that (unstable) steady states may steer the temporal behavior of the solutions along the high-dimensional stable 
manifolds (Cessi and Ierley 1995; Primeau 2001). A second one is that in highly nonlinear regimes, low-frequency variability 
arises naturally due to the appearance of homoclinic and/or heteroclinic orbits (Berloff and McWilliams 1999; Meacham
2000; Chang et al. 2001; SGITW).

The appearance of global bifurcations in the form of homoclinic orbits is more likely to be expected in the case where 
multiple steady states coexist (Chang et al. 2001). Such dynamical behavior suggests the existence of multiple oceanic states 
that bear a noticeable resemblance with the atmosphere, where they are referred to as weather regimes (e.g., Mo and Ghil 
1988; Corti et al. 1999; Plaut and Simonnet 2001). There are indications for the dynamical existence of these multiple steady 
states, for instance, in the Kuroshio and Gulf Stream currents (Schmeits and Dijkstra 2001). However, in such highly 
nonlinear regimes, it is often difficult to clarify the link between the low-frequency variability due to regime switches and the 
low-frequency modes of variability arising at the early Hopf bifurcations. A third possibility is therefore that the first limit 
cycles tend to leave their spectral imprints on highly chaotic motions (Nauw and Dijkstra 2001).

Hence, it may be quite wrong to underestimate the role of the first oscillatory modes that become unstable when forcing 
(friction) is increased (decreased). For the double-gyre circulation, these modes are of several types. The first type is high-
frequency Rossby basin modes, which are forced, dissipative modifications of the inviscid basin modes (Pedlosky 1987). 
The second type is classical baroclinic instabilities, that are found in multilayer models in cases where the internal Rossby 
radius of deformation is small (Dijkstra and Katsman 1997; GFS; SGITW). A third type is wall-trapped modes that 
correspond to localized instabilities confined to the region of the western boundary current (Ierley and Young 1991; Chang
et al. 2001). The fourth type of modes is referred to as (oscillatory) gyre modes; in many respects, these modes are less 
well understood.

Although the spatial pattern of such a gyre mode is wavelike, the mode does not originate from the spectrum of a linear 
operator related to free wave propagation. It has been called an oscillatory gyre mode because it simply disappears when the 
intensity of the gyres becomes too weak (Dijkstra and Katsman 1997). Its direction of propagation does not appear to be 
related to that of the Rossby waves but it propagates perpendicularly to the direction of the midlatitude jet, which makes the 
jet fluctuate in intensity. Its appearance is thus deeply linked to the existence of fully developed recirculation gyres. It also 
distinguishes itself from the other instabilities by its much longer oscillation period, which is interannual (decadal) in a 
barotropic (baroclinic) model. Finally, it is one of the most robust features of the wind-driven double-gyre circulation. It can 
be found in Fig. 8 of Jiang et al. (1995), Fig. 9 of Speich et al. (1995), Fig. 6 of Dijkstra and Katsman (1997), Fig. 6 of 
Dijkstra and Molemaker (1999), Fig. 15 of Berloff and McWilliams (1999), Fig. 11 of Chang et al. (2001), Fig. 2 of 
SGITW, and Fig. 6 of Nauw and Dijkstra (2001). In fact, we are not aware of idealized models of the double-gyre 
circulation where it is missing.

The purpose of this paper is to understand the spectral origin of this low-frequency gyre mode and to describe the 
physical mechanisms of its growth and propagation. Although the mode occurs in many models, we consider it here in one 
of the simplest models of the double-gyre circulation, that is, a barotropic single-layer QG model (section 2). We show that 
the gyre mode originates from the merging of two nonoscillatory modes. One of these modes, which we call the P-mode, is 
associated with the occurrence of multiple equilibria. The other mode, which we call L-mode, controls the (energy) intensity 
of the whole double-gyre flow. These two eigenmodes are merging smoothly once the steady-state solution becomes 
sufficiently asymmetric to generate “spontaneously”  the low-frequency oscillatory gyre mode (section 3). This merging also 
occurs in a severely truncated QG model due to Jiang et al. (1995). In section 4, the latter model is used to determine the 
physical oscillation mechanisms of the gyre mode. In the last section, the results are summarized and discussed.



2. Model and methods 

One of the simplest models of the wind-driven ocean circulation is the classical barotropic QG model. It has been shown 
that this model, in either its barotropic or reduced-gravity version, provides rich insights into the nonlinear dynamics of the 
double-gyre circulation (McCalpin and Haidvogel 1996; Chang et al. 2001). 

a. Model 

We use here a barotropic single-layer version of the two-layer model of Dijkstra and Katsman (1997). The ocean layer has 
a constant density ρ and mean thickness D and is confined to a square basin of horizontal dimensions L × L. The flow in the 

basin is forced by a wind stress (τ0τ
x, τ0τ

y), where τ0 is a characteristic amplitude. Both bottom friction (with coefficient 0) 

and lateral friction (with coefficient AH) are considered. Using characteristic horizontal and vertical scales L and D, a 

horizontal velocity scale U, a wind stress scale τ0, and a timescale L/U, the nondimensional equations become 

 

where J is the Jacobian defined as 

 

 is the geostrophic streamfunction, and  is the vertical component of the vorticity vector, that is,  = 2 . The 
parameters in (1) are the Reynolds number Re, the strength of the planetary vorticity gradient β, the strength of the wind 
stress α, the rotational Froude number F, and the bottom friction parameter μ. Their expressions are given as 

 

In the results of section 3 below, both μ and F are set to zero, and the Reynolds number Re is used as the control 
parameter. The reference values of the other parameters are indicated in Table 1 . The values of the dimensionless inertial 

and viscous boundary layer thickness, δI = L−1(U/β0 )½ and δM = L−1(AH/β0)1/3, are also indicated. 

The flow in the basin is forced by an idealized zonal wind stress that is constant in time, given by 

 

where the “homotopy”  parameter σ controls the shape of the wind stress. The case σ = 0 corresponds to an 
antisymmetric wind stress curl whereas for nonzero σ, the wind stress is asymmetric. The total vorticity input into the basin 
is thus nonzero for σ  0. Depending on the sign of σ, the solution obtained has either a more intense subtropical (σ < 0) or 
subpolar gyre (σ > 0). In the case of σ < 0, the relative size of the subtropical gyre is smaller than the subpolar one.

