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ABSTRACT

The problem of a recirculation gyre driven by a zonal jet on a β plane is 
considered. In a limiting case of a strong jet, when the structure of the flow 
depends only on the momentum flux J of the jet, an asymptotic scaling law 
for the recirculation gyre is derived: the meridional extent of the gyre depends 
only on the balance between the inertia of the jet and the opposing β effect, 

YG = (540J/β2)1/5, while the zonal extent XG is linearly proportional to the 

Reynolds number, Re. Analysis of steady numerical solutions confirms the 
scaling law. A simplified model of the flow as a combination of a jet carrying 
a positive momentum flux and a homogenized core of the recirculation gyre 
carrying an opposite amount of momentum flux provides the quantitative 
constant in the scaling law, which is in good agreement with the numerical 
results. Also the gyre is found to form only when the flow in the channel is 
supercritical with respect to Rossby waves. Thus the recirculation on the β 
plane can be regarded as a feature similar to a submerged hydraulic jump: a 
transition between the supercritical flow within the channel and the subcritical 
(vanishing) flow in the Sverdrup interior of the basin. Laboratory experiments 
validate the numerical model: there is quantitative agreement with steady 
solutions and tracer evolution for low Re when flow is close to laminar; for 
higher Re laboratory experiments show richer behavior, with a strong 
tendency to asymmetric solutions. Application of the results to the Gulf 
Stream system is discussed: the meridional scale of the Gulf Stream 
recirculation YG = 470 km or 4.2° latitude is predicted, which is consistent 

with observational data.

1. Introduction 

Zonal jets and recirculation gyres are the most dramatic planetary-scale flow features in the ocean: they manifest the 
interplay between inertia and the β effect. A classical example is the Gulf Stream system. Following the “separation of the 
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coastline from the Gulf Stream”  (as some oceanographers say) near Cape Hatteras, the flow continues straight into the open 
ocean and between the New England Seamounts and the Grand Banks becomes almost a zonal jet vigorously meandering 
and shedding rings on both sides. The existence of two large-scale counterrotating gyres north and south of the jet was 
inferred a long time ago from hydrographic observations (see Figs. 185 and 187 in Sverdrup et al. 1942). Based on 
hydrography and a tracer analysis Worthington (1976) presented a quantitative picture for the southern recirculation. A 
recent compilation of the deep moored long-term current meter data (Hogg 1992) provided an improved picture (Fig. 1 ), 
revealing that the recirculations are largely barotropic features with both the northern recirculation gyre and the southern 

“Worthington gyre”  carrying 40–60 Sv each (Sv  106 m3 s–1), which should be compared with 30 Sv for the Gulf 
Stream proper according to the linear wind-driven theory of the subtropical gyre. 

Another smaller-scale example is the Alboran gyre in the Western Mediterranean (Alboran Sea), which is driven by the 
inflow of surface Atlantic waters through the Strait of Gibraltar. This gyre is dramatically seen in infrared satellite imagery 
(Preller and Hurlburt 1982; Preller 1986; Lafuente et al. 1998).

Inertial gyres driven by jets may also exist near the ocean bottom. Distribution of potential temperature indicates that 
colder abyssal flows penetrate from one subbasin into another through numerous fracture zones in the midocean ridges. In 
the eastern tropical Atlantic, for example, the two most dramatic tongues of colder water originate in the zonally oriented 
Vema Fracture Zone (11°N) and the Romanche Fracture Zone (near equator) (see Figs. 1 and 2 of McCartney et al. 1991). 

Direct velocity measurements in the Vema Fracture Zone (Polzin et al. 1996) reveal rapid steady currents O(50 cm s–1) 
conductive to the formation of inertial gyres at the outlet of the fracture zone. Eastward flow through the Vema Fracture 
Zone in 1994 was just beginning to carry a low level of chloroflurocarbons (CFCs; recently introduced into the bottom 
waters from the atmosphere) acquired in the western Atlantic, and these recently started to enter the Gambia Basin in the 
bottom water (Fischer et al. 1996). Therefore, now there is a unique opportunity to document the evolution of deep bottom 
waters and to detect the existence of such recirculation gyres.

In the context of the wind-driven ocean circulation problem in the subtropical ocean there has been a number of different 
approaches to explaining the formation of the recirculation gyre. Essentially the western boundary current provides not only 
the mass transport closure for the interior flow, but also plays an active dynamical role in carrying vorticity and energy 
poleward. Using a single-layer barotropic model Kamenkovich (1966) gave an explicit solution of the boundary layer 
equations, revealing the splitting of the current into an inviscid core and a viscous sublayer, and showed that for a finite 
Reynolds number the boundary layer approximation breaks down due to the onset of the recirculation. This process was 
further studied by Ierley (1987) using full two-dimensional equations. The fluid parcels within the inviscid core of the 
boundary current conserve its potential vorticity, but upon reaching the northern end of the basin they obtain negative 
relative vorticity, preventing their reentry into the Sverdrup interior and thus forming the recirculation. The difficulty in 
matching the solution in the western boundary layer and in the ocean interior led Rhines and Young (1982) to a theory of 
recirculation gyres with homogenized potential vorticity, which was confirmed by numerical calculations. A direct action of 
the wind stress field on the recirculation may result in multiple steady states and inertial runaway, the condition when the 
recirculation fills the whole basin (Ierley and Sheremet 1995; Sheremet et al. 1997).

The idea of potential vorticity being advected north by the western boundary current was distilled by Cessi et al. (1987), 
who proposed a model in which the recirculation is driven by potential vorticity anomalies specified along its boundary. 
However, a drawback of such a model is that the distribution of the potential vorticity at the boundary, in general, is not 
known a priori and is a part of the problem: in particular, the zonal extent of the anomalies coincides with the zonal extent of 
the recirculation.

Another interesting approach was taken by Marshall and Marshall (1992), who analyzed the zonal extent of the 
recirculation using an inviscid fluid model. At the western boundary they specified the inflow with the prescribed potential 
vorticity q (functionally dependent on the streamfunction ) and let the return flow leave the basin freely also through the 
western boundary. They found that for α = dq/d  > 0 [as in the Fofonoff (1954) solution] the recirculation extends all the 

way to the eastern boundary of the basin, while for α < 0 the extent is finite ( 1/ ) and the solution is similar to a 
modon of Stern (1975). Also a purely inviscid (reduced gravity) model was used by Nof and Pichevin (1999) to analyze the 
establishment of the Tsugaru and the Alboran gyres. They concluded that the scale of the gyre is determined by the balance 
between the momentum flux of the inflowing jet and the β effect; however, their approach and results are different from 
ours.

