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ABSTRACT

In the midlatitudes, the thermocline depth variations are largely due to 
Rossby waves of first baroclinic mode forced by stochastic wind stress. 
The frequency spectrum of this oceanic response is investigated with a 
simple model, with emphasis on the impact of (i) the horizontal mixing, (ii) 
the zonal variations of the forcing, and (iii) the nonlinearity due to variations 
of the Rossby wave celerity in function of the thermocline depth. Horizontal 
mixing, which acts here as a frequency-dependent Newtonian damping, 
smoothes the singularities of the spectrum computed in a linear 
nondissipative case and slightly increases the slope of the spectrum at 
periods shorter than 10 yr. Considering a wind stress with a continuous 
spectrum also smoothes the response spectrum and modifies the power at 
decadal and interdecadal frequency: it alters its dependence on the distance 
from the eastern boundary. A spectral peak appears when the forcing has a 
dominant zonal scale, but this peak disappears in more realistic cases. The 
nonlinearity included in Rossby wave celerity induces energy transfers from 
decadal frequency to annual frequency, thereby whitening the frequency 
spectrum at periods ranging from 0.5 to 5 yr. These features lead to a better 
agreement with GCM simulations and observations.

1. Introduction 

In the midlatitudes, the variability of the ocean thermocline is dominated by 
decadal timescales. Levitus (1989) found large decadal changes in hydrographic 
observations of the upper 1000 m of the North Atlantic Ocean, and Joyce and
Robbins (1996) found in-phase decadal variability in temperature and salinity in 
the thermocline near Bermuda. There is increasing evidence that much of this large-scale variability in the thermocline is 
wind driven and could reflect the natural variability of the atmosphere via stochastic wind stress forcing, as suggested by 
Frankignoul et al. (1997, hereafter FMZ). In their simple model (a linear inviscid model with a flat bottom, a mean state at 
rest, and zonally independent forcing) the baroclinic response of the ocean to wind forcing consists of the superposition of a 

forced solution and long Rossby waves that propagate westward. The predicted spectrum decays as ω–2 at annual 
timescales and flattens at decadal timescales, with a succession of peaks and troughs that correspond to in-phase and out-
of-phase relations between the forced and the free response. Its envelope is in good agreement with the spectrum computed 
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in an extended integration of the ECHAM1/LSG coupled GCM in the North Atlantic subtropical gyre, with a rather similar 
dependence on longitude and latitude. However, the consistency of these baroclinic predictions with the observed spectrum 
of sea level changes and temperature fluctuations near Bermuda is less convincing, as illustrated in Fig. 1 , since the 

observed spectrum decays like ω–1 or ω–1.5 at high frequency. The effect of zonally varying forcing has been discussed by 
Jin (1997), who considered the influence of a large-scale standing wind stress pattern and showed that it created a spectral 
peak in the oceanic response.

Here, we investigate how a more realistic setting will modify the frequency spectrum of the wind-driven response at 
interannual to interdecadal timescales. First, we analyze the role of dissipation, using the formulation of Qiu et al. (1997), 
who suggested that dissipation may be important at high latitudes by dissipating the free Rossby waves generated at the 
eastern boundary. Then, we consider a spectral representation of the zonal dependance of the forcing field, using a 
representation in terms of propagating patterns. Finally, as the Rossby wave velocity depends on the variations of the 
thermocline depth and thus introduces nonlinear effects, we explore the role of these effects in a simple case. We show that 
they induce energy transfers in wavenumber and frequency space and modify the pattern of the spectrum.

The paper is organized as follows: In section 2, we describe the model and stress its differences with that of FMZ. We 
consider dissipation and scale dependence of the forcing in section 3, and the impact of nonlinearity in section 4. Discussion 
and conclusions are given in section 5.