Free-slip boundary conditions are imposed on the northern and southern walls (y = 0, 1) and no-slip boundary conditions 
on the eastern and western walls (x = 0, 1). A 64 × 64 nonequidistant grid is used with the same stretching parameters (qx = 



qy = 2) as in Dijkstra and Katsman (1997). With this resolution, the western boundary layers are nicely resolved, without the 

need to achieve high resolution in the interior part of the basin, and the positions of the bifurcation points have converged. 

b. Numerical methods 

Numerical bifurcation tools are now widely used in the study of the wind-driven double-gyre flow (Speich et al. 1995; 
Dijkstra and Katsman 1997; Primeau 1998; Simonnet 1998). The basic idea is to compute directly a branch of steady-state 
solutions as one (physical) parameter is varied, instead of merely computing just one steady state, for a set of parameter 
values, by forward integration in time. These techniques are often referred to as continuation methods or pseudoarclength 
methods (Keller 1977) and have been introduced into geophysical fluid dynamics by Legras and Ghil (1985). Various 
descriptions and applications of these methods for systems of partial differential equations can be found in Kubi ek and
Marek (1983), in Doedel and Tuckerman (2000), and in Dijkstra (2000).

After discretization, the computation of a steady state amounts to solve a set of nonlinear algebraic equations in a large-
dimensional space. These equations can be written as 

F[x(s); p(s)] = 0, (4) 

where x is the discretized n-dimensional solution and p is the p-dimensional vector of parameters. Current computer 

hardware allows typical values of n = O(104 − 105). The use of an additional parameter s, which approximates the arclength 
along the branch of solutions, enables one to go easily around saddle-node bifurcation points. The tangent to the branch of 
solutions is normalized, giving 

 

where (x0, μ0) corresponds to a known solution on the branch—that has been obtained analytically or been previously 

computed—and Δs is the chosen steplength. The system (4) and (5) is solved by a Newton–Raphson method. 

As one follows a branch of steady-state solutions, transitions to multiple equilibria—via pitchfork or saddle-node 
bifurcations—or periodic behavior, via Hopf bifurcations, can be found by monitoring the linear stability of the steady states. 
Several studies have shown that only a very small number of (complex) eigenvalues are involved in the transition from 
multiple equilibria to irregular behavior in the double-gyre circulation (Dijkstra and Molemaker 1999; SGITW). This type of 
situation is often encountered in fluid dynamics and specific algorithms dedicated to the computation of the leading part of 
the spectrum have been developed. The discretized linear stability problem leads to a generalized eigenvalue problem of the 
form 

 = κ , κ = κr + iκi, (6)
 

with  = xF(x0; μ0). The matrix , which arises from the time derivatives in (1), may be singular due to the boundary 

conditions or other constraints. The eigenfunction r + i i and the complex pair of eigenvalues κr + iκi provide the time 

periodic disturbance structure (t) with angular frequency κi and growth rate κr; that is, 

(t) = eκrt[ r cosκit −  i sinκit]. (7)

 

In order to compute the “most dangerous”  eigenvalues, that is, the ones near the imaginary axis, we use the simultaneous 
iteration technique (SIT) of Stewart and Jennings (1981). A description of the SIT algorithm can also be found in Speich et
al. (1995) and Dijkstra (2000).

3. Spectral origin of the oscillatory gyre mode 

When forced by a purely antisymmetric wind stress curl, Eq. (1) have a mirror symmetry  with respect to the midaxis 
of the basin, which can be represented by 

[ (x, y)] = − (x, 1 − y). (8) 

If the operator  represents Eq. (1) with the appropriate boundary conditions, then it is easy to show that for every 
solution , 



( )  = ( ) . (9) 

Steady solutions  of (1) always come in mirror pairs because if  is a solution, then  is a steady solution as well. 
This property has a strong impact on the bifurcation structure of (1) since symmetry-breaking pitchfork bifurcations are, in 
this case, generic (Golubitsky and Schaeffer 1985).

a. Branching structure and instabilities 

The impact of the symmetry property (9) is readily observable in Fig. 1 , where the basic bifurcation diagram together 
with the steady streamfunction patterns are shown for the case σ = 0, F = 0, and μ = 0.

The vertical axis in Fig. 1  corresponds to the nondimensional intensity of the subtropical gyre, that is, subtropical = 

max >0 , while the Reynolds number Re is shown on the horizontal axis. We obtain three distinct branches of solutions 

similar to those found by Cessi and Ierley (1995) and Dijkstra and Katsman (1997). The first branch is characterized by 
perfectly antisymmetric solutions  for which  = . After the first saddle-node bifurcation point L (see Fig. 1 ), these 
solutions become inertially dominated, the flows become very energetic, and the recirculation gyres eventually fill the entire 
basin. Two pitchfork bifurcations P1 and P2 occur on the antisymmetric branch at Re = 29.4 and Re = 39.3, respectively. 

They are responsible for the appearance of asymmetric solutions, which come in mirror pairs due to (9). The second 
pitchfork bifurcation at P2 leads to a branch of asymmetric flows with their jet aligned in the west–east direction and a 

confluence point either shifted to the south or to the north of the midaxis of the basin (see Fig. 1 , upper-right panel). 

We will not consider the latter solutions in more detail, but focus instead on the two branches of asymmetric solutions 
that start at P1 and form a mirror pair for each Re value. The flows on both branches exhibit meandering of the jet 

downstream of the recirculation dipole (see details in Chang et al. 2001), with either a stronger subtropical gyre (upper 
branch) or a stronger subpolar gyre (lower branch). The weaker gyre is more affected by the asymmetry and wraps around 
the stronger one. We call therefore the upper and lower asymmetric branches merging at P, the “jet-south”  and the “jet-
north”  branch, respectively. 

