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ABSTRACT

The link between low-frequency time-dependent variability and the 
existence of multiple unstable steady-state solutions in a reduced gravity 
quasigeostrophic ocean model for the midlatitude wind-driven 
circulation is investigated. It is shown that a sequence of successive 
symmetry-breaking pitchfork bifurcations lead to multiple equilibria that 
differ from each other primarily in the elongation of the recirculation 
cell, in the amount of meandering present in the intergyre jet, and in a 
north–south shift in the eastward jet. The elongation of the recirculation 
cells and the meandering of the jet play compensating roles in the 
establishment of the global energy and vorticity balance.

The solutions also have distinct energy levels, but general agreement 
between them and the bumps in a histogram of the total energy obtained 
from a 1200-yr time-dependent simulation is not found. Nevertheless, a 
substantial fraction of the variance (30%) can be accounted for by four 
coherent structures that capture the subspace spanned by four vectors 
that point from the mean state to four selected fixed points. The steady-
state solution with the most elongated recirculation cells acts most 
strongly in steering the trajectory of the time-dependent model in phase 
space and sets a rough upper bound on the energy of the flow.

1. Introduction 

Analyzing sea surface height in regions of the midlatitude western boundary currents, Kelly et al. (1996) found that the 
dominant mode of variation of the surface currents was a change in the structure of the recirculation regions. In the 2.5-yr 
record analyzed, they found elongation and contraction of the recirculation gyres in both the Kuroshio Extension and the 
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Gulf Stream, with a trend toward a shorter recirculation gyre in the Atlantic. More recently, Qiu (2000) also found similar 
variability for the Kuroshio extension system in 7 years of altimetry data. Both these studies show that in the state with 
elongated recirculation cells, the jet extension has a greater zonal penetration and a more northerly zonal-mean path and that 
in the contracted state, the jet extension follows a more southerly mean path. They also found that the periods with 
elongated recirculation cells have weaker eddy kinetic energy in the upstream region while periods with more contracted 
recirculation cells have higher eddy kinetic energy.

Based on a study of Rhines and Schopp (1991), Kelly et al. (1996) speculated that the tilt of the zero wind stress curl line 
might be responsible for the change in the elongation of the recirculation cells but found that on timescales of months, there 
was no correlation between the gyre fluctuations and the nonseasonal curl line tilt, while on longer timescales the 
observational record was too short to draw any firm conclusions. Another possibility as suggested by Qiu (2000) is that the 
variability in the elongation/contraction of the recirculation cells is a manifestation of the intrinsic variability of the 
recirculation gyre dynamics and occurs independently of changes in the wind stress.

A mode of variability with a spatial structure very similar to the one identified by Kelly et al. (1996) and Qiu (2000) exists 
in nonlinear wind-driven ocean models forced by steady winds. For example, McCalpin and Haidvogel (1996) used a 
reduced gravity quasigeostrophic model forced by a steady wind stress to study the intrinsic variability of the double-gyre 
wind-driven ocean circulation. They found that the low-frequency variability of the model was associated with irregular 
transitions between different regimes that could be characterized as having either recirculation cells that were elongated or 
contracted. Spall (1996) also found variability associated with the transition between regimes with either long or short 
recirculation gyres, using a three-layer primitive equation model that was forced by a steady deep western boundary inflow 
in addition to the steady wind stress.

In the present study we postulate that the existence of the multiple regimes found by McCalpin and Haidvogel and by Spall 
is due to the existence of multiple equilibria characterized by flow patterns having recirculation gyres that are either elongated 
or contracted. Even though the mechanism for the transition between states might be different between the models of 
McCalpin and Haidvogel and of Spall—the first involved only barotropic instability and the second involved baroclinic 
instability—the similar nature of the preferred regimes suggest that the existence of multiple regimes (as opposed to the 
transition timescales and frequency of the associated variability) can be studied with a simple one-layer quasigeostrophic 
(QG) model.

Our strategy is to apply Newton's method to a one-layer QG ocean model with the same configuration as used by 
McCalpin and Haidvogel and investigate the possible connection between the steady-state solutions and the multiple regime 
behavior they identified. Unlike other bifurcation studies of the double-gyre model, which have focused on the first 
bifurcations away from an antisymmetric stable steady state (e.g., Katsman et al. 2001, Dijkstra and Katsman 1997), we find 
it necessary to extend the bifurcation tree past several bifurcations in order to find the connection between the fixed points 
and the time-dependent behavior of the model. In general, one cannot expect steady solutions that are far from the marginal 
stability curve to have any influence on the model trajectory, but we show that for the model configuration studied by 
McCalpin and Haidvogel (1996), solutions that bifurcate away from the antisymmetric state far down the bifurcation tree 
have the strongest influence on the time-dependent flow. Furthermore, there are some important similarities between the 
structure of the elongated and contracted recirculation cells observed in the recirculation systems of the Gulf Stream and 
Kuroshio Extension systems and the model's multiple equilibria. This allows us to study the global balances of energy and 
vorticity of the different flow states in the simple context of a QG model without the complications of time-dependence. 

The plan of the paper is as follows. In section 2 we present the model formulation and the method of solution as well as 
the arclength continuation strategy. In section 3, we present the multiple equilibria and the global balances of energy and 
vorticity that allow the very different steady-state solutions to exist with the same steady forcing and dissipation. In section 
4 we present the time-dependent solution and investigate the connection between the fixed point and the behavior of the 
model in phase space. In section 5, we present a linear stability analysis for the steady-state solutions. Finally in section 6 we 
present a discussion of the results.

2. Model formulation and method of solution 

We use the same model formulation as McCalpin and Haidvogel (1996)—the reduced-gravity quasigeostrophic vorticity 
equation. In terms of the interface height anomaly, h, it is written as follows 



 

(refer to Table 1  for a description of the symbols). The equation describes the time evolution of the interface anomaly 
between two immiscible, homogeneous layers of fluid of slightly different densities. The upper layer has thickness H + h(x, 
y, t) and the lower layer is assumed to be infinitely deep and at rest.