2. The model 

We consider a time-dependent geostrophic 2.5-layer ideal-fluid model of the ventilated thermocline similar to that 
described in Sirven and Frankignoul (2000). A downward Ekman pumping we is imposed at the surface of a subtropical gyre 

limited by its vanishing at y = yN and y = yS. The lightest layer of density ρ1 and thickness h1 is located south of the latitude 

y1(yS < y1 < yN), where the second layer of density ρ2 and thickness h2 outcrops. The depth H = h1 + h2 represents the 

base of the thermocline. The abyss is a third layer at rest, of density ρ3 and infinite depth, to be consistent with the rigid lid 

imposed at the surface. The β-plane approximation is used (f  = f0 + βy). The zonal coordinate is noted x, the meridional 

coordinate y. The geostrophic zonal flow vanishes at the eastern boundary (h1 = 0 and H = h2 = H0 = 500 m at x = 0) while 

a no-radiation condition is used at the western boundary x = xw < 0. 

Sirven and Frankignoul (2000) introduced the effective depth 

 

where γ1 = (ρ2 − ρ1)g/ρ0 and γ2 = (ρ3 − ρ2)g/ρ0 represents the reduced gravity associated with each layer and are both 

much smaller than the gravity g. They showed that the velocity of the flow, averaged over the two active layers, is 
proportionnal to the vector (− y , x ) (i.e.,  is a streamline for the averaged flow) and that  characterizes the overall 

response of the thermocline to a variation in we. Thus, the effective depth allows one to define correctly the first baroclinic 

mode in the 2.5-layer model. It satisfies the evolution equation (see appendix A) 

 

where λ is a constant ( 1), and c1 = +βγ2λ /f2. Note that the evolution equation of the baroclinic pressure in FMZ was 

 

where Rbc is the deformation radius, cbc = +βR2
bc the phase speed of long Rossby waves, and Hbc a baroclinic depth 

scale that depends on the stratification (we recall that FMZ consider a nondissipative 2-layer model and assume linearity, 
ideal fluid, planetary geostrophy, long-wave approximation, a flat bottom at a depth −H, and a basic state at rest). Equation 
(2) is therefore similar to (3) except that it is nonlinear (the phase speed of the Rossby wave depends on the thermocline 
depth) and its derivation includes the mean geostrophic currents. However, if we define  as the mean value of the 

effective depth  and linearize (2) around it, relation (3) is obtained by using R2
bc = γ2λ /f2 and pbc = a , where a = ργ2

/Hbc is about 3–4 Pa m–1. 

3. Effects of the dissipation and spatial variations of the forcing 



To represent the influence of horizontal mixing, we follow Qiu et al. (1997) who added to the linearized momentum 

equations the Laplacian term AhR2
bc

2, where Ah is the coefficient of the horizontal eddy viscosity. Their reasoning and 

computations apply here and lead to a linearized version of (2) with dissipation in the long-wave approximation. Thus, the 
free waves of first barolinic mode satisfy 

 

where ′ represents the fluctuations of the equivalent depth around its mean and cb the mean value of the Rossby wave 

phase speed c1 at a given latitude. Qiu et al. showed that (4) had approximate solutions 

′ = A exp(x/xe) exp[i(ωt + kbx)] (5)
 

where kb = ω/cb and xe  [(5c4
bf4)/(16ω4Ahβ

3)]1/5 defines an e-folding distance from the eastern boundary. This 

distance becomes infinite at low frequency and vanishes at high frequency, as expected from a bi-Laplacian dissipation, 
which mainly smoothes the small spatial scales. Its behavior depends little on the particular form of the friction that was 

used. For example, a Laplacian term in (4) similarly leads to an e-folding distance that behaves as ω–2/3 (instead of ω–4/5). 
Note that (5) is solution of the wave equation 

 

which is simpler than (4) and thus used below. Horizontal mixing acts as a frequency-dependent Newtonian damping. 

Qiu et al. (1997) established (5) in order to better estimate the discrepancies between the theoretical and observed Rossby 
wave velocities, but they did not consider the influence of damping on the spectral properties of the internal ocean response. 
This is investigated below, together with the effects of the spatial variations of the forcing.

a. Zonally independent forcing 

To represent the wind stress forcing associated with the day to day changes in the weather, we add to (6) the forcing by 
the Ekman pumping fluctuations (x, f , ω) exp(iωt). The solution consists of the free, damped wave (5) plus a forced 
solution. For simplicity, we first investigate the case where  does not depend on x. If the forcing is a stationary random 
process with a zero mean and a frequency spectrum SF(ω) defined by 