The question of whether the recirculation can be regarded as a secondary flow driven by eddies was addressed by Holland 
and Schmitz (1985) using a two-layer quasigeostrophic model. Numerical integration showed that momentum from the 
wind-driven flow concentrated in the upper layer can be transferred to the lower layer by baroclinic perturbations and that 
recirculations spanning both layers would arise in this way. We note that, if the baroclinic instability is suppressed, then 
there exists a steady solution in the upper layer only (with the lower layer at rest) identical to the solution of a single-layer 
barotropic problem. It was also found that the zonal extent of the recirculation is determined by a subtle balance between 
inertia promoting the penetration of the gyre and eddies trying to reduce its size. A similar viewpoint is adopted in regional 



models in which the recirculation is driven by a meandering jet (Jayne et al. 1996; Jayne and Hogg 1999). The jet itself is 
specified by prescribing inflow (outflow) velocity profiles at the western (eastern) boundaries of the domain. Cummins
(1992) studied the emergence of inertial gyres as a result of a nonlinear transfer of energy from eddies to the mean flow; he 
considered both freely decaying and stochastically forced geostrophic turbulence. Using statistical mechanics, Griffa and
Salmon (1989) demonstrated earlier that the inertial gyre on a β plane corresponds to the most probable equilibrium state.

In this paper we take a different approach: we consider a recirculation as a transitional feature between a strong narrow 
(supercritical) jet and weak or stagnant (subcritical) flow in the Sverdrup interior. Such a viewpoint can be traced back to 
the work of Rossby (1950), who showed that Rossby waves can have a hydraulic influence—an explanation for the 
blocking flow patterns in the atmosphere. When the size of the recirculation gyre is large compared to the width of the jet, 
the velocity profile, distribution of potential vorticity, and total mass flux of the jet become insignificant; in this limit the jet is 
characterized only by its momentum flux. We also note that by considering a stagnant infinite basin we eliminate the small 
but complicated interaction between the recirculation gyre and the wind-driven subtropical gyre in the ocean interior.

The structure of the manuscript is as follows: The mathematical formulation of the problem is given in section 2. In 
section 3 we derive an asymptotic scaling law for the recirculation and compare it with the numerical results. Laboratory 
experiments, which are used to validate the numerical model, are described in section 4. And finally section 5 summarizes 
principal results and discusses the implications.

2. Jet entering a stagnant basin on a β plane 

Consider a plane jet (flow is independent of depth) emerging from a zonal channel of width 2L and entering an infinitely 
large stagnant basin (see sketch in Fig. 2 ). The origin of the coordinate system is located at the center of the gap in the 
western boundary (channel opening): x is directed eastward, y northward. We assume that the flow is governed by the two-
dimensional Navier–Stokes equations on a β plane: 

 

where u is the zonal and  is the meridional component of velocity, t is time, p is pressure, ρ is the uniform density of the 

fluid,  is the streamfunction, and u = − y,  = x. The subscripts x, y, and t mean differentiation. 2 = 2
x + 2

y is the 

Laplace operator, ν is a kinematic viscosity coefficient. The Coriolis parameter is f  = f0 + βy. Rayleigh (or bottom) drag 

(resulting from the Ekman suction at the bottom) with a coefficient r is assumed to be a body force.

Since the flow is two-dimensional, it is convenient to use a streamfunction –vorticity  formulation as well, which 
results from taking the curl of (1) and (2): 

 

where J( , ) = x y −  y x is the Jacobian operator.
 

The flow is driven by pumping fluid eastward through the channel at volume rate (per unit depth) 2Q and withdrawing it 
through two sinks of equal strength Q located near the western boundary x = 0, y = ±∞, far north and south of the channel 
inlet. Mathematically it is equivalent to prescribing the following kinematic conditions: along the southern wall of the channel 
x < 0, y = −L and the southern part of the western boundary x = 0, y < −L 

 = Q; (7) 

along the northern wall of the channel x < 0, y = L and the northern part of the western boundary x = 0, y > L 



 

at the eastern boundary x = +∞ which is assumed to be far away eastward. The no-slip condition u = 0,  = 0 is 
specified at all solid walls.

Five parameters characterize the flow: Q, β, ν, r, and the length scale L. Since flow is nondivergent (4), the reference 
value of the Coriolis parameter f0 drops out in the streamfunction–vorticity formulation (5), (6): f0 does not affect velocity 

fields at all but only modifies the pressure. A wide variety of flow patterns are possible in this problem. We will concentrate 
our attention on a case when the jet drives two steady and antisymmetric (with respect to the central latitude y = 0) inertial 
gyres with an opposite sense of rotation. This happens (as we shall see) when inertia dominates the friction, which is 
characterized by the Reynolds number 

 

and when Rossby waves cannot propagate upstream through the channel and perturb the flow there, which corresponds 
to high Froude–Rossby number 

 

The fastest long Rossby wave riding on a uniform mean flow U = Q/L in a channel of width 2L has (group and phase) 

speed c = U − 4βL2/(mπ)2, where m = 2 corresponds to the mode preserving the symmetry of solution. When Fr = 1, this 
wave is critical (stationary), c = 0. Sometimes the nondimensional parameter (11) is called the Rossby number based on β; 
however, we adopt the name Froude–Rossby number, as used by Armi (1989), to emphasize the hydraulic analogy. 

Within the channel (away from the gap) the flow tends to be zonal with the parabolic velocity profile 

 

developing when r = 0. A more general balance, when r  0, 

 

implies development of a profile that is more uniform near the center with the Stewartson (1957) boundary layers of 

width  forming near the walls.

Assume that the jet drives two recirculation gyres having the meridional extent YG (which will be specified later). Far 

away north and south of the recirculation gyres |y|  YG the β effect dominates the inertia. The Rossby waves with the 

meridional scale much larger than YG carry the value of streamfunction (  = 0) from the eastern boundary westward across 

the Sverdrup interior (β x = 0) and press all the currents to the western boundary. Thus a parallel flow will develop with the 

balance between the β effect and friction [according to (5), (6)]: 

 

The width of the boundary layer is a combination of 

 



the Munk and Stommel layer thicknesses, respectively.

The nonlinear problem (5), (6) was solved numerically using a standard centered-difference approximation with a uniform 
grid in a finite domain. Besides specifying the conditions (7)–(9), we also specified the gradient conditions for the Poisson 
equation (6): x = 0 upstream within the channel and y = 0 along the southern and northern limits of the computational 

domain. Thus we avoided specifying inflow/outflow velocity profiles; instead we let the parallel flow achieve the equilibrium 
profiles according to (13) and (14). These conditions turned out to be very efficient indeed: it was found that in a steady 
state away from the recirculation gyres all motions rapidly decay, while in the western boundary layers and within the zonal 
channel the flow rapidly approaches parallel. Thus the flow enters the domain as a zonal current, drives two counterrotating 
recirculation gyres, then splits into two equal branches and leaves the domain as two meridional boundary currents.