The domain of integration is a rectangular basin with solid walls at x = 0, x = Lx and y = 0, y = Ly. The flow is forced by a 

zonal wind stress curl profile, 

 

where the parameter As controls the north–south asymmetry of the wind stress curl; for As = 0, the wind stress curl 

profile is antisymmetric about the center of the basin at y = Ly/2. 

To conserve mass, we impose the integral constraint 

 

and no normal flow 

h · t = 0, (4) 

where t is a unit vector tangent to the basin walls.

We also impose no stress, 

2h = 0, (5)

 

along the basin boundaries. Finally, because of the high-order viscosity term, one additional boundary condition is 
required. For this, we choose 

4h = 0. (6)

 

a. Nondimensionalization 

Most of the results we will present in this paper are in dimensional variables. We will nevertheless convert the governing 
equation into nondimensional form so that it will be clear how many parameters we can vary independently, and to make it 
easier for the reader to compare the results with those of other studies.

We put Eq. (1) in nondimensional form by introducing the following scales 



 

where time has been nondimensionalized by the time for long Rossby waves to cross the basin and the thickness h has 
been nondimensionalized by the east–west thickness difference obtained from Sverdrup balance. The nondimensional form 
of the Eq. (1) is (after dropping the asterisks) 

 

with the nondimensional wind stress curl profile given by 

 

We have introduced the following nondimensional parameters 

 

the basin aspect ratio α, the width of the inertial boundary layer δI, the width of the viscous boundary layer δH, and the 

width of the frictional Stommel boundary layer δS. We have also introduced the nondimensional Laplacian operator 

 

The reference numerical values for the parameters are given in Table 1 .

b. Spatial discretization 

The spatial discretization of the model is achieved via second-order finite difference approximations. Except for the 
stability analysis presented in section 5 a grid of 181 × 141 points, corresponding to a horizontal grid spacing of 20 km is 
used. For the stability analysis, memory constraints on the available computer allowed a mesh of only 141 × 121 grid points. 
To compensate for the decreased resolution, we introduced a stretched grid to concentrate the grid points close to the 
western boundary and to the jet axis along y = Ly/2. We also varied the stretching to verify that the stability results are not 

too sensitively dependent on the resolution. A cubic mapping of the form form x = ai3 + bi + c was used in both the x and y 
directions to map the grid points from computational space to nondimensional physical space.

c. Steady-state solutions: continuation strategy  

To obtain the steady-state solutions, we use an arclength continuation algorithm and Newton's method. See Seydel (1994) 
for a practical description of the method.

To find multiple steady-state solutions at the reference parameter values, we make use of the symmetry property of the 
quasigeostrophic governing equation, 



h(x, y) = −h(x, −y + 1). (12) 

Initially, we keep the wind stress profile exactly antisymmetric by setting As = 0 in Eq. (2) so that any pitchfork 

bifurcation structures leading to multiple equilibria are not destroyed. [For a discussion of symmetry breaking pitchfork 
bifurcations applied to the double-gyre problem see Jiang et al. (1995) and Cessi and Ierley (1995)]. Note that for As = 0, the 

prescribed wind stress curl profile also satisfies condition (12). For As  0, the nonsymmetric solution branches that would 

be connected to the antisymmetric branches at pitchfork bifurcation points become disconnected and cannot all be found by 
continuously varying one of the parameters.

To map out the solution branches into the desired nonlinear regime, we begin by computing an antisymmetric solution 
branch in the viscous regime (δH  δI) where the solution is essentially linear and therefore unique. We then gradually 

decrease the viscosity so that the solution becomes progressively more nonlinear. Only once a solution on each of the 
distinct nonsymmetric solution branches has been found and followed to the desired forcing and dissipation parameters, do 
we gradually increase As to make the wind-forcing nonsymmetric. 

In summary, our continuation strategy is the following.

1. Hold As = 0 fixed and vary Ab to compute the antisymmetric branch from the viscous regime to Ab = 8 × 1010 m4 

s–1. Bifurcation points are detected along the way by monitoring the sign of the determinant of the Jacobian matrix. 

2. Hold As = 0 fixed and vary Ab to continue each of the pitchfork branches from the value of Ab at their respective 

bifurcation point to Ab = 8 × 1010 m4 s–1. 

3. Hold Ab = 8 × 1010 m4 s–1 fixed and vary the wind profile assymetry parameter to continue each branch to the 

reference value used by McCalpin and Haidvogel (1996), that is, from As = 0 to As = 0.05. 

3. Bifurcation structure and multiple equilibria 

a. Antisymmetric solutions 

If the wind stress curl profile is antisymmetric [i.e., As = 0 in Eq. (2)], at least one antisymmetric solution branch exists 

for all parameter values. Figure 1  shows the maximum transport in the jet for the antisymmetric solution as a function of 
the viscosity parameter. All other parameters except for As are those given in Table 1 ; that is, we have the following 

nondimensional parameters 

 

For reference, the transport across the jet corresponding to Sverdrup balance is 4πτ0/(βρ0α)  40 Sv (Sv  106 m3 s–1). 