SF(ω)δ(ω − ω′) = ‹ (ω) *(ω′)›  (7)
 

where the asterisk denotes the complex conjugate, the solution is 

 

where we have imposed ′ = 0 at the eastern boundary (ωd = cb/xe). The response spectrum S(ω, x) is 

 

At period longer than a month, the forcing spectrum is approximatively white so that SF(ω) = S0 is a constant. In Fig. 2 

, the response spectrum (9) (continuous line) is compared to that of FMZ (nondissipative case, dashed line), given by 

 

In both cases, the variance is maximum at decadal periods (about 20 years in Fig. 2 ), and the spectrum flattens at 

lower, interdecadal frequencies toward a level S0x2/c2
b(c) which increases quadratically with the distance from the eastern 



coast. Indeed xe is much larger than the basin size at these frequencies and (9) becomes 

 

At higher, interannual frequencies, dissipation changes the spectrum. Since (1 − ex/xe)2 is always positive, it no longer 
vanishes at x = 2nπcb/ω, where the free and forced solutions are out of phase and the peaks have a reduced amplitude. 

Dissipation thus induces a filling-in of the gaps in the frequency spectrum. Note also that the spectral decay at interannual 

frequency is somewhat faster than ω–2 because of the exponentials, except for x/xe  −1 when dissipation becomes 

dominant, in which case S(x, ω) = S0/ω2. 

b. Zonally dependent forcing 

To better represent the wind stress forcing let us represent the Ekman pumping by a superposition of harmonic 
components 

(k, ω) exp[i(ωt + kx)], (12) 

with a frequency spectrum SF(k, ω) = SF(k, 0) = Se(k)S0 that now depends on the zonal wavenumber k, but is still 

assumed to be white at low frequencies. It is also symmetric since there can be no privileged zonal direction (Frankignoul
and Müller 1979). See also Large et al. (1991), who considered seven years of European Centre for Medium-Range Weather 
Forecasts (ECMWF) analyses and give a frequency–zonal wavenumber spectrum at 31°N of the wind stress curl. This 
spectrum is symmetric at low frequencies, shows some redness at wavelengths larger than 1000 km, and a steep fall off at 

shorter scales). When the forcing has the form (12), (6) has a particular solution of the form ′ = & script;′(k, ω) 

exp[i(ωt + kx)] with & script;′ = (k, ω)/[i(ω − kcb) + ωd]. Using (5) and the vanishing of & script;′ at the eastern 

boundary leads to 

 

so that the power spectrum is 

 

Figure 3  shows (14) for the case where Se(k) has a maximum at k0 = 1.6 × 10–3 km–1 (the corresponding wavelength 

is about 4000 km) and decreases as k–2 for large k. A peak occurs at the resonant pulsation ωr = kcb of a free Rossby wave 

of wavenumber k. For a 4000-km wavelength corresponding to the dominant synoptic scale of atmospheric variability 

(Holton 1992) and cb = 2 cm s–1, the corresponding period is about 8 yr. The amplitude of the peak increases southward 

since dissipation decreases but, even if dissipation vanishes, the spectrum never has a singularity because of the limited 
fetch. Indeed, in the latter case, (14) reduces in the vicinity of the resonant frequency to 



 

When the spectrum in Fig. 3  is integrated over wavenumbers, one obtains a frequency spectrum that still has a small 
peak at frequency ω  cbk0 (not shown). A sharper peak is found when Se(k) is concentrated in a narrow wavenumber 

range between k0 − δk0 and k0 + δk0. Indeed, the integration of (14) then leads to a frequency spectrum approximatively 

equal to 

 

which has a peak at ω  cbk0. This corresponds to the case studied by Jin (1997), although he considered a standing 

forcing pattern. However, power of the observed wind stress curl spectrum is somewhat more evenly distributed in 
wavenumber than in the example of Fig. 3  (e.g., Large et al. 1991). As shown below, in more realistic cases, there is no 
peak in the frequency spectrum of the response.