Time stepping of (5) was performed using a two-layer trapezoid (semi-implicit) scheme (for the nonlinear and β-effect 
terms), which is symmetric with respect to the present and future time layers. The implicit values of the variables were 
found by simple iterations. Without dissipation this scheme conserves energy and enstrophy and therefore prevents nonlinear 
instability. The time integration was started from the irrotational flow  = 0 (but u and  are nonzero), which is equivalent to 
starting pumping impulsively at t = 0. The north–south symmetry of the solution was enforced by setting (x, −y, t) = − (x, 
y, t). According to Ierley and Young (1991) the flow in the Munk boundary layer becomes unstable and eddylike 
perturbations begin to grow for Reynolds numbers larger than ReC = 21.574. To obtain steady solutions for Re > ReC we 

introduce an additional term in (5): 

 

which relaxes the vorticity to a slowly varying time-averaged field 

 

The numerical implementation of (17) is  +  for k  1, where t = kτ; τ is the 
time step. During the first run without relaxation, the period of the dominant eddy instability is determined, then, in the 
second run, the averaging time scale TA is set approximately to that period and the relaxation timescale TR is typically set 

equal to TA in order to suppress the instability. When a steady solution of (16) has been achieved, the time-averaged field 

(17) becomes identical with the steady one; therefore (16) reduces to F[ , ] = 0 corresponding to the steady part of (5). 
This is an inexpensive alternative to Newton's method, allowing one to obtain steady (otherwise unstable) solutions of the 
nonlinear problem (5), (6). This method works only for moderate supercriticality. Considering steady but unstable flow 
patterns makes sense because we are focused on the dynamics of the recirculation gyre, which is a more robust feature of 
the flow. In general, a steady solution of (5), (6) differs from a time-averaged one because of elimination of Reynolds 
stresses. Also this enables us to understand better the asymptotic behavior of the recirculation gyre for larger Re.

3. Jet-driven inertial gyre: Scaling law  

In the absence of the Rayleigh (bottom) drag r = 0, the pattern of a steady flow depends only on two nondimensional 
parameters, Re and Fr. To illustrate the development of the recirculation gyre we present a sequence of steady solutions for 
Re = 50 and increasing Fr in Fig. 3 . The lower half of each plot shows the streamfunction field , while the upper half 
the potential vorticity q =  + βy. For slightly supercritical conditions Fr = 16 (Fig. 3a ) the flow just starts to separate 
from the corner, the recirculation is insignificant, and it cannot be termed an inertial gyre. For larger supercriticality Fr = 128 
(Fig. 3b ) the recirculation gyre becomes apparent. The streamfunction maximum at the center of the recirculation is 
2.08Q. The potential vorticity within the core of the gyre tends to be homogenized: the gradients of q within the core are 
much weaker than the meridional gradient of q outside in the Sverdrup interior. A phenomenon of potential vorticity 
homogenization within a rapidly rotating gyre was studied by Rhines and Young (1982); it is also applicable more generally 
to any passive tracer (Batchelor 1956).

Yet for larger Fr = 1024 (Fig. 3c ) we see further growth of the recirculation gyre in size and in intensity. Note that the 
zonal extent increases somewhat faster with Fr than the meridional one; therefore the gyre becomes more zonally elongated. 
The maximum of  at the center is 4.49Q, which is substantially larger than the transport Q of the original jet. The potential 
vorticity homogenization becomes more dramatic. In Fig. 4  for the same steady solution we present the meridional 
sections of the zonal velocity u (solid curve) and the potential vorticity q (dashed curve) at x = 34.57L, corresponding to the 
gyre center. The two plateaus of the homogenized q are clearly visible; they correspond to the cores of the northern and 



southern recirculation gyres.

How do dimensions of the recirculation gyre depend on the governing parameters? In order to answer this question we 
have to bring together several pieces of information. Schlichting (1933; see also Schlichting 1960) first calculated the flow 
driven by a round laminar jet using boundary layer approximations. Landau (see p. 89 in Landau and Lifshitz 1959) presented 
a solution in spherical coordinates without relying on these approximations. An important result of those works is that the 
structure of the wake of a strong (Re  1) jet depends primarily on the momentum flux of the jet rather than on its volume 
flux. This is due to the fact that the jet entrains the surrounding fluid and its volume transport increases downstream. In the 
infinitely large fluid the streamlines entering the wake come from infinity (see Fig. 9.14 in Schlichting 1960, chap. IX, sec. 
g)—no recirculation develops. In a finite domain for large Re recirculation will be limited by the size of the domain. 

We note that in the case of a round jet emerging from the wall a recirculation (so-called viscous toroidal eddy) can form 
for low Re (Schneider 1985; Zauner 1985). However, the scale of the recirculation grows enormously (exponentially) fast 

with Re2 [see Schneider 1985, Eq. (20)]. Therefore this effect can be ignored for large Re. 

On a β plane the meridional extent YG of the recirculation gyre is controlled by the β effect. To determine YG we assume 

that the advective momentum flux in the recirculation gyre must be of the same order as the advective momentum flux of 
the jet J (per unit depth and divided by uniform density) within the channel 

U2
GYG  J, (18)

 

where UG is the zonal velocity scale within the gyre. We shall see later that the total momentum flux M consists of the 

advective flux MA and the flux due to the pressure (anomaly) MP. Both MA and MP have the same scaling, therefore we use 

MA = J in (18). Moreover, we shall see that in our case MA + MP = 0 in the recirculation gyre. The total momentum flux M 

reduces from its value J in the channel to zero in the basin because of the negative pressure force acting on the western 
wall.

Since the potential vorticity tends to be homogenized within the core of the recirculation gyre, the relative vorticity has the 
same order of magnitude as the planetary 

 

which can also be interpreted as a hydraulic control: a balance between the mean flow UG and the speed of Rossby waves 

βY2
G with the meridional scale YG. The same result also comes from the y-momentum equation (2) since for the zonally 

elongated flow the main balance is y = −β . 

Thus from (18) and (19) we can express 

 

where the advective momentum flux of the jet 

 

the factor 6/5 is for the parabolic velocity profile (12).

The zonal extent of the gyre XG can be obtained by balancing the zonal advection and meridional diffusion in (1) 

 



which becomes more and more accurate for highly elongated gyres at large Re. In other words, XG is linearly 

proportional to the jet Reynolds number ReJ = Re , 

 

It should be noted that from a dimensional analysis other length scales can be introduced, such as 

 

which is based on the volume flux of the zonal current within the channel Q rather than on its momentum flux J. This 
scale may be important for weak flows. However, for strong jets the scale YG according to (20) is more appropriate because 

the total transport within the recirculation gyre may be several times more than Q. In the limit of Q and L  0, while 
holding J fixed according to (21), the gyre will depend only on J: its transport will be determined by the entrainment process, 
and the scale YQ will be irrelevant. 

