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ABSTRACT

Part I of this study describes the authors' findings on a robust threshold 
variable that determines the onset of breaking for unforced, irrotational deep 
water waves and proposes a means of predicting the strength of breaking if 
the breaking threshold is exceeded. Those results were based on a numerical 
study of the unforced evolution of fully nonlinear, two-dimensional inviscid 
wave trains and highlight the fundamental role played by the nonlinear wave 
group dynamics. In Part II the scope of these calculations is extended to 
investigate the additional influence of wind forcing and background shear on 
the evolution to breaking.

Using the methodology described in Part I, the present study focuses on the 
influence of wind forcing and vertical shear on long-term evolution toward 
breaking or recurrence of the maximum of the local energy density within a 
wave group. It investigates the behavior of a dimensionless local growth rate 
parameter that reflects the mean energy flux to the energy maximum in the 
wave group and provides a clearer physical interpretation of the evolution 
toward recurrence or breaking. Typically, the addition of the wind forcing 
and surface layer shear results in only small departures from the irrotational, 
unforced cases reported in Part I. This indicates that nonlinear hydrodynamic 
energy fluxes within wave groups still dominate the evolution to recurrence or 
breaking even in the presence of these other mechanisms. Further, the 
calculations confirm that the breaking threshold for this growth rate found for 
unforced irrotational wave groups in Part I is also applicable for cases with 
wind forcing and shear typical of open ocean conditions. Overall, this 
approach provides an earlier and more decisive indicator for the onset of 
breaking than previously proposed breaking thresholds and suggests a 
foundation for predicting the strength of breaking events.

Table of Contents:
● Introduction
● Methodology
● Influence of wind forcing
● Influence of a uniform
● Combined wind forcing
● Conclusions
● REFERENCES
● APPENDIX
● TABLES
● FIGURES

Options:
● Create Reference 
● Email this Article 
● Add to MyArchive 
● Search AMS Glossary 

Search CrossRef for:
● Articles Citing This Article 

Search Google Scholar for:
● Michael L. Banner
● Jin-Bao Song  



1. Introduction 

It is well known that wind-driven ocean waves have a strong group structure. This is evident in wave height records and 
even to the casual observer. An important feature of these evolving wave groups is the intermittent occurrence of very steep 
individual waves that can present hazardous conditions for shipping and offshore structures, especially if these waves break. 
Donelan et al. (1972) and Holthuijsen and Herbers (1986) provide compelling observational accounts that link wave breaking 
and the group structure of wind waves. Among the many fundamental scientific issues that arise in this context are the 
relative importance of wind forcing of the waves and also the influence of the concomitant vertical shear in the surface layer 
region through which the waves propagate.

Part I of this study (Song and Banner 2002) addresses the issue of wave breaking onset in nonlinear wave groups in the 
absence of wind forcing and background shear. It focuses on identifying and quantifying the role of the nonlinear 
hydrodynamics in the idealized case of two-dimensional irrotational wave group evolution. It provides an extensive literature 
review of the topic and proposes new methodologies for quantifying the complex nonlinear behavior of three classes of 
initial wave group structures. Of particular relevance to the discussion of wind-forced waves and the statistics and structure 
of extreme waves in such wave groups are the papers of Longuet-Higgins (1984), Boccotti et al. (1993), and Phillips et al. 
(1993). These papers, however, do not address the underlying issue of determining the onset of wave breaking. The main 
body of published work on wave breaking onset has been concerned with hydrodynamical aspects and this aspect is 
addressed in Part I.

Historically, there have been relatively few papers that have focused on wind influence on wave breaking. One notable 
example was the model of Banner and Phillips (1974), who proposed that the wind drift current at the air–water interface 
could destabilize water waves by accelerating the onset of the kinematic condition where the horizontal water particle 
velocity at the wave crest attained the phase speed of the wave form. In that model, we note that the wind is regarded as 
only generating the wind drift current. This hydrodynamic source is then responsible for the onset of breaking, with the 
direct aerodynamic forcing regarded as of secondary importance. The motivation for this model had its origin in seeking to 
explain the remarkably strong attenuation of small-scale wind waves by longer waves in laboratory wind wave tanks, as 
investigated by Phillips and Banner (1974). A number of authors, notably Wright (1976), Donelan (1987), and Chen and
Belcher (2000) have subsequently questioned the primary role of the wind drift current in this process and have proposed 
alternative mechanisms. Observations of the influence on short waves due to the transient passage of long waves (e.g., Chu
et al. 1992) reveal a very fast interaction time with strong breaking of the short waves, indicating a hydrodynamic rather 
than aerodynamic origin for the short wave attenuation. As this aspect remains to be fully understood, this important 
phenomenon cannot yet be regarded as fully resolved.