The dependence on Re of the real (left panel) and imaginary (right panel) part of the leading eigenvalues κ along these two 
branches is shown in Fig. 2 . The solutions on either asymmetric branch are linearly stable up to the first Hopf bifurcation 
H1, at Re = 71.5. The first oscillatory mode that becomes unstable is a Rossby basin mode with an oscillation period of 7 

months. At the second Hopf bifurcation Hgyre (at Re = 83.2), a gyre mode with an oscillation period of 1.8 yr becomes 

unstable. At the third Hopf bifurcation H3, a second gyre mode, with an oscillation period of 2.2 yr, destabilizes. These 

results are qualitatively similar to those found in Dijkstra and Katsman (1997), where only the first two Hopf bifurcations 
were determined. The oscillatory gyre modes are characterized by a southwestward (northwestward) propagation of the 
anomalies in the case where the subtropical (subpolar) gyre is more intense.

b. Mode merging 

As can be seen in Fig. 2 , the oscillatory gyre mode that becomes unstable at Hgyre has a negative growth factor for 

smaller Re. In the right panels of Fig. 3a , the pattern of the real and imaginary parts of this mode is shown near Re = 40. 
In order to understand the origin of this mode, the eigensolution is “traced back”  smoothly to smaller Re. At each step, we 
carefully check that the behavior of the eigensolution, with the characteristics of the oscillatory gyre mode, changes 
continuously, so that no ambiguity is possible. In the context of QG dynamics, this is made easier due to the large spectral 
separation between the different Hopf bifurcations, which prevails in the double-gyre problem (Dijkstra and Molemaker
1999). The path of the gyre mode (the dash-dotted curve in Fig. 3 ) ends at the point M, where it splits into two 
stationary modes. These two modes exist up to the point P1 where the asymmetric solutions disappear for lower values of 

Re.

Also shown in Fig. 3a  are the leading eigenmodes on the antisymmetric solution branch. The nonoscillatory mode 
responsible for both the first and the second pitchfork bifurcation (P1 and P2) has a symmetric tripolar structure (upper-left 

panel). At P1, the growth rate κr of this mode becomes positive, which means that the antisymmetric steady flow becomes 

unstable to this perturbation pattern. Basically, the superposition of such a symmetric perturbation on the antisymmetric 
steady state creates either a stronger subpolar gyre or a stronger subtropical one. When Re > 29.4, the perturbation is able to 
extract enough energy from the horizontal shear of the basic state so as to overcome the effect of the dissipation (Dijkstra
and Katsman 1997; Primeau 1998). Because this mode is responsible for multiple equilibria and asymmetric states under 
symmetric forcing conditions, that is, for the pitchfork bifurcations, we call it the P-mode. The P-mode streamfunction 



keeps its symmetric structure unchanged over the whole Re range explored herein.

The nonoscillatory mode responsible for the saddle–node bifurcation at L and the one just before P2 has a dipolar 

antisymmetric structure (Fig. 3a , lower-left panel). It thus acts on both gyres simultaneously so that they either increase 
or decrease in intensity. The antisymmetric structure of the steady flow is thus kept unchanged due to the equally 
antisymmetric structure of the perturbation. We will call this nonoscillatory mode involved in the saddle–node bifurcations, 
or limit points, the L-mode. At P1, the L-mode is stable with a growth rate κr  −5 and κr becomes positive at the saddle–

node bifurcation L in Fig. 3a . When the L-mode perturbation has the sign shown, it increases the energy of both gyres. 
On the contrary, if the perturbation has the opposite sign, both gyres will decrease simultaneously in intensity and the basic 
flow will become less energetic.

Relevant for the oscillatory gyre mode is the path of both the P-mode and L-mode along the two asymmetric branches for 
Re > 29.4. For Re slightly above P1, both modes are still nonoscillatory and have a negative growth factor since both 

asymmetric branches are stable. The path of the eigenvalues of both modes is indicated by the heavy lines in Fig. 3  
(starting at P1). The growth factor of the P-mode decreases with Re, whereas that of the L-mode increases. Both modes 

meet at the point M (Fig. 3 ), which we call the merging point, and connect to the oscillatory gyre mode. Figure 3b  
shows the three-dimensional evolution of the eigenvalues in the complex plane as a function of Re. Two parabolic curves are 
tangent at M; one parabola is located in the plane κi = 0 (the path of both P- and L-mode) whereas the other (the gyre mode) 

is located in a plane of (nearly) constant negative κr. 

In Fig. 4 , the variations of the streamfunction pattern of the P-mode and L-mode along the asymmetric branch of “jet-
south”  solutions (from P1 to M) in Fig. 3  are plotted. The tripole shaped P-mode is deformed by the asymmetry of the 

steady flow so that it becomes aligned with the direction of the jet and its structure becomes almost dipolar. The L-mode is 
not very much affected by the flow and keeps its pronounced dipolar shape. At M, these two modes are identical and merge 
to become complex conjugate. After the merging, the real part of the gyre mode pattern is inherited from the P-mode and 
becomes more asymmetric whereas the pattern of its imaginary part is similar to that of the L-mode. This demonstrates that 
the oscillatory gyre mode results from the merging of the P-mode and L-mode on either asymmetric branch of solutions. 

c. Imperfections: Asymmetric wind stress 

When the wind stress forcing is taken slightly asymmetric, that is, σ  0 in (3), the internal QG reflection symmetry is 
broken. One then expects perturbed pitchfork bifurcations to lead to the appearance of disconnected branches of solutions, 
as is the case for the shallow-water models in the presence of symmetric wind stress (Jiang et al. 1995; Speich et al. 1995). 
The bifurcation diagram for σ = 0.01 (Fig. 5a ) shows the disconnected branches that were connected at P1 in the 

symmetric case; those disconnected from P2 are not shown. A blowup of the vicinity of P is shown in Fig. 5b . Of the 

branches shown in the blowup, the one containing M1 is referred to here as the “connected”  branch and can be followed 

toward the linear Munk–Sverdrup flows at small Re (not shown). The other branch, which contains M2, is referred to as the 

“isolated”  branch and is characterized by stable and unstable steady solutions that are separated by a saddle–node bifurcation 
at L (Fig. 5b ).

On each of the two branches, an oscillatory gyre mode appears: the one on the isolated branch is a “jet-north”  mode while 
the one on the connected branch corresponds to a “jet-south”  mode. The real part κr of this leading eigenmode of the linear 

stability problem is plotted in Fig. 5c  along both branches. Merging of stationary modes (along the arrows in Fig. 5c ) 
occurs on both branches and leads to the two distinct “gyre”  modes. Indeed, the point M in Fig. 3  has now split into two 
different merging points, M1 and M2, which correspond to the appearance of the two (nearly) mirror-symmetric gyre 

modes. One can clearly imagine how restoring the broken symmetry (σ  0) acts on the branches of eigenvalues to give 
the picture of Fig. 3 .