Figure 1  also shows the location of the bifurcation points leading to multiple equilibria. The antisymmetric solutions at 
each of these pitchfork bifurcation points are shown in Fig. 2 . As such, Fig. 2  shows how the antisymmetric 
solution changes as the viscosity is decreased. In this sequence, the recirculation cells, which are at first confined to a 
region near the western wall, expand progressively farther eastward as the viscosity is reduced. There is also an increase in 

the intensity of the recirculation cells as the viscosity is reduced from 1.5 × 1013 m4 s–1, (δH = 1.66 × 10–2), 

(corresponding to the location of the transition to the rapidly increasing transport in Fig. 1 ) to Ab = 1.3 × 1012 m4 s–1, 

(δH = 1.02 × 10–2), where the maximum transport is reached (84 Sv). When this maximum in the transport is reached, the 

recirculation cells extend 600 km eastward into the basin interior. A subsequent reduction in the viscosity causes the 
intensity of the recirculation cells to decrease but their eastward extent continues to increase in a monotonic fashion until a 

saddle node bifurcation point is reached at Ab = 6.0 × 109 m4 s–1, (δH = 2.47 × 10–3). The low nose point associated with 

this bifurcation is labeled  in Fig. 1 . At this point the recirculation cells extend up to 180 km west of the eastern 
wall. To continuously follow the antisymmetric solution, the viscosity must be increased from the low nose point, , up 

to the high nose point, , at Ab = 7.6 × 109 m4 s–1, (δH = 3.64 × 10–3). The north–south extent of the recirculation cells 



does not change much until the jet extends across the entire basin. Once the jet can no longer expand in the east–west 
direction because of the eastern wall, the recirculation cells expand in the north–south direction. However, due to the finite 

value of the interfacial drag parameter (δS = 1.41 × 10–3), the limit δH  0, does not tend toward basin filling gyres (Ierley 

and Sheremet 1995; Cessi and Ierley 1995; Primeau 1998a). Instead, the solution tends to one in which the subtropical gyre 
resembles one of the intermediate single gyre solutions in the sequence computed by Veronis (1966).

b. Nonsymmetric solutions 

As the viscosity is decreased beyond each of the pitchfork bifurcation points labeled A through H in Fig. 1 , an 

additional pair of nonsymmetric equilibria comes into existence. The members of each new pair are mirror images of each 
other and are related to each other through the symmetry condition given in Eq. (12). The pair of nonsymmetric solutions 
bifurcating at A are labeled  and ′. The pair bifurcating at B are labeled  and ′, and so on for the other 

pitchfork bifurcation points. At each bifurcation point, one of the eigenmodes of the linearized system has a zero eigenvalue. 
The eigenmode corresponding to this null eigenvalue captures the essential difference between the bifurcating branches. 
Figure 3  shows contour plots of the eigenmodes that have a zero eigenvalue at each of the bifurcation points. The 
structure of these modes is confined to the region of the basin occupied by the recirculation cells (cf. Fig. 2  showing the 
basic state and Fig. 3  showing the null eigenmode). Since these modes are symmetric about the line y = ½, they destroy 
the antisymmetry of the flow field. The solutions on the nonsymmetric branches can be distinguished from the 
antisymmetric solutions by the meandering of the jet separating the recirculation cells and by a northward or southward shift 
in the mean position of the jet. The solutions on the successive nonsymmetric branches can, in turn, be distinguished from 
each other by the number of meanders in the jet with the first pitchfork bifurcation giving rise to a solution with one 
meander, the second with two, and so on. The nonsymmetric solutions are similar to stationary waves. In the intergyre jet, 
the eastward flow is strong enough to arrest the westward propagation of the Rossby wave. As the viscosity is decreased 
the eastward velocity in the jet does not change much, but the recirculation cells become progressively more elongated. 
Once the recirculation gyres become sufficiently elongated, additional meanders of the stationary wave can fit between the 
western wall and the jet exit region. Each new pitchfork bifurcation corresponds to the destabilization or stabilization of the 
basic state to a stationary wave mode with one additional meander. The stationary wave nature of the resulting 
nonsymmetric branch can be seen by superimposing the null eigenmodes plotted in Fig. 3  onto the corresponding steady-
state solution in Fig. 2 . Each eigenmode consists of an elongated cell situated over the jet axis and two weaker 
counterrotating cells on the north an south flanks. The amplitude of the cell overlaying the jet axis varies in the downstream 
direction to produce meanders in the jet when superimposed on the fixed-point flow field. 

The sequence of bifurcations also has an alternating pattern in the structure of the null mode relative to the underlying 
basic state. The cell overlaying the jet axis for the first mode at A extends past the eastern most extent of the recirculation 

cells in the basic state. For the second mode at B, the cell does not quite reach the eastern end of the recirculation cells. 

Instead, the weaker counter rotating cells wrap around the eastern end so that the cell on the northern flank overlays the 
eastern tip of the northern recirculation cell and one on the southern flank overlays the recirculation cell to the south. The 
next mode at C has a pattern similar to the one at A and the one at D has a pattern similar to the mode at B and 

so on down the sequence. The result is that, when the sequence of modes are superimposed on the basic state, the 
nonsymmetric branches have flow fields for which the northern and southern recirculation cells alternately wrap around the 
southern and northern recirculation cell at their eastern end. In this way, as the viscosity is decreased and the recirculation 
cells expand eastward, each new bifurcating branch has a flow field with one additional stationary meander in the jet 
extension.

c. Multiple equilibria for the reference parameter values 

In order to make a direct comparison to the simulations of McCalpin and Haidvogel (1996), each solution branch was 
traced out using the continuation method from As = 0 (symmetric wind profile) to As = 0.05 (assymetric wind profile). 

For As = 0, the solutions bifurcating at bifurcation point A are labeled  and ′, those bifurcating at B are labeled 

 and ′ and so on for the other bifurcation points. The nonsymmetric solutions in which the jet turns southwards after 
separating from the western wall are denoted by the primed letters. Those with the jet turning northwards at first are 
denoted by unprimed letters. For As = 0, the primed and unprimed solutions are mirror images of each other. For As = 0.05, 

this is no longer the case, but the solutions are still qualitatively mirror images of each other.

In order to avoid a proliferation of symbols, we retain the symbol names,  and ′, , and ′, etc. for the 
continuation of the branches from As = 0 to As = 0.05. Unless stated explicitly in the remainder of the article, a reference to 

the fixed point ′, for example, will refer to the fixed point for the reference parameter values used by McCalpin and 
Haidvogel (1996) on branch ′. 