Similarly, the Rhines scale based on the velocity of the jet U, 

 

is not appropriate because U differs from the characteristic velocity within the gyre UG. Actually, (19) can be regarded as 

a definition of the Rhines scale based on UG. 

Now that we have established a general scaling law for the gyre, let us develop a more quantitative picture. We 
deliberately have introduced the “modified”  pressure  so that the x-momentum equation (1) is written down in a 
conservative form. Integrating (1) along y for fixed x between latitudes where disturbance from the gyre vanishes (due to 
the symmetry we can use y = 0 as the lower limit) and changing the order of integration and differentiation one can get an 
expression for the change in the zonal momentum flux with x. Integrating it from the eastern boundary, where all motions 
decay, and expressing the right-hand side in terms of the streamfunction we obtain for the momentum flux M (consisting of 
an advective part MA and a part due to pressure MP) 

 

The right-hand side contains contributions from the lateral diffusion and bottom drag. Since for large y the streamfunction 
(x, +∞) is the solution of the linear boundary layer equation (14), (x, 0) = 0 due to the symmetry; therefore the right-

hand side in (26) is known, and it is small for small ν and r. In particular, when the lateral friction dominates the bottom 

drag (r = 0), the ratio of the right-hand side to MA is (νQ/LM)/(Q2/L) = O(Re–2/3Fr–1/3) within the boundary layer. 

Furthermore, the right-hand side of (26) vanishes outside the western boundary layer because fluid leaves the domain 
through the western boundary layer and the integrated zonal velocity is zero outside it; (x, 0) = (x, +∞) = 0 for x  
(LM, LS). Thus the meridionally integrated x-momentum flux in the flow is zero at any x  (LM, LS); M = MA + MP = 0 

and is approximately zero near the western boundary x = 0.



At x = 0 the advective momentum flux through the inlet is known MA = J (21) and, apparently, it is approximately 

balanced (26) by the flux MP due to the pressure (anomaly)  (which is negative) acting on the western boundary. As the 

jet spreads and interacts with the core of the recirculation gyre, both MA and MP vary, but the total momentum flux M 

remains zero.

The modified pressure  is nonzero only along a part of the western boundary where |y| < O(YG). Farther away, where 

the western boundary current is parallel,  = 0 because (1) reduces to x = 0 and  = 0 at infinity. Thus MP depends on 

the structure of the flow in the recirculation region. In order to calculate it we will employ a simplified model of the 
recirculation as a homogenized gyre.

a. Homogenized gyre 

Since the potential vorticity q tends to be homogenized, we can use a simplified inviscid flow model (as in Cessi et al.
1987) for the core of the (northern) recirculation gyre: 

2  + βy = q0 = const. (27)

 

To begin, consider a flow within a rectangle 0 < x < X, 0 < y < Y, of small aspect ratio Y  X, with  = 0 along the 

boundary. Near the center of the gyre where the flow is approximately parallel, 2  2
y in (27), therefore the velocity 

profile and streamfunction are 

 

The northern boundary is assumed to be a free streamline 

 

beyond which fluid remains stagnant: (y) = 0, U(y) = 0, (y) = 0 for y  Y. From (30) we obtain 

 

and the homogenized value of the potential vorticity 

 

while the explicit form of the solution becomes 

 

The center of the recirculation (U(y) = 0) is located at y = Y/3 with the minimum value of the streamfunction 

 



The “modified”  pressure can be calculated from (2), which for the parallel flow reduces to y = −β  and the condition 

(Y) = 0, meaning that beyond the recirculation gyre flow is stagnant. Thus 

 

where 

 

the pressure at the symmetry line between two recirculation gyres is negative. Substituting expressions (33) and (36) into 
(26) we obtain the total x-momentum flux for the parallel part of the homogenized gyre due to advection and pressure terms 
(respectively) 

 

which totals to a negative value.

The solution in a whole domain including the inertial layers of width O(Y) near the western and eastern boundaries, where 
the flow turns around, can be expressed in terms of infinite an Fourier series 

 

where it is assumed that two exponential tails do not overlap, Y  X (otherwise one has to consider hyperbolic cosines): 

 

are the Fourier coefficients of (39).

The total x-momentum flux K must be the same at any x in the homogenized gyre including the western and eastern 
boundaries. This can be checked independently if we recall the Bernoulli equation 

 

in an ideal fluid the Bernoulli function is a constant along a streamline. For the streamline  = 0 bounding the gyre we 



have, for example along the western boundary (x = 0, u = 0),  = p = − 2/2 and, hence, the total momentum flux at the 
boundary has a contribution only from the pressure 

 

Substituting (39) and (40) into (42) and using the orthogonality of the basis functions gives momentum flux 

 

Summing up odd and even terms separately and using 

 

from Gradsteyn and Ryzhik (1980, p. 7, formulas 0.233.5 and 0.233.3), where B4 = −1/30 is one of the Bernoulli 

numbers, we arrive at the same value as in (38): 

 

which confirms our algebraic manipulations.

The homogenized gyre like (39) cannot exist without solid walls at the western and eastern boundaries, which exert 
forces on the flow due to the negative pressure anomalies and provide sources and sinks of the x-momentum flux. However, 
we can think of the recirculation gyre system in its western part as a combination of the jet emerging from the western 
boundary, carrying positive advective momentum flux J and the core of the recirculation gyre carrying the negative total 
momentum flux K. [The profiles of u (dash-dotted line) and q (dotted line) according to the homogenized core model (33), 
(32) are shown in Fig. 4 . The meridional scale YG according to (47) is marked by vertical lines.] As we move eastward 

toward the center of the gyre and farther, the jet spreads due to diffusion and interacts with the core of the gyre, the profile 
of the zonal velocity u adjusts to a new smoother state (the actual profile near the center of the gyre; see the solid curve in 
Fig. 4 ), and the momentum fluxes combine. The flow as a whole can have a finite eastward extent without the necessity 
of the eastern solid wall if the total momentum flux M = J + K = 0.

As has been already mentioned, at the western boundary (x = 0) the advective part of the momentum flux is associated 
with the entering jet, MA = J, while the momentum flux due to the pressure anomaly force  (which is negative) acting on 

the western boundary is identified with the momentum flux of the homogenized gyre, MP = K0 = K. We can distinguish 

between the force on the solid wall, which involves the integral from L to infinity, and MP, which involves the integral from 

zero to infinity. For narrow jets, L  YG, the difference is negligible. Thus from this simplified model, balancing J and K 

and combining (38) and (21), we obtain a quantitative prediction for the meridional scale of the recirculation gyre 

 

Obtaining a quantitative result for XG is much more difficult: it requires numerical solution of the advection–diffusion 

equation. Possibly, some progress can be achieved using a boundary layer approximation for elongated gyres (Y  X).