Shallow-water models are characterized by the appearance of perturbed pitchfork bifurcations even in the presence of 
symmetric forcing, because of their natural lack of symmetry due to thermocline deviations (Jiang et al. 1995; Dijkstra and
Molemaker 1999). Their solution branches are therefore always disconnected, like those in Fig. 5 . The results above 
explain why in situations of broken symmetry, including those of shallow-water models forced by a symmetric double-gyre 
wind stress, oscillatory gyre modes are still found. We have therefore identified a robust feature of the double-gyre wind-
driven ocean circulation, which is closely related to the existence of the P-mode and L-mode. This motivates us to look for 
even simpler models in which these modes appear and use them to gain further physical insight.

4. Physics of the oscillatory “gyre”  mode  



It turns out that the merging process occurs already in the low-order model of the wind-driven ocean circulation that was 
also studied by Jiang et al. (1995). Their model, following Veronis (1963), is based on the projection of the barotropic QG 
model on only two basis functions.

a. Low-order model  

The low-order model derived by Jiang et al. (1995) starts from a dimensional version of Eq. (1) with zero lateral mixing 
(AH  0), while keeping nonzero bottom friction ( 0  0). When we scale time, length, wind stress, and streamfunction 

by 1/(β0L), L, τ0, and τ0/(ρβ0D), respectively, their dimensionless QG model becomes 

 

Here the parameters are slightly different than in section 2, with the Rossby number  and μ now given by 

 

We consider now a square domain (x, y)  [0, π] × [0, π], while on the boundaries the Eq. (10) accommodate only 
conditions of no-normal flow, that is,  = 0. 

The idea explored by Jiang et al. (1995) was to consider an expansion that is better adapted to the problem than the double 
Fourier series expansion of (10) in the x and y directions (Veronis 1963). In order to account for the existence of the 
western boundary layer, a decaying exponential in the x direction is introduced while a sine expansion is retained in the y 
direction; that is, 

 

Here s = 1.3 is chosen such that G(x) = e−sx sinx fits the zonally asymmetric structure of a typical double-gyre flow, 
while w1 and w2 correspond to the parameters that control the intensity of the antisymmetric and (a)symmetric part of the 

wind stress forcing, respectively.

The truncated equations are obtained by projecting (10) onto the orthogonal basis {G(x) siny, G(x) sin2y}. The variational 

expression uses the standard Hilbert product ‹f , g›  = π
0 π

0 fg dx dy. In this case, the energy of the truncated system is 

conserved. A system of two nonlinear differential equations for A and B is obtained as 

 

where 



 

Below, we only consider the case F = 0 (for which ν1 = ν2 = μ) just as in section 3. The nondimensional parameter β 

does not enter in the coefficients of the truncated model since the term / x is orthogonal to the basis. The Rossby 
dynamics are thus filtered out.

Rescaling time with λ, we rewrite (14) as 

 

with r = μ/λ, γ = λ 2/μ2, δ = μ 1/λ2, and the dot refers to differentiation with respect to λt.

 

b. Analysis of steady states and stability 

Steady states (A0, B0) are obtained by solving a cubic equation for A0 and are given by 

 

The linearization of the system (17) around a steady state (A0, B0) gives the Jacobian matrix 

 

The eigenvalues κ of (19) are solutions of the quadratic equation 

(κ + r)2 − B0(κ + r) + 2A2
0 = 0. (20)

 

Consider first the case δ = 0, for which the flow is forced by an antisymmetric wind stress curl ( 1 = 0). For γ < 1, only 

one steady state (A0, B0) = (0, rγ) exists and is stable since the eigenvalues of (20) are r(γ − 1) and −r. Both eigenvalues are 

plotted in Fig. 6a  as a function of γ for r = 1.8. At γ = 1, a pitchfork bifurcation occurs leading to the coexistence of 
three different steady states for γ > 1. The eigenvalue r(γ − 1) becomes positive for γ > 1 so that the antisymmetric solution 

(0, rγ) is now unstable. The asymmetric solutions arising at P are ( br(γ − 1 )½, r) with b = ±1. A sketch of the bifurcation 

diagram is shown in Fig. 6b , showing also patterns of the asymmetric solutions, for which there is simply a meridional 
shift of the jet axis.



The asymmetric solutions are stable because κr < 0 along these branches. The analytical expression of the eigenvalues is 

 

Hence, the real eigenvalues of the system (19) come together at γ = γM  = 9/8 to become oscillatory with a nonzero 

imaginary part. The two modes involved in this process are precisely the asymmetric P-mode (1, 0) responsible for the 
multiplicity of the solutions and the antisymmetric L-mode (0, 1), which controls the intensity of the gyres. For γ > γM , the 

two oscillatory conjugate modes (the eigenvector , corresponding to the oscillatory gyre modes) are given by 

 

This merging process exactly represents what happens in the barotropic QG model results in section 3. The imaginary 
part of the gyre mode is almost zero close to γ = γM  and has its spatial structure similar to the L-mode (0, 1). The spatial 

structure of the real mode is inherited from the P-mode and the merging depends on the asymmetry of the steady flow. 

For a slightly asymmetric wind stress (δ  0), the number of steady solutions (A0, B0) of (18) depends on the sign of the 

discriminant 

 

For  > 0, (18) admits one real solution 

 

and for  < 0, that is for γ > γLP = 1 + (3/r2)[(δ/2)]2/3 > 1, there are three distinct solutions 

 

where α = π − arctan((− /δ )½). This solution structure is similar to that in Fig. 5 . On the isolated branch, the real 
part of the leading eigenvalue κr is plotted in Fig. 6c  for δ = 0.1 and r = 1.8. The merging of the stationary modes occurs 

again at the point M, very similar to that in Fig. 5c .