In Fig. 4 , the primed member from each pair of nonsymmetric solutions are contoured. In Fig. 4  we show only 
one of the three solutions from branch ′ since the differences among the solutions are slight rearrangements of the many 
closed circulation cells. The solution labeled ′ is the continuation of the antisymmetric branch from As = 0 to As = 0.05. 

For As > 0, the assymetry of the wind stress introduces imperfections in the pitchfork bifurcations such that the part of the 

branch which is antisymmetric between D and E for As = 0 connects the ′ and ′ branches without going 

through a pitchfork bifurcation point.

To illustrate how the assymetry of the wind profile destroys the pitchfork bifurcation, Fig. 5  shows a continuation of 
each branch as a function of Ab with As = 0.05 held fixed. The ordinate in Fig. 5  is the sum of the interface height 

anomaly, h, at two points 200 km to the north and south of the zero wind stress curl line and 160 km east of the western 
wall. Antisymmetric solutions would plot along the zero line. Note that the branches which were connected at pitchfork 
bifurcation points for As = 0.0 become disconnected for As = 0.05. 

The major differences between the solutions shown in Fig. 4  is in the eastward extent of the recirculation cells, and in 
the amplitude of the meanders in the jet and in the jet exit region. The solutions, which bifurcate at progressively smaller 
values of viscosity, have progressively more elongated recirculation cells and progressively less meandering of the 
streamlines. The differences in the degree to which a solution has long recirculation cells with weak meandering or vice 
versa indicates the differences in the way the solutions achieve global balances of energy and vorticity.

d. Global energy balance 

In this section we discuss the differences in the energy balances of the different steady state solutions. Scott and Straub
(1998) give a discussion of the global energy balance for symmetric and nonsymmetric steady state solutions. In addition to 
having different flow fields, each equilibrium state has a different energy level. Figure 6  shows a plot of the total energy, 
TE, as a function of the biharmonic viscosity parameter Ab for the case with antisymmetric wind stress curl. The total 

energy is given by the sum of the potential and kinetic energy, 

 

in which 

 

are the geostrophic velocities. Figure 6  also shows the nonsymmetric branches that have bifurcated at the symmetry 
breaking pitchfork bifurcation points, A, B, C, and D. Since the wind stress curl profile for As = 0 is exactly 

antisymmetric, the members of each pair of nonsymmetric equilibria have the same energy and thus fall on overlapping 

curves which are labeled (  and ′,  and ′,  and ′, and  and ′). The range between Ab = 1015 m4 s–1 and 

Ab = 1013 m4 s–1 (δH = 3.84 × 10–2–1.53 × 10–2) for which the energy of the flow remains essentially constant 

corresponds to the range of parameters where the flow is essentially linear with Sverdrup balance everywhere in the interior 

of the basin except for the western boundary layer. For Ab near 1013 m4 s–1 (δH = 1.53 × 10–2) recirculation cells form in 

the region where the western boundary currents from the subtropical and subpolar gyres meet. As the biharmonic diffusivity 
is further decreased, the total energy of the antisymmetric branch increases rapidly. This rapid increase in energy is 
accompanied by a rapid increase in the zonal extent of the recirculation cells. As the recirculation cells continuously expand 
in the zonal direction they allow the successive pitchfork bifurcations to occur. Each pair of new equilibria has an additional 
meaner in the part of the jet separating the counter rotating recirculation gyres. In contrast to the antisymmetric branch, the 
energy level for the nonsymmetric branches  and ′,  and ′,  and ′, and  and ′ decreases or remains 
nearly constant (Fig. 6 ) as Ab is decreased. 

The difference in the energy level maintained by each state is due to the fact that both the energy dissipation and the 



energy input by the wind stress are functions of the flow field. The energy input by the wind stress is given by the 
correlation between the curl of the wind stress and the streamfunction field 

 

The energy dissipation due to interfacial drag is given by 

 

and the energy dissipation due to lateral diffusion is given by 

 

Table 2  lists the basin integrated energy balance for each solution. There is a 37% difference in the energy level of 
equilibrium , which has the lowest energy and equilibrium ′, which has the highest energy. The input of energy by the 
wind stress varies by 13% between these two equilibria. The energy dissipation by interfacial friction varies by 15% between 
equilibrium  and equilibrium ′ while the energy dissipation by lateral diffusion varies only by 4.7%. The larger relative 
difference between the interfacial dissipation for equilibria  and ′ reflects the fact that equilibrium ′ has a much 
higher energy level than equilibrium . The difference in interfacial friction, however, is not so large as the difference in the 
total energy level. Most of the difference in the energy levels can in fact be attributed to differences in the potential energy 
while interfacial dissipation is proportional to the kinetic energy. For comparison, Table 2  also gives the energy balance 
for the linearized model. For this solution, lateral diffusion accounts for more than half the energy dissipation. Since there are 
no inertial effects for the linearized model, all streamlines pass through the frictional boundary layer. The absence of inertial 
effects also prevents recirculation cells from forming, thereby eliminating important regions where interfacial friction 
dissipates energy.

1) GLOBAL VORTICITY BALANCE 

In this section we discuss the global vorticity balance for the different steady-state solutions. Primeau (1998a) presents a 
discussion of the global vorticity balance for symmetric and nonsymmetric solutions. If the streamline separating the 
subpolar from the subtropical gyre is not coincident with the line of zero wind stress curl, the circulation can advect 
negative vorticity into a region of positive wind stress curl and vice versa. We can think of this advection of vorticity as an 
intergyre flux of vorticity provided we define the gyres to be the regions occupied by the subtropical and subpolar gyres of 
the linear Munk-like solution. From this point of view, the region occupied by the gyres is fixed and, consequently, the 
vorticity input by the wind stress curl is also fixed. Tables 3  and 4  give the gyre integrated vorticity budget for the 
subtropical and subpolar gyres respectively. The advection terms in the vorticity equation cannot generate any vorticity; they 
act to only redistribute it. Thus any net basin-integrated input of vorticity by the wind must be removed by the explicit 

friction terms. For As = 0.05, the net input of vorticity by the wind in the subtropical gyre is −2.23 × 10–3 s–2, and for the 

subpolar gyre it is 2.0177 × 10–3 s–2. The subtropical gyre receives 5% more vorticity from the wind than the subpolar 
gyre.