To compare the theoretical prediction with the numerical solution of the fully nonlinear problem, we rewrite the scaling 
law (47), (23) in a nondimensional form in terms of Fr and Re for the channel 

 

As with any asymptotic formula there is an uncertainty at the origin; therefore, we added −1 as the last term in (48) to 
match the numerical data. We will discuss this below. To make a quantitative check we define the zonal extent of the gyre 
XG as a distance from the channel opening to the first stagnation point u(XG, 0) = 0 along the symmetry line y = 0. To be 

consistent with (30), the meridional extent YG is defined as the latitude of the zero streamline (XC, YG) = 0 near the center 

of the gyre XC. The measure YG is not very sensitive to the exact location in x because the flow is fairly parallel near the 

center of the gyre for large Fr. However, for YG < 4 this measure becomes ambiguous because no quasi-parallel flow can be 

identified (see Fig. 3a ) and the recirculation cannot be termed as an inertial gyre.

The meridional extent of the gyre YG is shown in Fig. 5a  as a function of Fr2/5 over a wide range of Fr for several 

fixed values of Re = 20, 50, 100, 200. (Only the cases with a “healthy, mature”  gyre for which YG is measured without 

ambiguity are shown. For example, the case shown in Fig. 3a  does not contribute a datum to Fig. 5a .) The solutions 
for Re = 20 were stable, while for larger Re we used the stabilization method (16), (17) to get to a steady state. It is clear 
that the data for different Re tend to lie along a straight line and converge as Re is increased. This validates the factor 2/5 in 
the scaling law. The agreement with the formula (48) shown by a straight solid line is excellent. The addition of the term −1 
in (48) does not change the asymptotic behavior at large Fr, but it makes perfect sense in terms of the hydraulic 
interpretation: the size of the recirculation gyre depends on the supercriticality, and the recirculation gyre tends to disappear 
at the critical Froude–Rossby number Fr = 1. We stress once again that the meridional extent YG is independent of Re and is 

only determined by the balance between inertia and the β effect, which validates the momentum flux arguments given above.

We plotted the zonal extent of the gyre XG divided by LRe as a function of Fr3/5 in Fig. 5b . As expected, all the data 

tend to lie along straight lines when the gyre is large, Fr  1, which confirms the scaling (49). For the case of Re = 20, the 
viscous effects are significant and the gyre itself is not much larger than L; therefore, the line corresponding to Re = 20 is 
slightly displaced relative to those for higher Re. The cases Re = 50, 100 and 200 match each other much better. The 
quantitative coefficient in the scaling formula (49) or the slope in Fig. 5b  is quite small, specifically 0.033 for Re = 20, 
0.029 for Re = 50, and 0.027 for Re = 100 and 200. This is consistent with other problems where the length of the 
recirculation increases linearly with the Reynolds number. For example, for a laminar flow past a circular cylinder such 
coefficient is also small, 0.06 (Taneda 1956). It is clear that the gyre develops only for large Fr, when the jet is supercritical. 
As the criticality condition is approached Fr = O(1), near the origin of the plot, the gyre becomes comparable with L or with 
the Munk thickness LM (whichever is greater) and tends to disappear, the scaling law breaks down, and the curve deviates 

from the straight line.

Drawing an analogy to other hydraulic problems, we can say that the recirculation gyre on a β plane is a region of 
transition from the supercritical flow in the narrow part of the channel to the subcritical flow in the Sverdrup interior. The 
compact inertial gyre can only form in the presence of the β effect (without β the inertial recirculation will grow to fill the 
whole basin), and it forms when the flow in the inlet is supercritical (otherwise the Rossby wave will propagate into the 
channel and change the velocity profile upstream). It is a feature similar to a submerged hydraulic jump, as in the case of a 
drowned outflow from a sluice gate (see Henderson 1966, Fig. 6-24 on p. 208). The meridional scale of the gyre YG 

depends on the supercriticality of the flow, Fr2/5 − 1, expressed in terms of the Froude–Rossby number Fr, similar to the 

way the amplitude of the hydraulic jump depends on the supercriticality  [Chow 1959, Eq. (3-21)] 
expressed in terms of the classical Froude number F1. In this respect L is analogous to the clearance of the sluice gate while 

YG is analogous to the fluid depth behind the jump. We emphasize the analogy to the drowned outflow because in both cases 

the pressure forces on the wall are important in determining the structure of the recirculating flow. Furthermore, the zonal 
scale of the gyre is similar to the length of the “roller”  or a region of recirculating turbulent flow. It depends on the strength 
of turbulent dissipation, which in turn is determined by the strength of the jump. As illustrated by Chow (1959, Fig. 15-4 on 
p. 398), the ratio of the length of the roller to the height of the jump saturates at about 6 for large Froude numbers. We have 
to realize that the viscosity ν in our laminar case is a gross parameterization of the turbulent diffusion.



We mention that the slightly different power factor of 1/3 is often used to rationalize observed dependence of the 

meridional size of recirculation on Froude–Rossby number (translating into dependence on β–1/3). Essentially, this stems 
from the assumption that the meridional scale of the gyre is determined by the total volume flux of the jet as in (24) rather 
than by its momentum flux as in (20). For example, Jayne et al. (1996) (see also Jayne and Hogg 1999) in the theory of 
recirculation driven by an unstable jet use a condition that “the normalized jet transport equal that prescribed at the inlet.”  As 
already mentioned, the total volume flux is not an appropriate quantity due to entrainment of the ambient fluid by the jet: the 
total transport of the gyre may be significantly larger than the volume flux of the jet at the inlet.

We note that 2/5 and 1/3 are actually very close and it is difficult to distinguish between them based on YG ranging 

roughly from 4 to 20 in our numerical experiments. However, plotting the YG data versus Fr1/3 would produce small but 

noticeable upward curvature. Thus, the excellent agreement between the numerical data and the theoretical dependence (48) 
and also the physical arguments, that it is the momentum flux J rather than the volume transport Q of the jet being the 
appropriate parameter, allow us to speak in favor of the factor 2/5 over 1/3.

b. Effect of bottom drag 

As known from previous studies, for example, Ierley and Sheremet (1995), the lateral friction and bottom drag dissipation 
mechanisms can produce significantly different steady circulation patterns. Lateral friction has a selective effect on motions 
of small spatial scales; therefore, for large Reynolds numbers we were able to neglect it in the core of the recirculation gyre. 
In contrast, bottom drag acts uniformly on all spatial scales, causing relative vorticity to decay exponentially with the spinup 
(-down) time TS = 1/r. This should result in a general decrease of velocities throughout the recirculation gyre. 