As a matter of fact, the P-mode and L-mode always merge in this low-order model. Figure 6d  shows the difference 
between the value of γ = γM , when the two eigenvalues are merging, and the value of γ = γLP corresponding to the 

appearance of the limit point L in Fig. 6c  when  = 0. This difference depends on δ and r and it appears to be always 
positive. Such a behavior is an indication of the robustness of the merging between the two modes on the isolated branch. 
For δ = 0, we find that this difference is equal to 1/8, independently of r, and consistent with (21).

c. Physical mechanism of the oscillation 

The very good agreement of the merging process in both the full and the low-order QG model motivates us to investigate 
the physical oscillation mechanism in the low-order model for the simplest case where merging occurs (δ = 0). Since the 
story is subtle, the investigation is divided into three parts. First, an energy equation for the perturbations on a steady flow is 



derived. Then follows the most difficult step, in which the tendencies of the symmetric part of the perturbation are linked to 
the sign of its antisymmetric part. Once this has been established, the oscillatory mechanism can be explained.

1) ENERGY EQUATION 

Let (A0, B0) be a steady solution of the low-order model, corresponding to 0 = G(x)(A0 siny + B0 sin2y), with velocity 

field U0 = − 0/ y and V0 = 0/ x. Consider a = A − A0 and b = B − B0 as the perturbations on this solution. These 

perturbations satisfy 

 

Defining the perturbation kinetic energy e = (a2 + b2)/2, we see that it is indeed proportional to the energy of the 

perturbation  = G(x)(a siny + b sin2y), that is, e = C  2 dx dy, where the integral is over the domain [0, π] × [0, π] and 
C is a positive constant. Multiplying (23) by a and b, respectively, and summing, one obtains 

 

The right-hand side of (24) corresponds precisely to the energy production due to the interaction between the basic flow 

0 and the perturbation ; that is, 

 

Note that this equation is also valid in the full QG model except that e has to be replaced by  | |2 dx dy.

 

When the spatial pattern of the perturbations resembles the steady flow, the energy production is weak, since J( , 0)  

0. The right-hand side in (24) can be written as 

 

where u = − / y and  = / x are the perturbation horizontal velocities. The Reynold stress terms involving 2 and u  
in (26) can produce energy through the horizontal shear of the basic flow.

Consider now the interaction of an antisymmetric steady solution (0, rγ) and an antisymmetric perturbation of the form 
(0, ±b0). In this case, the disturbance has exactly the same spatial structure as the basic flow and hence J( , 0) = 0. It is 

not possible to extract energy from the shear in this case, the amplitude of the disturbance decreases due to friction and the 
steady flow is stable.

On the contrary, when the antisymmetric steady flow is subjected to a symmetric perturbation of the form (±a, 0), it may 

become unstable. The first integrand ( 2) U0/ x > 0 on the rhs of (26) is the one that contributes the most to the production 

of energy, because the zonal velocity for such a symmetric disturbance is very weak (there is no eastward jet) and thus the 
term u  is small. Moreover, since the velocities of the steady flow increase with γ, the energy production is roughly 

proportional to γ. In the low-order model it is actually equal to B0a2 = rγa2. When γ is large enough (γ > 1), it is able to 



overcome the dissipation and lead to growth of the perturbation. This mechanism gives an efficient way to reduce the 

energy of the antisymmetric flow (with energy Ek = r2
γ

2) by making the flow asymmetric (with energy Ek = r2
γ) and less 

energetic. Moreover, such a mechanism explains why a saddle–node bifurcation is less likely to occur first, since 
antisymmetric perturbations extract energy in a much less efficient way than do symmetric perturbations.

This analysis provides added rigor to the symmetry-breaking mechanism described by Dijkstra and Katsman (1997). 

2) TEMPORAL CONSTRAINTS 

The symmetry-breaking mechanism introduces constraints on the tendencies of the symmetric component of the 
perturbations. To demonstrate this, multiply (17a) by A to derive an energy equation for the symmetric part of the flow AG

(x) siny. With e+ = A2/2, one obtains 

 

This equation shows that if one increases the antisymmetric component b of the flow such that it becomes less 
asymmetric, the response is to increase the symmetric component a = A − A0 of the flow so that it becomes again more 

asymmetric. Thus the antisymmetric disturbance b cannot just change without altering the intensity of the symmetric 
component a of the flow.

To explain the temporal constraints implied by (27), let us focus on an asymmetric (unstable) steady-state solution 0  

(A0, B0) = (r(γ − 1 )½, r). This solution has a larger (in size) subtropical gyre that also means a more intense one in the 

truncated model. Let 0 be perturbed and consider the problem (14) with initial condition at t = 0: 

 

where a0(0) and b0(0) are arbitrary disturbances of 0. We can write this initial condition also as 

 

where 1 = (A1, B1) = (0, r + b0(0)) is a perturbed antisymmetric state and a1(0) = A0 + a0(0) and b1(0) = 0.
 

The decomposition into 1 + 1 provides an interesting interpretation and the corresponding geometric situation is 

sketched in Fig. 7 .

With respect to the steady state 1, the energy e1(t) of the perturbation (a1(t), b1(t)) now satisfies 

 

where U1 and V1 correspond to the velocities of the antisymmetric flow 1 while the wind stress forcing term in (17) is 

split into two parts, r2
γ = r2(γ1 + γ2). The part r2

γ1 corresponds to the forcing needed to obtain the solution 1. The term 

r2
γ2 b1 = r2b1(γ − 1 − b0/r) can readily be interpretated as the work exerted by the wind stress on the perturbation flow; that 

is, r2
γ2 b1 = C  (u1τ

x
2 + 1τ

y
2) dx dy. This work does not depend on the asymmetry of the flow, due to the idealized 

structure of the wind stress, and it is initially zero. Note also that no assumption has been made regarding the size of the 

perturbation in (28) because of energy conservation in the full QG model,  J( 2 , )  dx dy = 0. 