Such studies have focused on elucidating specific mechanisms in established wind wave fields. A different approach 
addressing the initial spectral development of sideband instabilities was investigated in two recent observational papers that 
contribute authoritative theoretical and observational insight into the unforced and wind-forced evolution of nonlinear deep 
water wave trains, focusing particularly on the initial growth rates of sideband instabilities. In their first paper, Tulin and
Waseda (1999) investigate the initial evolution and related aspects of the initial instability of deep water wave trains in the 
absence of wind forcing, while their companion paper, Waseda and Tulin (1999) examines the additional influence of wind 
forcing. Contrary to earlier results reported by Bliven et al. (1986) and Li et al. (1987), their results for wind forcing showed 
that wind did not inhibit the growth of sidebands in the case of either two-dimensional or three-dimensional instabilities. 
Overall, Waseda and Tulin (1999) reported two independent effects of the wind:

1. a modification of the inviscid growth rates for a given modulational frequency, as shown by comparison with 
“seeded”  experiments where initial disturbances are introduced by a prescribed wave paddle motion in the absence of 
wind;

2. a change in the natural modulational frequency appearing in the presence of wind that is a function of the wave 
age, as observed in “unseeded”  experiments where only wind-generated waves were involved. 

Waseda and Tulin conclude that it is the combination of both effects that determines whether the modulational instability is 
enhanced or suppressed and that, for moderate to old windsea waves, the net effect of wind on the modulational instability is 
small.

Our present investigation is concerned with the long-term evolution to recurrence or breaking onset and is therefore 
complementary to the earlier studies (e.g., Tulin and Waseda 1999; Waseda and Tulin 1999) that were concerned primarily 
with initial instabilities. In Part I of our investigation, we report the results of our numerical investigation of unforced long-
term evolution of nonlinear deep water wave groups, with a major focus on (i) determinants of breaking event onset, (ii) 
how far in advance can wave breaking events be predicted, and (iii) what controls their strength. Part I also contains a 
detailed presentation of our computational approach and the reader is referred to that paper for full details of the 
methodology used.



Before addressing the issue of wind forcing, we recall that the complementary issue of surface layer shear is another 
potentially important background process that has been associated with the destabilization of wave trains. The results of 
Teles da Silva and Peregrine (1988) and Millinazzo and Saffman (1990), among others, suggest that the presence of linear 
background vertical shear has a potentially strong influence on the structure of a wave train. This was confirmed in Banner
and Tian (1998, henceforth BT), for the unforced case, where the wave steepness at breaking was reduced by up to O
(20%) in the presence of a strong linear vertical shear current. Our improved computational methodology and revised 
interpretation of the underlying energetics associated with breaking onset motivated an extension of our investigation to 
include an assessment of the influence of a linear surface layer shear more typical of well-developed open ocean wave 
conditions.

In Part II, therefore, we investigate how wind forcing and surface layer shear modify the unforced results reported in 
Part I, both as separate influences and when both operate concurrently. This allows an assessment of the relative importance 
of wind forcing and surface layer shear in relation to the fundamental nonlinear fluxes operative in the absence of wind 
forcing and vorticity.

2. Methodology 

To avoid unnecessary duplication, the reader is referred to Part I for a detailed description of our approach and 
methodology, including the definitions of diagnostic variables, computational techniques, and accuracy. The additional details 
describing the modeling of wind forcing and surface layer shear in the calculations are given in the appropriate sections 
below.

3. Influence of wind forcing 

To simulate the influence of wind forcing, we introduced into the free surface dynamic boundary condition in the Dold
and Peregrine (1986, henceforth DP) model a surface pressure distribution persistent in phase with the wave slope, thereby 
ensuring positive momentum and energy fluxes to the wave field. There are various possible formulations for an imposed 
surface distribution in phase with the wave slope, which is necessary for sustained wind input to the wave field (e.g., 
Phillips 1977, p. 49; Donelan 1999, sec. 2). In the present study, we assumed a surface pressure distribution of the form 

ps(x, t) = αρau2
x(x, t)