In order to illustrate the effect of bottom drag we obtained numerical solutions for Re = 50, Fr = 1024 and increasing r. 
(We do not present these solutions in the paper, but qualitatively similar solutions for Re = 6.5, 13, and 26 will be shown and 
discussed in the next section; the case with r = 0 was shown in Fig. 3c .) Based on these steady solutions we plot in Fig.
6  several measures of the recirculation gyre scales as functions of r (nondimensionalized by the advective time scale in 

the channel L2/Q). The measures XG and YG are the same as introduced before for the cases with r = 0; they are based on 

the configuration of the streamline  = 0. The problem with these measures for finite r is that the decay of the 
streamfunction in the far field ceases to be oscillatory, therefore the isoline  = 0 retreats to infinity, thus failing to be a 
proxy for the recirculation gyre boundary.

It appears that the transition from oscillatory to nonoscillatory decay is correlated with the structure of the western 
boundary current outside of the recirculation gyre, which is determined by the relative thicknesses of the Munk LM and 

Stommel LS boundary layer (15). Substituting   exp(λx) into (14) gives a cubic characteristic equation 

 

The number of real roots of this equation depends on the value of the discriminant 

 

When the lateral friction dominates, for LS/LM < 3 × 2–2/3 = 1.8899, D < 0, there are one real and two complex conjugate 

roots. The behavior of  is oscillatory for large x as in the Munk boundary layer, with the zones of forward and reversed 
current. When the bottom drag dominates, LS/LM > 1.8899, D > 0, all roots are real, the decay is monotonic as in the 

Stommel boundary layer, and  = 0 is attained at infinity. In a nondimensional form the condition D = 0 translates into 

 



which for Re = 50 and Fr = 1024 equals 0.0232. This value is marked in Fig. 6  by a vertical line and a symbol r0. As r 

increases and approaches r0, the two measures XG and YG diverge. Even for r substantially smaller than r0 the measure YG 

may be ambiguous because the gyre lacks the region of quasi-parallel flow (see Figs. 8 , 9b , and 11c ). 

We also plot in Fig. 6  other scales of the gyre. The measure XG[  = 0] is similar to XG, but is based on the relative 

vorticity field. It is defined as the distance along y = 0 from the channel opening to the first zero of . The measure YR is the 

distance from the symmetry line y = 0 to the point of reattachment of the isoline  = Q to the western boundary x = 0. The 
maximum value of the streamfunction at the center of the gyre G is multiplied by a factor of 10 to appear in the same plot. 

All curves are represented by different line styles and are clearly labeled.

It is seen that, as the bottom drag increases, it is the transport of the gyre that decreases most rapidly from G = 4.49Q 

for r = 0 to a value slightly above Q. Substantial decrease of the zonal scales of the gyre XG and XG[  = 0] occur for larger 

r. It appears that the least susceptible to bottom drag are the meridional scales of the gyre YG and YR: YG even increases and 

diverges as r  r0; at this stage, however, YG is not a characteristic scale of the recirculation. From the scale analysis it 

follows that bottom drag should be an important factor in the dynamics of the recirculation gyre if the spindown time TS = 

1/r is comparable with the characteristic time scale of fluid parcel motion in the gyre TG  XGYG/ G. Taking the values 

XG = 87.5L, YG = 21.7L, G = 4.49Q for Re = 50, Fr = 1024, and r = 0 we get r/(Q/L2) = 0.002 36, which is consistent 

with the decay scale of G in Fig. 6 . 

4. Laboratory experiments and comparison with numerical solutions 

To validate the results of the numerical model we conducted a series of relevant laboratory experiments on a rotating 
platform. The experimental design is shown in Fig. 7 . The rectangular tank made of acrylic had inner horizontal 
dimensions 61 cm × 61 cm and a bottom with slope s = dz/dy = −0.1 to model the β effect 

 

In the experiments reported, the platform was rotated anticyclonically at f  = −2 s–1, as if we were in the Southern 
Hemisphere, to produce positive β and westward propagation of Rossby waves. Water was entering the basin 40 cm × 61 
cm in x and y, respectively, through a narrow vertical channel of width 2L = 0.5 cm. It was withdrawn at two sinks located 
in the southwestern and northwestern corners of the basin. Each sink consisted of a circular aluminum pipe 48 mm in 
diameter with a narrow (1 mm) vertical side slit to make vertically uniform flow. Two constant displacement pumps 
delivered equal flow rates to achieve symmetry. Before entering the zonal channel, the fluid was collected in a small flume-
shaped reservoir in order to damp the turbulence and produce a vertically uniform flow. The pumping system was closed so 
that the fluid level in the basin remained practically the same: H = 5 cm at the central latitude. Essentially, the flow was 
controlled by surface gravity waves at the narrows of the inlet channel and the sinks; therefore, small level changes during 
the transient periods theoretically existed, but they were negligibly small. The top of the tank had a transparent cover to 
shield the free surface of the fluid from air friction and evaporation.

It was bitterly discovered that due to internal heat generation within the pumps (Cole–Palmer Model 7617-70) the 
temperature of the water changed by about ΔT  0.5°–1°C upon going through the pump during typical conditions. To 
eliminate resulting buoyancy effects, especially important at slow flow rates, the water leaving the pumps was collected in a 
rubber bladder immersed in a closed jar. As the bladder expanded, it was displacing the water originally present in the jar 
having the same temperature T0 as in the experimental tank. Therefore the duration of the experiment was limited by the 

volume of the jar, typically to about 30 min. The tank was insulated and the jar was placed in a water bath.

The change of fluid depth in the tank from one side to another was finite, therefore the quasi-geostrophic equations (5), 
(6) would be invalid for the basin-scale flows; however, for the much smaller recirculation gyres the quasigeostrophic 
approximation is appropriate. Within the narrow inlet channel the Rossby number was not small, but it was observed that the 
flow was two-dimensional anyway due to other factors. 

As with most laboratory experiments the bottom drag due to the suction in the bottom Ekman boundary layer is a 
significant effect compared with the lateral friction; therefore, we cannot check the theoretical predictions for r = 0 directly. 
The e-folding spinup timescale was 



 

where 

 

For comparison with the laboratory experiments we solved (5) numerically taking into account the Rayleigh drag 
coefficient r. The flow was visualized by introducing occasionally a small amount of dye to the water in the reservoir 
upstream of the channel, which mixed rapidly due to turbulence there. Ideally, during a steady flow the dyed water would be 
restricted to the area within the streamline  = 0 if we neglect the diffusivity of the dye (which is about a thousand times 
smaller than the diffusivity of momentum). After initial spinup had been completed and fluid reached a solid body rotation, 
pumps were switched on and dye introduced. The dyed fluid started to enter the basin, while the flow was equilibrating to a 
new state.