At this point, we can use the information from the bifurcation diagram shown in Fig. 7 . When b0 > 0, the state 1 is 



located to the right of the pitchfork bifurcation (r + b0 > r) and it is unstable. Since the initial amount of work r2
γ2b1(0) is 

zero (b1(0) = 0), the symmetric perturbation a1 = A0 + a0 must grow and hence da0/dt > 0. In the case where b0 < 0, the 

flow 1 is stable and hence da0/dt < 0. The results on the temporal constraints, caused by this symmetry-breaking 

dynamics, can hence be summarized in the following way: 

 

The law (29) indeed determines the direction of propagation of the anomalies, which, in the truncated model case, is 
northward for a more intense subtropical gyre. The fact that in more realistic models the direction of propagation is reversed 
(i.e., southward) should not be objectionable: an antisymmetric anomaly goes in the southward direction so as to enhance 
the strength of the more intense subtropical gyre. In realistic models, a more intense subtropical gyre has a relative size that 
is smaller although it has more relative vorticity than the subpolar gyre. On the contrary, in the truncated model, a more 
intense subtropical gyre has also a larger relative size than the subpolar gyre. This difference explains why in realistic models 
the direction of propagation is reversed and is southward. In the truncated model, the anomaly with positive vorticity must 
grow in size in order to achieve the same goal: that is the direction of propagation must be reversed (see Fig. 8 ). Both 
cases follow precisely the universal law (29) that is dictated by the symmetry-breaking mechanism, no matter the 
complexity of the models studied.

3) THE OSCILLATORY MECHANISM OF THE GYRE MODE 

We are now able to explain the appearance of the oscillatory mode when the asymmetry of the steady state is large 
enough. Consider γ very large so that the asymmetry of the basic state is accentuated. In this case, the energy production 

term  J( , 0) 2  dx dy can be well approximated by −abA0 [see rhs of (24)]. Assume further that the asymmetric 

solution (A0, B0) = (r(γ − 1 )½, r) is initially perturbed by (0, b0), with b0 > 0. For a large value of γ, a trajectory of (17)—

corresponding to one cycle of the oscillation—is plotted in the upper-right panel of Fig. 8 . 

If a and b are of the same sign, the shear decreases the energy of the anomaly (Fig. 8 , stage 2). On the contrary, if a 
and b are of opposite sign, the disturbances are able to extract energy from the steady flow so that e increases (Fig. 8 , 
stage 4).

The oscillation involved in the gyre mode can now be described as consisting of four distinct steps, as illustrated in Fig. 8 
.

(i) In stage 1 the antisymmetric part of the solution is positive, b0 > 0, and so the symmetry-breaking mechanism 

increases the asymmetric component because da/dt > 0. The shear and the friction (which is small for large γ) act 
together to stabilize the solution (stage 2) and hence the energy e must decrease. Since b is positive and da/dt > 0, 
however, a cannot decrease and thus b must decrease. This continues until b crosses the zero axis, in stage 3, and 
becomes negative due to friction.

(ii) At stage 4 in Fig. 8 , a and b are of opposite sign so that the energy of the disturbance must grow due to the 
shear. However, it is impossible for a to increase because b is negative and consequently da/dt < 0. Thus b must 
decrease further to more negative values.

(iii) When a crosses the zero axis, a and b are of the same sign so that a situation similar to that in (i) occurs, that 
is, the shear stabilizes the flow. However, b < 0 implies that da/dt < 0 and hence a becomes even more negative. 
Consequently, the value of b must increase to less negative values.

(iv) When b becomes positive again, the shear destabilizes the flow again, e increases while simultaneously da/dt > 
0 so that a becomes less negative. Consequently, the value of b must increase. When a becomes zero, case (i) is 
obtained and the cycle starts all over again.

As a matter of fact, the loss of energy during the two phases (i) and (iii) makes the energy of the disturbance slowly 
decrease.



The mechanism above explains why γ needs to be large enough for this oscillation to occur. As was apparent in steps (i) 
and (iii), the shear and friction act together to stabilize the flow (stage 2, Fig. 8 ). However, in steps (ii) and (iv), they act 
on the growth of the perturbation in an opposite way so that if the asymmetry of the flow is not strong enough to overcome 
the effect of the dissipation, then b may increase before a becomes zero. In that case, a decreases less and less and both a 
and b tend exponentially to zero with opposite sign. Indeed, this situation where the dissipation overcomes the effect of the 
shear, so as to damp the solution, does occur for 1 < γ < 9/8. Such a situation is shown in the lower-right panel of Fig. 8 

.

5. Summary and discussion 

The purpose of this study was to clarify the spectral origin and the physical mechanism of the so-called (oscillatory) gyre 
mode that is found in many models of the wind-driven ocean circulation. The gyre mode is distinguished from the other 
modes (Rossby basin modes, wall-trapped modes, and baroclinic modes) by its low-frequency behavior. The oscillatory 
behavior is characterized by a wave pattern that propagates perpendicularly to the direction of the jet, that is, either in a 
northwestward or southwestward direction.

In our barotropic QG model, this mode arises through merging of two nonoscillatory modes. We called the first one P-
mode—P for pitchfork—and it is responsible for the appearance of multiple steady states. Its spatial structure consists of a 
tripole that is symmetric with respect to the midaxis of the basin (Fig. 3a ). The spatial pattern of the second one, which 
we called the L-mode—L for limit point—is antisymmetric and dipolar. These two modes tend to deform along the 
asymmetric branches of solutions in such a way that they become identical and merge to become oscillatory: a gyre mode 
results from this merging (Figs. 3 and 4 ).

At first sight, this process may seem fortuitous and specific to the particular model but the study of a low-order QG 
model (Jiang et al. 1995) that has only two degrees of freedom indicates that this merging is more general. The dynamical 
mechanism leading to the appearance of the oscillatory gyre mode in this simple model is the same as the one in the full 
barotropic QG model. From the low-order model, the heart of the physics of the oscillatory gyre mode can be captured. 

The growth and decay of the energy of the mode in the different stages of the oscillation is determined by a pure shear 
mechanism. The combined effect of this shear, the asymmetry of the steady flow and the symmetry-breaking mechanism—
which induces temporal constraints between the symmetric and antisymmetric components of the perturbations—cause the 
low-frequency oscillation. In this way, the oscillatory behavior of the gyre mode is linked to the same mechanisms that lead 
to the appearance of multiple equilibria at the (first) pitchfork bifurcation. In some sense, the oscillatory gyre mode on the 
asymmetric branch tries to reproduce the symmetry-breaking mechanism but can never reach a new equilibrium state 
because of the asymmetric structure of the background flow. Moreover, the orthogonality between the basis and the β term 
shows that this mechanism is free of Rossby dynamics.