If the wind stress curl has a continuum of zonal scales between −kM and +kM, the frequency spectrum can be computed 

from (14): 

 
(Click the equation graphic to enlarge/reduce size)

To clarify the influence of the spatial structure of the forcing, we first consider the simplest case where Se(k) equals 1/

(2kM) between −kM and +kM and equals 0 outside this range. Setting (k − kb) x = u, with kb = ω/cb as before, (17) 

becomes 

 

As shown in Fig. 4 , the frequency spectrum has no peak in this case. At very low frequency, (18) simplifies into 

 

since xe can then be considered to be infinite. For large |x| (larger than 3000 km), the integral can be well approximated by 2 

 |x| [sin2 / 2] d  = 2π|x|, and we have 

 

If the wind stress curl has a white wavenumber spectrum, the response spectrum is white at low frequency and its level 
increases linearly with distance from the eastern boundary (Fig. 4 ), rather than quadratically as in the case of a zonally 
independent forcing.



A similar computation can be done for a wind stress curl spectrum that decays at high wavenumber as k–2: 

 

At interdecadal frequency, it yields (see appendix B) 

 

For kM|x|  1 (on distances from the eastern boundary much smaller than the most energetic forcing scale), the x 

dependence of the response spectrum is quadratic, as in FMZ where all the energy was concentrated at k = 0. For kM|x|  

1, the x dependence is linear, as for a white spatial spectrum.

To illustrate a more realistic case, we have computed the wind stress curl spectrum in a simulation with a low-resolution 
coupled model, the ECHAM1/LSG model of the Max Planck Institute in Hambourg (e.g., von Storch et al. 1997; Zorita and
Frankignoul 1997), using annual means from the last 40 years of the run at 27°N. The power is mainly concentrated in large 

scales, decaying as k–1 for wavelengths longer than 14 000 km and as k–2 for those that are shorter (Fig. 5a ). As shown 
in Fig. 5b , the x dependence of the oceanic response spectrum for periods longer than 10 yr is intermediate between 
linear (cf. with Fig. 4  and note the narrower space between the three curves for T > 20 yr) and quadratic (FMZ). The 
slope of the spectrum at high frequency is less steep than in Fig. 4  and thus in better agreement with the observations. 
The response spectrum in the absence of dissipation shown in Fig. 5c  is very similar. This stresses that for a continuum 
of zonal scales in the forcing field, there is no gap in the frequency spectrum, even in the absence of dissipation. The x 
dependence of the spectra does not depend on the dissipation at very low frequency, but only on the spatial spectrum of the 
forcing and the latitude via the propagation velocity cb. On the other hand, the power at near-decadal periods is reduced by 

dissipation.

We also computed the oceanic response spectrum of the coupled ECHAM1/LSG model at 30°N, at periods of 12.5, 20, 
50, and 100 yr. The power dependence on longitudes is compared in Fig. 6  with a parabola [Eq. (11)] and a straight line 
[Eq. (20)]. The straight line is parallel to the linear best fit (in the least squares sense) of the data. We chose 2π/kM = 4000 

km, corresponding to typical wavelengths of synoptic patterns in the atmosphere. For both curves, S0/c2
b is the same. This 

figure illustrates that taking into account the spatial dependence of the forcing in (14) leads to a better agreement with the 
coupled model data at decadal periods and that at lower frequency the longitude dependence is intermediate between linear 
and quadratic, becoming closer to quadratic at longest periods.

In the more realistic case of Fig. 5 , dissipation has very little effect on the oceanic response spectrum, as shown by 
the similarity between Figs. 5b and 5c . For simplicity, we thus neglect it below.

4. Impact of the nonlinearities 

If, for simplicity, dissipation and the spatial variations of the forcing are neglected, (2) corresponds to a nonlinear version 
of FMZ. A stationary solution for a stationary forcing w0 is 

 

The thermocline deepens westward when w0 is negative (subtropical gyre) and shoals when it is positive (subpolar gyre). 

Consequently, the Rossby wave velocity increases westward in the subtropical gyre and decreases in the subpolar gyre.