To validate the numerical model we consider three laboratory experiments with increasing flow rate (per unit depth) Q 

(other parameters being fixed: L = 2.5 mm, H = 5.0 cm, f  = 2.00 s–1, ν = 1.00 × 10–2 cm2 s–1 at T = 20°C), hence 
increasing both Re and Fr.

In the experiment with Q = 6.5 × 10–2 cm2 s–1 (corresponding nondimensional parameters Re = 6.5, Fr = 1026, TSQ/L2 

= 52) the flow reaches a laminar steady state. The photograph of the dye distribution at the moment when the gyre has 
attained an equilibrium size is shown in Fig. 8  with several streamlines of a corresponding steady numerical solution 
superimposed. We see good agreement in terms of the shape and extent of the recirculation gyre. The motion and pattern of 
dye distribution within the recirculation gyre stabilizes first, while the distribution of dye in the western boundary layer has 
not reached an equilibrium yet. In the northern boundary layer the most advanced portion of dyed fluid has a shape similar to 
the head of a gravity current. Some asymmetry in the amount of dyed water spreading in the northern and southern 
boundary layers is also noticeable in Fig. 8 .

For larger Q = 13 × 10–2 cm2 s–1 (Re = 13, Fr = 2053, TSQ/L2 = 104) the flow has a mild degree of time dependence: 

the jet develops sinuous instability immediately near the inlet (Fig. 9a ). The periodic flow perturbations decay farther 
downstream, closer to the edge of the gyre, but the dye pattern gets stretched by shear near the stagnation point resulting in 
a formation of long filaments of dyed fluid. During the initial growth the southern and northern gyres appear to be 
symmetrical. Figure 9a  shows a stage at which the extent of the recirculation is somewhat shorter than its limiting value. 
Unfortunately, as time marches on, flow tends to a quasi-steady asymmetric state in which one of the gyres dominates the 
other (Fig. 9b ). Preference of a particular asymmetric state depends on initial perturbations of velocity (and buoyancy if 
any) and, during the course of an experiment, flow may spontaneously flip between two asymmetric states.

Such behavior makes comparison with the steady symmetric solution useless. Instead, in this case we validated the 
numerical model by comparing with the dye spreading during initial development when the flow pattern is still approximately 
symmetric. The evolution of passive tracer (dye) concentration θ(x, y, t) was calculated according to 

θt + J( , θ) = 0 (56)
 

with the inflow boundary condition 

θ(0, y, t) = 1, −L < y < L, (57) 

as if the tracer were introduced at the opening of the channel x = 0. At the initial moment t = 0 there is no dye in the basin 
θ(x, y, 0) = 0. The streamfunction (x, y, t) in (56) is a time-dependent solution of the initial value problem (5), (6) with (x, 
y, 0) = 0. The tracer evolution equation was solved numerically using third-order upstream differences as in Leonard (1977) 
generalized to two-dimensions according to Ekebjærg and Justesen (1991). This scheme does not introduce artificial 
numerical diffusivity, but introduces some higher order dispersion effects.

In the experimental photograph of the dye concentration in Fig. 9a , for example, we superimposed the isoline θ = 1/2 
at the appropriate moment in time (dimensional t = 136 s from the onset of pumping) calculated according to (56), (57). If 
the flow were exactly laminar, the dye would stay within this contour. Due to mild temporal variability the pattern within the 
gyre is distorted. However, there is good agreement in a sense of the position and the shape of the dye front between the 
gyre and its exterior.



In the photograph in Fig. 9b  showing an asymmetric state that develops at large time we superimposed the 
streamfunction pattern of the (symmetric) steady solution in the limit of large time. If the development of asymmetry were 
suppressed, the solution would reach a symmetric steady state and the dye distribution would be restricted within the 
streamline  = 0. Such a comparison shows gross agreement in size of the developed gyres despite the symmetry being 
broken.

The positions of the front of the tracer distribution X[θ=1/2] and the stagnation point X[u=0] closest to the channel opening 

along y = 0 are shown in Fig. 10  as functions of time as calculated by numerical model. Both curves tend to the same 
limit for large times as expected. The position of the stagnation point shows large oscillations in the beginning that are 
caused by Rossby waves propagating in a finite computational domain. The lower envelope of the curve X[u=0](t) describes 

the growth of the recirculation. Note that the tracer front position X[θ=1/2](t) never overshoots X[u=0](t), which means that 

dye spreads eastward monotonically approaching the limit.

Yet for larger Q = 26 × 10–2 cm2 s–1 (Fig. 11 , Re = 26, Fr = 4106, TSQ/L2 = 208) the jet becomes turbulent: the 

eddies near the axis become irregular. The numerically calculated streamlines of a steady solution (lower half) and the 
distribution of tracer (upper half) at the appropriate time moment are shown in Fig. 11c  for qualitative comparison. It is 
seen that the zonal extent of the gyre in the laboratory experiment is shorter than predicted by the steady solution, which can 
be attributed to eddies enhancing turbulent diffusivity and lowering the effective Reynolds number. This is in general 
agreement with the scaling law (49) stating that the zonal extent of the gyre is linearly proportional to the Reynolds number. 
On the other hand, the meridional extent of the gyre is roughly the same as the one predicted by the steady numerical 
solution. This once again confirms the scaling law (47) or (48) stating that the meridional extent depends only on the balance 
between inertia and the β effect and does not depend on the strength of dissipation.

5. Summary and conclusions 

We have considered the problem of a recirculation gyre driven by a zonal jet on a β plane. In the limiting case of a strong 
jet, when the structure of the flow depends on the momentum flux rather than on the volume flux of the jet, we derived the 
asymptotic scaling law (47)–(49) for the recirculation gyre. The meridional extent of the gyre depends only on the balance 
between the inertia of the jet and the opposing β effect, while the zonal extent is linearly proportional to the Reynolds 
number. The steady numerical solutions confirm the scaling law. A simplified model of the flow as a combination of a jet 
carrying a positive momentum flux and a homogenized recirculation gyre carrying an opposite amount of momentum flux 
gives the quantitative constant in the scaling law (47), which is in good agreement with the numerical results. Also the gyre 
is found to form only when the flow in the channel is supercritical with respect to Rossby waves. Thus the recirculation on 
the β plane can be regarded as a feature similar to a submerged hydraulic jump: a transition between the supercritical flow 
within the channel and the subcritical (vanishing) flow in the Sverdrup interior of the basin. The addition of bottom drag has 
the most pronounced effect on the velocities in the recirculation gyre decreasing its transport; the least susceptible to bottom 
drag is the meridional scale of the gyre.