Tables 3  and 4  show that the intergyre flux of vorticity is crucial for equilibria , , and ′, which are the first 
to bifurcate. Since these equilibria are farthest in parameter space from their bifurcation points, they are the least 
antisymmetric. Also, the solutions ′, ′, and ′, which have a jet that first turns south after separating from the 
western wall, have weaker intergyre fluxes of vorticity than their nearly mirror image counterparts , , and , which have 
a jet that first turns north. This asymmetry is due to the weaker/stronger vorticity input in the subpolar/subtropical gyre. 

The dominant explicit dissipation term in the vorticity equation is the biharmonic viscosity. It generally becomes more 
important for the more antisymmetric solution, although the relative differences are small compared with the changes in the 
advection and interfacial friction terms. The sink of vorticity through lateral diffusion is generally stronger for the unprimed 
solutions. This, along with the weaker intergyre flux of vorticity for the unprimed solutions, increases the importance of 
interfacial drag for removing the excess vorticity. To compensate for the weaker intergyre flux of vorticity, the more 
antisymmetric solutions dissipate much more vorticity through interfacial friction than do the more nonsymmetric solutions. 
For example, interfacial friction is 44% more important for solution ′ than it is for solution ′. It can also be noticed 
that for the primed solutions, interfacial friction is always stronger than for the unprimed counter parts. This is consistent 



with the weaker intergyre vorticity flux and weaker lateral diffusion.

4. Fixed points and time-dependent simulations  

In the previous section we have shown the existence of multiple equilibria whose main difference is the degree of 
elongation of the recirculation cells. Some of these equilibria are remarkably similar to the flows averaged within the high, 
medium, and low energy regimes identified by McCalpin and Haidvogel (1996) (see their Fig. 4 ). Compare, for example, 
their contour plots for the streamfunction averaged within the low, medium, and high energy levels to the fixed points ′, 
′, and ′, respectively, shown in Fig. 4 . These show similar zonal jet penetration as well as a similar meandering 

structure. The stability analysis to be presented in section 5 shows that all the fixed points are unstable to small 
perturbations. Nevertheless, these fixed points might still act to “steer”  the model trajectory in phase space (Legras and Ghil 
1985), in the sense that the model trajectory will at times follow orbits that are close to the stable manifolds of the fixed 
points before being expelled on orbits that lie close to the fixed point's unstable manifold. If this is the case, the flow field 
associated with the fixed point, along with its spectrum of unstable modes, will be useful in characterizing the state of the 
system during certain regimes.

To further investigate this possibility we compute time-dependent solutions by time-stepping the model. The no-normal 
flow boundary condition, Eq. (4), requires that h = c(t) on the boundary. To obtain c(t), we impose the conservation of 
mass condition, Eq. (3), at each time step.

If the idea that the model's fixed points act to steer the time-dependent trajectory in phase space is correct, we would 
expect to see modes of variability associated with structures in phase space that point away from the time-mean state and 
toward the fixed points. To test this hypothesis, we have conducted a simulation of the corresponding time-dependent model 
with the standard parameter set given in Table 1  on the unstreched grid with 20-km resolution. The interface height 
anomaly was saved at 5-day intervals. In Fig. 7  the time-mean interface height anomaly, h, is contoured. It is obtained by 
averaging the field saved over a period of 1200 years excluding the spinup period. The amount of variability away from this 
mean state and toward the fixed points ′, ′, ′, and ′ (those similar to the time-averaged flows within the high, 
medium, and low energy regimes identified by McCalpin and Haidvogel) was evaluated by projecting the variability onto a set 
of four orthonormal vectors spanning the directions in phase space that point away from the mean state and toward the four 
primed fixed points. Approximately 30% of the total variability is captured by the four modes. The amount is significant 
considering that the system has 24 882 degrees of freedom. Furthermore, most of the variance in the interface height 
anomaly captured by the four modes, is at low frequencies. Figure 8  shows a plot of the frequency times power density 
spectrum for the basin integrated variance of the interface height anomaly for the full field and for the field in which the 
projection onto the span of the four modes has been removed. The plot shows a significant part of the variance associated 
with periods longer than 1 year project onto the four modes.

A simple comparison between the energy histogram and the energy levels of the fixed points does not agree with the 
simple idea that existence of fixed points will be associated with peaks in the energy histogram. Figure 9  shows a 
histogram of the total energy for the 1500-yr time series as well as the energy level for each steady-state solution. Except for 
the general agreement between the order of magnitude of the energy levels of the fixed points and the time dependent 
trajectory, there is no clear agreement between the energy levels of the steady state solutions and the peaks in the histogram 

near 3.55 × 10+17 J (low energy) and 3.95 × 10+17 J (medium energy). Note however, that very little of the distribution 
density spreads to energy levels higher than the level of equilibrium ′. As we will show below most of the density of 
high-energy realizations can be attributed to trajectories which tend toward equilibrium ′ from low-energy levels. 