In order to study the properties of this model we use below two complementary approaches. The first one consists of 
asymptotic expansions and is only valid if the perturbations are small. The second uses the characteristics method and is 
more general but requires some numerical integrations.

a. Study with asymptotic expansions 

We consider a forcing we(t) = w0 + wm(t) where wm is small in comparison with w0 and search for a solution of (2) 

such as h = h0 + h1(t) + 2h2(t) + · · · . This yields an infinite sequence of identities: 



 

and so on. Equation (24) yields again the stationary solution (23) whereas (25) determines the main propagative part of the 
response. For harmonic forcing [wm proportional to exp(iωt)], (25) shows that the response is also harmonic with the same 

frequency. Moreover, as f  increases and h0 decreases northward (the mean thermocline shoals northward), the two effects 

add and the amplitude of h1 increases northward. Equation (26) describes the first-order effects of nonlinearity. For 

harmonic forcing, it implies that h2 is proportional to exp(2iωt) because of the term f–2h1 xh1. Therefore, the solution 

contains a frequency double that of the forcing frequency. The term in the square brakets shows that the amplitude of h2 

increases, when h1 increases or h0 decreases, which takes place northward. The importance of the nonlinearities thus 

increases northward. If the analysis is continued to an higher order, the entire multiple of the fundamental frequency appear. 
This simple analysis (valid for small ) suggests therefore that the power spectrum will be modified by the energy transfers 
from low to high frequency. This is illustrated below.

b. Study with the characteristics method 

The solution for a time dependent forcing of the form we(t) = w0 + wm(t) requires initial and boundary conditions. We 

assume that the state of the ocean is given at t = 0 by (23) and that at t > 0 the thermocline depth remains equal to H0 along 

the eastern coast. Equation (2) is integrated by the method of characteristics, hence replaced by the system of differential 
equations, 

 

where s represents the abscissa along the characteristics. There are two types of characteristics, those issuing from the 
interior basin and those issuing from the eastern boundary at a time t0 > 0. The former quickly disappear (in a time 

approximatively equal to L/cb where L is the zonal size of the basin), while the latter are given by 

 

For harmonic forcing wn(t) = w0 cosωt, (28) becomes 



 

Figure 7  shows the time evolution of the thermocline depth anomalies at 40°N computed from (29). The forcing 

period is 10 yr; the mean value w0 and the amplitude of the Ekman pumping anomaly 30 m yr–1 and 12 m yr–1, respectively. 

The response pattern becomes more elongated as one moves westward, and the positive peaks are slightly more westward 
than the negative ones. Spectral peaks appear at integral multiples of the forcing frequency (Fig. 8 ), reflecting in spectral 
space the assymmetry of the ocean response between thermocline shoaling and thickening. These secondary peaks become 
more energetic northward as nonlinearities become more important, as suggested in section 4a.

To study the response to a stochastic forcing, we could directly integrate (2) with a random forcing term. However, to 
save computational time and improve accuracy, we use instead relation (28) with a time sampling of 2 months. The forcing 
is defined as 

 

where i is an index ranging from 1 to 2500 and we use w0 = 30 m yr–1 and  = 0.05. Note that the net perturbation is not 

small: indeed the value of  has been adjusted so that the random term has maxima of about 1/3. This leads to a realistic 
amplitude of the variations of the Ekman pumping. The period Ti = 2π/ωi is randomly chosen between 2 months and 100 

years and the phase i between 0 and 2π so that the power spectrum of the forcing is white (Fig. 9 ). As shown by Fig. 

10  (left), the oceanic response is strongly affected by the nonlinearities at 40°N, and a strong whitening is observed at 
high frequency, reflecting the multiple peaks of Fig. 8 ; that is, the energy transfer is toward higher frequencies. There 
are two spectral domains where the power is approximatively constant, one at low frequency and the other at high 
frequency. However, the spectrum would redden at high frequency if dissipation was included. At 20°N (Fig. 10 , right), 
the spectrum remains very close to the one predicted by linear theory, because of the thick thermocline [see (26) and the 
corresponding discussion], so that the peaks and troughs that result from the in phase or out of phase interferences between 
free and forced waves are still seen.

To confirm this calculation, a 200-yr integration has been performed by Herbaut et al. (2002). with the Massachussets 
Institute of Technology primitive equation model (Marshall et al. 1997) limited to an idealized basin of constant depth on a 
sphere. The forcing was stochastic in time but with a standing pattern in space that coarsely mimicked the North Atlantic 
Oscillation. We show on Fig. 11  (left) a spectrum of the 9°C isotherm depth at 42°N and 20° to the east of the western 
boundary, where the Rossby wave activity is strong. The analogy with Fig. 10  (left) is clear. Between 0.5 and 4 years, 

the spectrum flattens at 42°N as suggested by the nonlinear theory. At lower frequencies, the decay is faster than ω–2 
because the GCM shows a pronounced peak at a 20-yr period linked both to the standing pattern of the forcing (Jin 1997) 
and subpolar gyre dynamics (Herbaut et al. 2002). At southern latitudes, in the subtropical gyre, the spectrum decays 

uniformly as ω–2, as predicted (Fig. 11 , right). 