Laboratory experiments validate the numerical model. There is quantitative agreement with steady solutions and tracer 
evolution for low Re when flow is close to laminar. For higher Re laboratory experiments show richer behavior with a 
strong tendency to asymmetric solutions. A similar tendency is also observed in the numerical solutions of wind-driven 
double-gyre ocean circulation models (Cessi and Ierley 1995; Meacham 2000). 

It is straightforward to apply the results of the above analysis to the Gulf Stream system. Based on hydrographic data 
Fofonoff and Hall (1983, Table 3) estimated the advective part of the momentum flux TM for several sections across the 

Gulf Stream. They found that TM decreases from 89 × 109N at 74°W to 25 × 109N at 56°W. Substituting the former value 
(since we need an estimate as far westward as possible) for J = TM/(Hρ), H = 5 km for the depth of the recirculation, and β 

= 2 × 10–11 m–1 s–1 into (47) we obtain the meridional scale of the Gulf Stream recirculation YG = 470 km or 4.2° latitude. 

This value is consistent with the direct zonal flow measurements by deep (2000 m and 4000 m) moored current meters and 
SOFAR floats (at 700 m) at 55°W (Richardson 1985, Fig. 2a) producing an estimate for YG (as a distance from the axis of 

the jet to the second zero of the zonal velocity) from 3 to 5 degrees of latitude.

Of course, we have to keep in mind the inherent limitations of our simplified model: it ignores the wind-driven circulation 
in the interior of the subtropical gyre, baroclinic and buoyancy effects, interaction with topography, the role of the deep 
western boundary current, space- and time-dependent forcing, etc. However, combining all these effects together would 
preclude any theoretical progress. Specifically, our barotropic vorticity equation (5) is not general since it neglects the 
vertical stretching term. This can be justified if the scale of the gyre is much larger than the Rossby radius of deformation, 
YG  LR. According to Fofonoff and Hall (1983) LR = 40 km in the Gulf Stream area and our assumption is valid. 



In this study we deliberately suppressed all eddies in order to more cleanly exhibit steady recirculation gyres. We 
successfully parameterized the turbulence by the constant viscosity ν because the role of eddies in barotropic recirculation 
dynamics is simply downgradient diffusion. Eventually, it turned out that certain characteristics of the recirculation gyre, 
such as YG, are independent of ν. This is analogous to other hydraulic problems: the height of a hydraulic jump does not 

depend on the structure of the turbulent motions behind it.
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Figures 
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FIG. 1. Scheme for the recirculation in the Gulf Stream system that is consistent with transport observations made by current 
meters. Heavy lines are streamlines. To the north of the central jet is the northern recirculation gyre (NRG) carrying 40–60 Sv and 
to the south of the jet is the Worthington gyre (WG) also carrying 40–60 Sv. DWBC is the deep western boundary current 
(adapted from Hogg 1992)
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FIG. 2. Sketch of the problem formulation: a jet entering an infinite basin 
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FIG. 3. Development of the recirculation for fixed Re = 50 and increasing Froude–Rossby number Fr. The lower half of each plot 

shows the streamfunction field  while the upper half shows the potential vorticity field q =  + βy. (a) Fr = 16, the contour 

interval of /Q, CI  = 0.2, the contour interval of q/(Q/L2), CIq = 0.5; (b) Fr = 128, CI  = 0.25, CIq = 0.1; (c) Fr = 1024, CI  = 0.5, 

CIq = 0.05. The dotted lines show the contours of  = 0 in the region where the flow is weak 
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FIG. 4. Zonal profiles for Re = 50, Fr = 1024 near the center of the recirculation gyre at x/L = 34.57. The solid line is the zonal 

velocity u divided by Q/L, the dashed line is q divided by 0.5Q/L2. The dash–dotted line is the zonal velocity and the dotted line 
is the potential vorticity according to the homogenized gyre model (33), (32). The vertical lines indicate the theoretical prediction 
(47) for the meridional extent of the gyre YG 
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FIG. 5a. The dependence of the meridional scale of the gyre YG on the Froude–Rossby number Fr. The data for several values 

of Re are plotted vs Fr2/5. The straight solid line represents the theoretical scaling law (48). Fig. 5b. The dependence of the 

zonal extent of the recirculation gyre XG divided by LRe on Fr3/5. The data for Re = 20, 50, 100, 200 are marked in the same way as 

in (a) but the points for fixed Re are now connected.
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FIG. 6. The dependence of the recirculation gyre scales for Re = 50 and Fr = 1024 on bottom drag r. The spatial scales are 
nondimensionalized by L, while the gyre transport G is nondimensionalized by Q and multiplied by 10 

 
Click on thumbnail for full-sized image. 

FIG. 7. Sketch of the experimental design 
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FIG. 8. A photograph of the dye spreading in the laboratory experiment with Re = 6.5, Fr = 1026, TSQ/L2 = 52 with streamlines of 

the steady numerical solution superimposed. At this moment (8 min from the start of pumping) the gyre has already reached the 
equilibrium extent, while the distribution of dye within the western boundary layers is still developing. The horizontal scales are 
in cm
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FIG. 9. Two photographs illustrating the development of the gyre and spreading of dyed fluid in the experiment with Re = 13, Fr 

= 2053, TSQ/L2 = 104: (a) t = 136 s (from the start of pumping), the two gyres are still symmetric with a mild degree of instability of 

the jet. Superimposed is the contour θ = 1/2 of the passive tracer distribution. Ideally all the dyed fluid should be confined by it. 
(b) t = 525 s, a quasi-steady asymmetric state with the southern gyre dominating the northern one: a puff of newly introduced 
dyed fluid reveals the deflection of the jet south. Superimposed are the streamlines of the symmetric limiting steady solution. The 
contour interval is Q/2. The horizontal scales are in cm
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FIG. 10. Plots of two different measures defining the zonal extent of the recirculation gyre: the stagnation point of the velocity 
field X[u=0] (solid line) and the position of the front of the dyed fluid X

θ=1/2 (dashed line) versus time for the experiment with Re = 

26, Fr = 4106, TSQ/L2 = 208. 
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FIG. 11. The experiment with Re = 26, Fr = 4106, TSQ/L2 = 208. (a) A photograph of two quasi-symmetric recirculation gyres at t 

= 10 min (from the start of pumping); the jet is wildly unstable. (b) A photograph of an asymmetric flow at t = 15 min. (c) The 
numerically calculated stream function of the corresponding limiting symmetric steady solution (lower half, the contour interval 

Q/5) and the contour θ = 1/2 of the passive tracer distribution at t = 1000L2/Q = 4 min (upper half). The horizontal scales are in cm 
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FIG. 11. (Continued) 
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