The high, medium, and low energy regimes define high-dimensional spherical shells centered on the origin [h(x, y) = 0] in 
phase space. Two points in phase space which have the same energy will lie on the same shell, but they need not be close to 
each other. To determine if the model trajectory tends toward fixed point ′ during high energy events and to quantify in a 
more objective manner the similarity between the fixed points and the time averaged flows within each of the high, medium 
and low-energy regimes, we computed the distance in phase space between a fixed point and the instantaneous model state. 
The distance dX(t) between a fixed point X and the model state at time t is given by 

 

in which potential energy is used as the norm. Note that the total energy norm would produce essentially the same result 
since the kinetic energy is an order of magnitude smaller than the potential energy.

In Fig. 10 , a typical segment of the time series of the distances between the model trajectory and the primed fixed 
points is shown. During persistent high energy events, the model trajectory is close to the fixed point ′, as indicated by 



the broad minimums of  which coincide with periods of high total energy. In Fig. 11  we plot the histograms of the 
distributions of the distance to the various fixed points. The relative proximity of the model trajectory to fixed point ′ can 

be evaluated by comparing it to the spread of model state in phase space. The smallness of  during high energy events 

compared to the spread of the distribution of  confirms that the model trajectory does, in fact, come close to fixed point 
′. 

As another characterization we used the distance diagnostic to determined the fixed point nearest to the model trajectory 
for each time. We partition points, p, in phase space into regions defined as follows 

 

such that points in RX are closer to fixed point X than to any other fixed point. From this partitioning we found that, in 

general, the trajectory is nearest to fixed point ′ during high and medium energy levels, nearest to fixed point ′ during 
low and medium energy levels, nearest to fixed point ′ during the medium and low energy levels, and nearest to fixed 
point ′ during low energy levels. There is no one-to-one relationship between the regimes defined by McCalpin and 
Haidvogel and the proximity of the model trajectory to the fixed point. However, if the cross tabulations are restricted to the 
most persistent regimes, a simpler picture emerges for the role of fixed point ′. In Table 5  we give the number of 
events for which the model trajectory stayed within RX for a duration of 3–5 yr, 5–10 yr, and longer than 10 yr. From this 

table we can see that only regime  persists for periods of time greater than 10 yr. For comparison, Table 6  shows 
the number of occurrences of the high, medium and low energy regimes that persist for lengths of time between 3 and 5 yr, 
5 and 10 yr, and longer than 10 yr. There is an exact correspondence between events where the model state is in the high-
energy regime and the events when the model is closest to equilibria ′. 

In Fig. 12  we plot the square of the minimum distance to the fixed point ′ for the 23 persistent high-energy events 
listed in Table 6  as a function of the duration time of the corresponding events. Note that the squared distance plotted on 
the ordinate is substantially smaller than the spread of energy levels in the histogram of Fig. 9 . This is not surprising 
since the high-energy regimes have weak eddy activity, and it is easy to see that the streamfunction pattern during those 
events is very similar to the streamfunction pattern for fixed point ′. The higher levels of eddy activity during the medium 
and low energy regimes makes it more difficult to see any connection between the model trajectory and the lower energy 
fixed points. Furthermore, from Fig. 12 , we see that the closer the model trajectory gets to the fixed point the longer the 
high-energy event persists. This behavior is very similar to that of the Lorenz model (Lorenz 1963) where the amount of 
time the model spends spiraling around a particular lobe depends on how close the trajectory started from the unstable fixed 
point at the center of the lobe (Primeau 1998b).

5. Stability analysis 

The stability properties of the fixed point solutions also sheds light on the structure of the model attractor. To determine 
the stability of the fixed points, we linearize the governing equation about each of the fixed points and look for modal 
solutions of the form 

h′(x, y, t) = (x, y) exp(σt). (21) 

The real part of σ gives the growth rate of the mode and the imaginary part gives the frequency.

The result of the stability analysis is that all the fixed points we have found are unstable at the standard parameter set 
given in Table 1 . The spectrum of unstable eigenmodes is plotted in Fig. 13  for each fixed point. The higher energy 
fixed points are generally more stable than the lower energy ones. Most notably the high-energy fixed point ′ is unstable 
to only one oscillatory mode with a period of 1.8 yr and a long e-folding time of 2.9 yr. In contrast, the lowest energy 
regime ′ is unstable to 12 oscillatory modes and 2 stationary modes. Its most unstable mode has an e-folding time of only 
1.4 months. The modal structures for the low-frequency modes (period > 1.5 yr) are plotted in Fig. 14 , for fixed point 
′

1 and in Fig. 15  for fixed point ′. 

The stability properties of the fixed points is qualitatively consistent with the time-dependent behavior described by 
McCalpin and Haidvogel (1996) in several ways. The low-energy fixed points have more unstable modes and higher growth 
rates consistent with the fact that the low-energy regime in the time-dependent simulation has the most eddy variability. In 
contrast, the high-energy fixed point ′ has only one unstable eigenmode with a weak growth rate and is thus the least 
unstable. This is consistent with the time-dependent simulation that has the least eddy variability during periods when the 



state of the system is in the high-energy regime. The weak growth rate of ’s unstable mode might also explain the 
observed persistence of the high-energy regime.

The patterns (not all shown) associated with the unstable eigenmodes of each fixed point are also broadly consistent with 
the patterns of time-averaged eddy kinetic energy described by McCalpin and Haidvogel (1996). The unstable eigenmodes 
associated with ′ and ′ (not shown) have their amplitudes concentrated in roughly the same region as that of the 
strong time-averaged eddy kinetic energy identified for the low-energy regime. Similarly, the amplitudes of the unstable 
eigenmodes associated with ′ and ′ (not shown) are concentrated in roughly the same regions where the medium-
energy regime has its strong eddy kinetic energy. The unstable eigenmode associated with ′ has its amplitude 
concentrated along the jet axis in the same way that the time-averaged eddy kinetic energy is concentrated along the jet axis 
during high energy events.