Pitchfork bifurcations are structurally unstable so that a slight perturbation of the symmetry (8) leads to the occurrence of 
a so-called perturbed pitchfork bifurcation. This kind of phenomena occurs in particular in shallow-water models but also in 
QG ones when the bathymetry, the boundary conditions, or the shape of the wind stress is no longer symmetric. However, 
oscillatory gyre modes appear to be very robust to such perturbations and our study is relevant to more complex situations 
including primitive equations. Indeed these modes are as robust as the (perturbed) pitchfork bifurcation itself. In the single-
gyre case, the lack of symmetry leads to the appearance of saddle–node bifurcations as found in many studies (e.g., 
Sheremet et al. 1997). In this case, we may conjecture that oscillatory gyre modes cannot develop. The nonoscillatory 
recirculation gyre mode of Sheremet et al. (1997) indeed should correspond to our so-called L-mode, which is responsible 
for saddle–node bifurcations (or limit points). These points will be clarified in a future work. 

On a more abstract level, the mechanism of mode merging is related to a particular case of a codimension-2 bifurcation 
often referred in the literature as a Bogdanov–Takens bifurcation (Guckenheimer and Holmes 1983). This bifurcation 
corresponds to a situation where two real eigenvalues coalesce on the imaginary axis, that is, in the case where the merging 
point M and the pitchfork bifurcation coalesce. The normal form of this codimension-2 bifurcation is 

 

The full solution structure as a function of the two parameters μ1 and μ2 is described in Guckenheimer and Holmes 

(1983). Hopf bifurcations occur in this case along the curve μ1 = −μ2
2, and low-frequency oscillations are expected since 

the frequency of the eigenmodes at the merging point is zero. Hence, the phenomenon of merging as described here is much 
more general and occurs, for example, also in a three-box model of the thermohaline circulation in a double-hemispheric 
configuration (Welander 1986; Thual and McWilliams 1992), where it leads to low-frequency “thermohaline loop”  
oscillations.

With this explanation of the gyre mode, the physics of all the classes of modes found in the double-gyre wind-driven 



ocean circulation is clarified. This being so, the intricate interaction of these modes, leading to the complex temporal 
variability found in numerical models and presumably in the ocean can be studied with greater confidence.

Acknowledgments

This work was supported by the Netherlands Organization for Scientific Research (NWO) under a PIONIER grant to HD 
and DOE Grant DE-FG02-01ER63251 to ES. The authors thank M. Ghil from the University of California, Los Angeles, for 
several helpful discussions and a careful reading of the manuscript and Y. Feliks for useful remarks.

REFERENCES 

Berloff P. S., and J. McWilliams, 1999: Large-scale, low-frequency variability in wind-driven ocean gyres. J. Phys. Oceanogr., 29, 1925–
1945. Find this article online

Cessi P., and G. R. Ierley, 1995: Symmetry-breaking multiple equilibria in quasi-geostrophic, wind-driven flows. J. Phys. Oceanogr., 25, 
1196–1202. Find this article online 

Chang K. I., K. Ide, M. Ghil, and C.-C. A. Lai, 2001: Transition to aperiodic variability in a wind-driven double-gyre circulation model. J. 
Phys. Oceanogr., 31, 1260–1286. Find this article online 

Corti S., F. Molteni, and T. N. Palmer, 1999: Signature of recent climate change in frequencies of natural atmospheric circulation regime. 
Nature, 398, 798–802. Find this article online 

Dijkstra H. A., 2000: Nonlinear Physical Oceanography. Kluwer Academic, 480 pp.

Dijkstra H. A., and C. A. Katsman, 1997: Temporal variability of the wind-driven quasi-geostrophic double gyre ocean circulation: Basic 
bifurcation diagrams. Geophys. Astrophys. Fluid Dyn., 85, 195–232. Find this article online 

Dijkstra H. A., and M. J. Molemaker, 1999: Imperfections of the North-Atlantic wind-driven ocean circulation: Continental geometry and 
asymmetric windstress. J. Mar. Res., 57, 1–28. Find this article online 

Doedel E., and L. S. Tuckermann, 2000: Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems. Springer, 119 
pp.

Ghil M., Y. Feliks, and L. Sushama, 2002: Baroclinic and barotropic aspects of the wind-driven double-gyre circulation. Physica D, in 
press.

Golubitsky M., and D. G. Schaeffer, 1985: Singularities and Groups in Bifurcation Theory, Part I. Springer-Verlag, 459 pp. 

Guckenheimer J., and P. Holmes, 1983: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, 453 
pp.

Ierley G. R., and W. R. Young, 1991: Viscous instabilities in the western boundary layer. J. Phys. Oceanogr., 21, 1323–1332. Find this 
article online

Jiang S., F. F. Jin, and M. Ghil, 1993: The nonlinear behavior of western boundary currents in a wind-driven, double-gyre, shallow-water 
model. Preprints, Ninth Conf. on Atmospheric and Oceanic Waves and Stability, San Antonio, TX, Amer. Meteor. Soc., 64–67. 

Jiang S., 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. 
Oceanogr., 25, 764–786. Find this article online 

Keller H. B., 1977: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory, P. H. 
Rabinowitz, Ed., Academic Press, 359–384. 

Kubi ek M., and M. Marek, 1983: Computational Methods in Bifurcation Theory and Dissipative Structures. Springer-Verlag, 243 pp. 

Legras B., and M. Ghil, 1985: Persistent anomalies, blocking and variations in atmospheric predictability. J. Atmos. Sci., 42, 433–471. Find 
this article online

McCalpin J., and D. Haidvogel, 1996: Phenomenology of the low-frequency variability in a reduced-gravity, quasi-geostrophic double-gyre 
model. J. Phys. Oceanogr., 26, 739–752. Find this article online 

Meacham S. P., 2000: Low-frequency variability in the wind-driven circulation. J. Phys. Oceanogr., 30, 269–293. Find this article online 



Mo K., and M. Ghil, 1988: Cluster analysis of multiple planetary flow regimes. J. Geophys. Res., 93D, 10927–10952. Find this article 
online

Nauw J. J., and H. A. Dijkstra, 2001: The origin of low-frequency variability of double-gyre wind-driven flows. J. Mar. Res., 59, 567–597. 
Find this article online

Pedlosky J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-Verlag, 710 pp. 