These results are in agreement with the study of von Storch et al. (2001) who analyzed the spectral properties of climatic 
variables obtained with various coupled GCMs. They found two types of spectra in their millenium integrations. Type I 

spectra (characterized by an high frequency ω–2 slope and a low-frequency plateau) are characteristic of the upper ocean 

and the high latitude part of the deep ocean. Type II spectra [characterized by a plateau at high frequency (from 1 to 10 yr–

1) and an ω–β slope at low frequency where β is a positive constant depending on the location, the variable, etc.] are 
characteristic for variations in the deep midlatitude and tropical ocean. The transition between Type I spectrum and Type II 
spectrum seems to occur at a depth of about 500 m in the midlatitudes, in an area where the effects of the surface forcing 
weakens and the internal dynamics of the ocean becomes important. Our study suggests that nonlinear interactions could 
explain this spectral flattening.



5. Discussion and conclusions 

With their simple nondissipative linear model, FMZ found good agreement between the predicted baroclinic response to a 
zonally independent stochastic wind stress forcing and that computed from a coupled GCM, but a more questionable one 
with the observations. In this paper, we have extended their model to the first baroclinic mode of a 2.5-layer ideal-fluid 
model of the ventilated thermocline and studied the impact of dissipation, spatial variations of the forcing, and nonlinearity. 

Using the formulation of Qiu et al. (1997) for the horizontal diffusion, it was shown that the dissipation smoothes the 
spectrum (there are no longer frequencies where the spectral power vanishes) and slightly steepens the spectral decay at 
high frequency, while barely affecting the low frequencies. Taking into account the spatial variability of the forcing also 
smoothes the spectrum and modifies it at low frequency: the power no longer increases quadratically with the distance from 
the eastern coast, but more moderately. For a forcing with a white spatial spectrum, the increase becomes linear. If the 
forcing has a dominant spatial scale around k0 (see Fig. 3  and its discussion), a case that does not appear to be very 

realistic, the maximum variance is found near ω = cbk0, just as in the case of a single standing forcing pattern (Jin 1997). 

Lastly, taking into account some of the effect of nonlinearity, namely the dependence of the Rossby wave speed on the 
depth of the thermocline, results in energy tranfers from one frequency to another and a whitening of the spectra at high 
frequency, which should be strongest at high latitudes. This could explain the shape of the spectra found in the GCM 
simulations (Fig. 11  and von Storch et al. 2001) for periods ranging from 0.5 to 5 yr, and it is consistent with the 
spectral flattening seen at Bermuda. However, the comparison with the observations is difficult since our model is only 
applicable to the low frequencies and sufficiently long time series are very sparse. At high frequency or small spatial scale 

(less than 500 km), the |ω|–2 spectral decay seems to be controlled by the nonlinear interactions between eddies (e.g., 
Rhines 1975), which are not represented in our model. Clearly the latter can only explain part of the observed spectral 
characteristics at low frequencies (from annual to interdecadal). It would need to represent the nonlinear interactions with 
the barotropic and higher baroclinic modes, as well as topographic effects, to be applicable to a broader frequency range. 
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APPENDIX A 

6. Derivation of the Wave Equation 

As shown in Sirven and Frankignoul (2000), geostrophy, hydrostatic equilibrium, and the Boussinesq approximation lead 
to the time-dependent Sverdrup relation 

 

North of the subduction line, h1 vanishes and (A1) completely determines the flow. South of it, conservation of potential 

vorticity in the second layer,  = f/h2, must be added: 

 

Combining (A1) and  = /h2 yields the wave equation for the effective depth  = : 

 

where λ = ( H/ )–1, c1 = λβγ2 /f2, and μ = λ( H/ ) / t. The effective depth is linked to the averaged velocity va = 

(h1v1 + h2v2)/H by the relation Hva = (γ2/2f)k  × gradh( )2 (k  indicates a unit vertical vector). Thus it characterizes the 

overall response of the thermocline to a variation in we and defines the first baroclinic mode. As discussed in Sirven and 

Frankignoul (2000), the influence of the temporal variations of the potential vorticity via the second baroclinic mode, 
represented by μ in (29), is small and can be neglected.