Dijkstra and Katsman (1997) and Katsman et al. (2001) have shown in their studies that the low-frequency variability of 
their double-gyre models can be traced back to a Hopf bifurcation of the steady flow on the first branch to bifurcate at a 
pitchfork bifurcation (the steady flow equivalent to ′ in the present study). The mode they identify has an interannual 
period and they show that this mode is at the origin of the low-frequency variability. In the present study, we also find 
several unstable oscillatory modes for the fixed point ′, which have interannual periods. Figure 14  shows the modal 
structures for these modes. For the parameter values used by McCalpin and Haidvogel (1996), the low-frequency unstable 
eigenmodes of fixed point ′ have complicated structures with many closed recirculation cells. It would be difficult from 
these structures alone to predict that the low-frequency variability would involve periods with an elongated jet and weak 
eddy activity. On the other hand, other fixed points further down the bifurcation tree have an elongated jet. The fixed point 
′ in particular is unstable to only one weakly growing mode (Fig. 15 ). It thus appears that the high energy regime 

described by McCalpin and Haidvogel (1996) is associated with the existence of fixed point ′. The transition from low to 
high energy regimes might involve the low-frequency modes of fixed point ′, but establishing exactly how this happens is 
beyond the scope of the present study.

6. Discussion 

The major point of this paper is that unstable steady solutions can be useful in describing and understanding the state of 
ocean models during different dynamical regimes. We have shown that a reduced-gravity quasigeostrophic model admits 
steady-state solutions that are very similar to the regimes visited in the time-dependent model. What is most remarkable is 
that even fixed points that appear relatively far down the bifurcation tree capture the essence of relavent dynamical regimes 
of the time-dependent trajectory (e.g., fixed point ′). As was shown in the stability analysis, the fixed point ′ that 
captures the essential global vorticity and energy balances during the high-energy state is unstable to only one oscillatory 
mode with a relatively weak growth rate despite occuring relatively far down the bifurcation tree. This explains in part the 
persistent nature of the weakly meandering high energy state. In contrast, the low-energy fixed points which were the first 
to bifurcate are unstable to many more modes with larger growth rates.

The multiple equilibria that we find are the result of a sequence of symmetry-breaking pitchfork bifurcations the first of 
which was first identified by Jiang et al. (1995) and Cessi and Ierley (1995). We suggest that the symmetry-breaking 
pitchfork bifurcations can be interpreted as a stationary Rossby wave. A westward propagating Rossby wave superimposed 
on the intergyre jet can become stationary if its wavelength is such that its phase speed is equal and opposite to the flow 
speed. As one reduces the dissipation parameters in the model the recirculation cells expand eastward in order to dissipate 
the excess vorticity that is no longer dissipated in the western boundary layer. As the recirculation elongates sufficiently to 
allow an additional meander of the stationary wave to fit within the region with strong eastward flow, a new pitchfork 
bifurcation occurs and the new pair of nonsymmetric equilibria has one additional meander. Previous bifurcation analysis of 
the double gyre model used a basin configuration with a larger north–south than east–west extent and only captured one 
symmetry breaking pitchfork bifurcation before the jet extended completely across the basin (Jiang et al. 1995; Speich et al.
1995; Cessi and Ierley 1995; Dijkstra and Katsman 1997; Primeau 1998a). Because of this the stationary wave nature of the 
pitchfork bifurcation was not apparent in these studies. Dijkstra and Katsman (1997), for example, explain the physical 
mechanism that allows the stationary mode to become destabilized and thus lead to the first pitchfork bifurcation. They do 
not address the balances that allow the mode to be stationary in the presence of advection and background potential vorticity 
gradients. For the first few pitchfork bifurcations, the stationary wave picture is not so clear, but, as the recirculation cells 
expand, the balance between westward wave propagation and eastward advection becomes more apparent and the pitchfork 
bifurcations identified in previous studies are seen to be the first in a sequence of stationary waves with progressively more 
meanders. We hope to investigate in future work if one can identify the coalescence of oscillatory modes to form stationary 
modes that then cross the imaginary axis to give rise to the pitchfork bifurcations.

The wider basin also shows that the saddle-node bifurcation leading to multiple antisymmetric equilibria first identified by 
Ierley and Sheremet (1995) and Cessi and Ierley (1995) occurs at the same parameter value for which the jet reaches the 
eastern wall. In the narrower basin studies, this coincidence is not so striking, and the possibility that the interaction of the 
jet with the western wall is responsible for the saddle node bifurcation is not made apparent.



Another way in which the wider basin clarifies the dynamics is that it allows for a transition region with damped Rossby 
waves in between the recirculation cells and the Sverdrup interior. This Rossby wave field is similar to the solution proposed 
by Moore (1963) for the structure of the inertial western boundary layer where the Sverdrup flow is eastward. As discussed 
by Pedlosky (1996), the Moore solution cannot be regarded as a model of the western boundary layer. It should be viewed 
as a distinct dynamical regime for the region separating the recirculation cells and the Sverdrup interior. Before the present 
study, the stationary wave field had only been observed in a model with no-slip boundary conditions, because only with such 
boundary conditions does the recirculation cell remain limited enough to allow for a zonal Sverdrup interior that can support 
stationary Rossby waves. With a wider basin, the stationary Rossby wave field can exist even with free-slip boundary 
conditions.