Plaut G., and E. Simonnet, 2001: Large scale circulation classification, weather regimes, and local climate over France, the Alps, and 
Western Europe. Climate Res., 17, 303–324. Find this article online 

Primeau F. W., 1998: Multiple equilibria of a double-gyre ocean model with super-slip boundary conditions. J. Phys. Oceanogr., 28, 
2130–2147. Find this article online 

Primeau F. W., 2001: Multiple equilibria and low-frequency variability of the wind-driven ocean circulation. J. Phys. Oceanogr., in press. 

Schmeits M., and H. A. Dijkstra, 2000: Physics of the 9-month variability in the Gulf Stream region: Combining data and dynamical 
systems analyses. J. Phys. Oceanogr., 30, 1967–1987. Find this article online 

Schmeits M., 2001: Bimodal behavior of the Kuroshio and the Gulf Stream. J. Phys. Oceanogr., 31, 3435–3456. Find this article online 

Sheremet V. A., G. R. Ierley, and V. M. Kamenkovich, 1997: Eigenanalysis of the two-dimensional wind-driven ocean circulation problem. 
J. Mar. Res., 55, 57–92. Find this article online 

Simonnet E., 1998: Some numerical problems related to geophysical flows. Ph.D. thesis, Université de Paris-Orsay, 154 pp.

Spall M. A., 1996: Dynamics of the Gulf Stream/Deep Western Boundary Current Crossover. Part II: Low-frequency internal oscillations. 
J. Phys. Oceanogr., 26, 2169–2182. Find this article online 

Speich S., H. A. Dijkstra, and M. Ghil, 1995: Successive bifurcations in a shallow-water model applied to the wind-driven ocean 
circulation. Nonlin. Proc. Geophys., 2, 241–268. 

Stewart W. J., and A. Jennings, 1981: A simultaneous iteration algorithm for real matrices. ACM Trans. Math. Software, 7, 184–198. Find 
this article online

Thual O., and J. C. McWilliams, 1992: The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a 
comparison with low-order box models. Geophys. Astrophys. Fluid Dyn., 64, 67–95. Find this article online 

Veronis G., 1963: An analysis of wind-driven ocean circulation with a limited number of Fourier components. J. Atmos. Sci., 20, 577–593. 
Find this article online

Welander P., 1986: Thermohaline effects in the ocean circulation and related simple models. Large Scale Transport Processes in Oceans 
and Atmosphere, J. Willebrand and D. L. T. Anderson, Eds., D. Reidel, 163–200. 

Tables 

TABLE 1. Reference values of parameters in the barotropic QG model 
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FIG. 1. Bifurcation diagram for the QG model with values of the parameters as in Table 1 . Here  subtropical vs the Reynold 
number Re is plotted together with the flow patterns. The bifurcations P1, P2 correspond to the pitchfork bifurcations (squares), 

whereas the triangles indicate the location of the Hopf bifurcations (see text and Fig. 2  for details), the first limit point L is 
indicated by a dot. The panels correspond to the upper-layer streamfunctions, positive contours are represented by thick lines, 
negative contours by thin lines together with contour intervals
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FIG. 2. Path of the three most dangerous eigenvalues for the QG model as a function of Re. The left panel corresponds to real 
parts and the right panel to the complex conjugate imaginary parts. The letter G refers to two distinct gyre modes in the QG model 
(see text). The triangles indicate the locations of the Hopf bifurcations
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FIG. 3. Spectral behavior of the eigenmodes involved into the various bifurcations off the antisymmetric “jet-south”  branch for 
the barotropic QG model (see Fig. 1 ). (a) The real part and (b) imaginary part of the P-mode and L-mode eigenvalues are 
plotted vs Re. Thick lines, beginning at P1 and ending at M, correspond to the path of these two modes on the asymmetric 

branch, thin lines to the path on the antisymmetric branch. The dash–dot thick line indicates a nonzero imaginary part. At M, the 
merging between the P-mode and L-mode occurs. The various panels show the streamfunction patterns at the locations indicated 
by the arrows
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FIG. 4. Merging of the P-mode and L-mode streamfunctions on the asymmetric branch as a function of Re from the pitchfork 
bifurcation P1 at Re = 29.40 to the merging point M at Re = 30.90 (see thick line, Fig. 3 ) 
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FIG. 5. (a) The bifurcation diagram ( subpolar vs Re) of the perturbed QG model. (b) A zoom of the region where the two 

merging processes occur. (c) Corresponds to the spectral behavior of the pair of mirror-symmetric gyre modes in the perturbed 
barotropic QG model, for the connected branch (left) and the disconnected one (right). The panels (up and down) correspond to 



 

the streamfunction eigenmodes; M1 and M2 represent the two points of merging 
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FIG. 6. Spectral behavior of the low-order QG model. Path of the real part of the two eigenvalues. (a) Idealized case (δ = 0, r = 
1.8) with streamfunction anomalies. (b) Sketch of the bifurcation diagram with the basic states. (c) Corresponds to the perturbed 
case and for the disconnected branch (δ = 0.1, r = 1.8). (d) The log10 contour lines of γM − γLP (as explained in the text) as a 

function of r and δ
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FIG. 7. Schematic drawing of the symmetry-breaking mechanism acting on an asymmetric solution 0 perturbed by an 

antisymmetric component ±b0. The bifurcation diagram is plotted in the three-dimensional space (γ, b, a) 
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FIG. 8. Time integration of (17) for r = 1 and δ = 0. (right panels) The behavior of a = A − A0 and b = B − B0. The energy of the 

anomalies e = (a2 + b2)/2 (amplified by a factor 10) and the shear of the flow due to Reynolds stress  [ 2( U0/ x) − u ( V0/ x)] 

dx dy are indicated for two cases: oscillatory (upper-right panel, γ = 1025) and damped (lower-right panel, γ = 1.12). For the 

damped case, the friction 2r(a2 + b2)/2 is shown instead and both shear and friction have been amplified by a factor 50. (left 

panels) Corresponds to the anomalies  and to the energy production due to the shear (oscillatory case)
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