To simplify further, 

 

is assumed to be constant in time (it is equal to 1 north of the subduction line since h1 is equal to 0 and peaks to 1.3 south 

of the subduction line). These assumptions lead to the nonlinear nondissipative wave equation (2).

APPENDIX B 

7. Response Spectrum for a Forcing Spectrum Decaying as k–2 

 

If the wind stress curl spectrum has the form (21), (14) can be integrated over k. Using the change of variable (k − kb)x 

= u, one finds 



 
(Click the equation graphic to enlarge/reduce size)

At low frequency, xe can be considered to be infinite and ωd and ω tend to zero, yielding: 

 

Integrating (B2) leads to relation (22) (Gradshteyn and Ryzhyk 1965, p. 449).
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FIG. 1. Frequency spectrum of sea level at Bermuda (after Sturges and Hong 1995). Thick line: the full curve shows a calculation 
from the continuous portion of data beginning in 1944, smoothed by three Hanning passes (the 99% confidence interval is 
indicated), except for the last point (dashed); the dotted segment at low frequencies was obtained using gappy data extending 
back to 1932. The prediction by the linear stochastic model of FMZ for the low frequencies (continuous line) and the high 

frequency slope in ω–2 (dashed line) are also indicated 
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FIG. 2. Baroclinic pressure spectrum with (continuous curve) and without (dotted curve) dissipation at 3800 km from the eastern 

coast (Rb = 34 km, β = 2 × 10–11 m–1 s–1, f0 = 7 × 10–5 s–1, S0 = 4.8 × 10–32 Pa2 m–4 s–2/cpy) 
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FIG. 3. Frequency–wavenumber spectrum S(k, x, ω) for x = −3000 km and cb = 2 cm s–1. A peak is found for ω0 = cbk0 (and 

more generally along the line ω = cbk ) 
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FIG. 4. Baroclinic pressure spectrum with dissipation for a forcing with a white spatial spectrum (Rb = 34 km, β = 2 × 10–11 m–1 

s–1, f0 = 7 × 10–5 s–1, S0 = 4.8 × 10–32 Pa2 m–4 s–2/cpy). Note the linear increase of the power at low frequency. 
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FIG. 5. (a) Spatial spectrum of the wind stress curl in the ECHAM1/LSG simulation (unit: Pa m–1). (b) Corresponding baroclinic 

pressure spectrum with dissipation. (c) Corresponding baroclinic pressure spectrum without dissipation (Rb = 34 km, β = 2 × 10–

11 m–1 s–1, f0 = 7 × 10–5 s–1, S0 = 4.8 × 10–32 Pa2 m–4 s–2/cpy). Note the strong similiraty between the two curves. 
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FIG. 6. Spectral power of the baroclinic pressure response in the ECHAM1/LSG at periods 12.5, 20, 50, and 100 yr at various 
longitudes. The straight line is obtained from a best linear fit and the parabola is deduced form the straight line using 2π/kM = 

4000 km (see the text for more details).
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FIG. 7. Time–longitude diagram of the thermocline depth anomalies induced by an harmonic forcing with a 10-yr period (units: 
m)
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FIG. 8. Spectrum of thermocline depth fluctuations at latitudes 20°N, 30°N, and 40°N 
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FIG. 9. Forcing spectrum used for the study of the nonlinear response of the ocean to a stochastic forcing 
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FIG. 10. Spectrum of thermocline depth fluctuations at 40°N (left) and at 20°N (right). The 99% confidence interval and the 

frequency slope in ω–2 (dashed line) are indicated 
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FIG. 11. Spectra of the 9° isotherm depth fluctuations at 42°N (left) and 11° isotherm depth fluctuations at 37°N (right) 
computed from a 200-yr integration performed with a simple oceanic GCM
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