Finally, we point out some interesting similarities between the multiple equilibria found in the simple QG model and the 
different regimes with elongated and contracted recirculation cells identified by Kelly et al. (1996) and Qiu (2000) from the 
altimetry observations of the Gulf Stream and Kuroshio Extension systems. We found that the fixed points with elongated 
recirculation cells, ′ and ′, (Fig. 4 ) have weak meandering and a more deeply penetrating jet extension. 
Furthermore, in the time-dependent simulation, we found that when the model trajectory was closest to these equilibria in 
phase space the eddy kinetic energy was generally lower than at other times in the simulation. A similar type of behavior was 
found in the above mentioned observations for the elongated state with the more deeply penetrating jet extension. In contrast 
the fixed points with the more contracted recirculation cells ( ′, ′, and ′), had stronger meanders and a more 
weakly penetrating jet extension. In the time-dependent simulation, flow fields most similar to these fixed points generally 
had higher levels of eddy kinetic energy. This again is similar to the observations for the state with the contracted 
recirculation cell. We also found that the primed fixed points, ( ′, ′, ′, and ′) had a zonal mean jet position that 
moved progressively southward as the recirculation cells became more contracted. For the case with nonsymmetric wind 
stress (As = 0.05) the time-dependent flow field generally remained closer to these fixed points than to their nearly mirror 

image counterparts. Consistently we found that during periods, when the simulated flow had elongated recirculation cells, 
the jet extension followed a more northerly path and conversely, when the recirculation cells were contracted, the jet 
followed a more southerly path. This also is consistent with the observations. Presumably, the nonsymmetries of the real 
flow (sphericity, ageostrophic effects, slanting coastlines, and nonsymmetric wind stress patterns, etc.) act to give an 
effective asymmetry parameter that is positive. A negative As would have given the opposite effect, with the more northerly 

path associated with the state with the contracted recirculation cells.

The present study shows clearly how very different regimes with either elongated or contracted recirculation cells can 
achieve energy and vorticity balance without any change in the forcing wind stress. This suggests that intrinsic nonlinear 
dynamics is a viable candidate to explain the observed low-frequency variability. If the flow fields associated with this 
variability can produce sustained interannual SST anomalies through their effects on the heat transport divergence and 
storage, intrinsic ocean variability might be a contributing cause to interannual and decadal climate fluctuations.
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Tables 

Table 1. Standard parameter set
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TABLE 2. Basin-integrated energy balance for each equilibrium 
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TABLE 3. Integrated vorticity budget for subtropical gyre 
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TABLE 4. Integrated vorticity budget for subpolar gyre 
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TABLE 5. Number of events in which the model stayed in a particular regime (as defined by the proximity to a fixed point) for 
periods of time between 3 and 5 yr, between 5 and 10 yr, and more than 10 yr
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TABLE 6. Number of events in which the model stayed in a particular regime (as defined by the total energy level) for periods 
of time between 3 and 5 yr, 5 and 10 yr, and more than 10 yr
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Figures 
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FIG. 1. Plot of the maximum transport across the intergyre jet for the antisymmetric solutions as a function of the biharmonic 
viscosity coefficient Ab. Also shown is the location of the pitchfork bifurcation points, labeled  with subscripts  through , 

as well as the location of two saddle node bifurcation points  and . For reference the Sverdrup balance transport is 
approximately 40 Sv
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FIG. 2. Sequence of equilibrium solutions for decreasing values of the viscosity coefficient. The solutions correspond to the 
fixed points at the location of the pitchfork bifurcations points labeled A through H in Fig. 1  
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FIG. 3. Sequence of eigenmodes which have a an eigenvalue equal to zero at each of the bifurcation points: (a) A, (b) B, 

(c) C, (d) D, (e) E, (f) F, (g) G, and (h) H 
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FIG. 4. Interface height anomaly (bottom, C.I. 20 m) for fixed point (a) ′, (b) for ′, (c) for ′, (d) for ′, and (e) for ′ 
at the reference parameter values
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FIG. 5. Plot of solution branches as a function of Ab for the asymmetric wind stress profile (As = 0.05). The abscissa is the 

biharmonic vicosity coefficient Ab and the ordinate is the sum of the interface height anomaly at two points situated 200 km to 

the north and south of the zero wind stress curl line, and 160 km to the east of the western wall. The plot shows how the 
branches that were connected at the pitchfork bifurcation points for As = 0.0 become disconnected for As = 0.05 
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FIG. 6. Plot of total energy for As = 0 as a function of the lateral diffusion parameter Ab. The dashed vertical line at Ab = 8 × 1010 

m4 s–1 gives the value of lateral diffusion used in the time-dependent simulation. The circles indicate the bifurcation points for 
the antisymmetric branch. The branches labeled & ′, & ′, & ′, and & ′ are for nonsymmetric solutions 
obtained with an anti-symmetric wind stress curl
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FIG. 7. Time-averaged interface height anomaly field (C.I. 20 m) 
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FIG. 8. Frequency times power density spectrum for the variance of the interface height anomaly of the total field (upper curve), 
and for the field in which the part of the variance, which projects onto four vectors that point from the time-averaged state to the 
fixed points ′, ′, ′, and ′ has been removed (lower curve). The dashed lines are 95% confidence intervals 
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FIG. 9. Histogram of the total energy distribution for 1500 years: Also marked are the energy levels for the steady states 
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FIG. 10. Time series of 1(t), (t), and (t). Also shown is the time series of the total energy, TE(t). The horizontal lines 

indicate the partition into high-, medium-, and low-energy regimes chosen by McCalpin and Haidvogel 
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FIG. 11. Histograms showing the distributions of , , , , and  
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FIG. 12. Scatterplot of the square of the minimum distance to the fixed point ′ as a function of the duration time for of each of 
the corresponding high energy events listed in Table 6 
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FIG. 13. Unstable part of the spectrum computed from a modal linear stability analysis for each fixed point. The e-folding time in 
years is plotted along the abscissa and the frequency in cycles per year is plotted along the ordinate
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FIG. 14. Unstable eigenmodes for fixed point ′ with a period greater than 1.5 yr. The right column shows the real part of the 
mode and the left column shows the imaginary part. The modes are normalized and the contour interval is 0.2. Contours in shaded 
areas are negative. (cont)
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FIG. 14. (Continued) 
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FIG. 15. Unstable eigenmode for fixed point ′. The right panel shows the real part of the mode and the left panel shows the 
imaginary part. The mode is normalized and the contour interval is 0.2. Contours in shaded areas are negative
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