 

where  specifies the free surface, α is a empirical constant (to be specified), ρa is the air density, and u  is the wind 

friction velocity. The total energy and momentum fluxes input from the wind are respectively ‹ps / t›  and ‹ps / x›, 

where angle brackets represent an appropriate spatial, temporal, or ensemble average. In our model calculations, the 
magnitude of the pressure was chosen by relating the expression for the effective wind input growth rate to growth rates 
observed for ocean and laboratory wind waves. Figure 1  shows a compilation of these observational results in 
nondimensional form and the interested reader is referred to the discussion in Plant (1982) and Komen et al. (1994, sec. II. 
2.3). The observed spectral wind input growth rate at frequency ω is commonly specified in the context of a Fourier 
decomposition of the wave surface and surface pressure fields, as discussed in detail by Donelan (1999, §2). The spectral 
growth rate γ is usually normalized by the wave frequency ω or f  (=ω/2π) and expressed as a function of the inverse wave 
age u /c, where c is the corresponding wave phase speed. With reference to Fig. 1 , the inverse wave age range u /c < 

0.2 embraces most reported wind sea situations, from very old to extremely young, while the range u /c > 0.2 is more 

relevant to short fetch wave tank conditions. In the present narrow bandwidth application, c is taken as the linear phase 
speed of the carrier wave, assumed constant. Finally, we note that, since there is no dissipation in the DP code, there will be 
a continuous accumulation of energy supplied from the wind so that exact recurrence is not possible and recurrence in this 
context refers implicitly to a near recurrence to the initial wave group structure.

The relationship between the unknown coefficient α and the nondimensional spectral wind wave growth rate γ/f  is readily 
established. For the surface pressure distribution proposed above, decomposing  as the linear superposition of sinusoidal 
traveling surface gravity wave modes and taking t = c x and following Donelan (1999, §2), it is easily shown that the 

nondimensional spectral wind input growth rate γ, normalized by the wave frequency f , is related to α and the inverse wave 
age u /c by 

γ/f  = 2πα(ρa/ρw)(u /c)2.

 

From Fig. 1 , with ρa/ρw = 0.001225, we have α  32.5 for u /c  0.2. The scalings for g, ρw, k, and c specified 

above for the DP code provided scaled values of the surface pressure forcing level α  = αρau2  corresponding to different 

wave age conditions. Also, following Part I, the reference period T of the carrier waves is taken as 2π. In our computations, 



we examined the influence of α  over the range (0.0001, 0.0016), which corresponds to u /c in the range (0.05, 0.2). This 

range of inverse wave ages spans the ocean wind wave regime from very young to very old windseas. Figure 2  
illustrates the influence of the magnitude α  of the surface pressure in modifying the surface shape and enhancing the onset 

of wave breaking. This example is for the unforced marginal recurrence case I group structure with N = 5 and s0 = a0k0 = 

0.111, for which the surface profiles at various times were shown previously in Fig. 1  of Part I. The evolution under 
moderate surface pressure forcing (α  = 0.0002) that preserves the recurrence is shown in the left-hand panels of Fig. 2 

. The initial profile (Fig. 2a ) evolves to the peak of the recurrence cycle at t/T = 82.9, with the end of the recurrence 
cycle at t/T = 125.7. When the surface forcing level was increased to α  = 0.0003, breaking now occurs at t/T = 82.9 and 

the corresponding evolution of the surface profile is shown in the right-hand panel figures of Fig. 2 . Thus for this initial 
wave group geometry, it is seen that increasing the applied pressure accelerates the onset of breaking. The case of an even 
stronger level of surface forcing, α  = 0.0016, resulted in accelerated wave breaking onset at t/T = 74.6. Following BT, the 

wave steepness at breaking, (ak)br, is taken as the product of the local wavenumber and one-half of the elevation of the 

crest above the mean trough level and was found to increase marginally from (ak)br = 0.3328 for α  = 0.0003 to (ak)br = 

0.3484 for α  = 0.0016. From results such as those shown in Fig. 2 , we concluded that wind forcing only marginally 

modified the geometry of the wavy surface for surface forcing levels consistent with very young to very old windseas.

Of greater significance and interest is the evolution of the diagnostic energy-related nondimensional parameters μ(t), its 
local average ‹μ(t)›  and the corresponding growth rate δ(t) that were defined in section 3d of Part I and subsequently 
investigated in detail for unforced, irrotational wave groups. Figure 3  shows the influence of surface forcing on ‹μ(t)›  
and δ(t) for the three cases α  = 0.0002, 0.0003, and 0.0016. It is seen that the addition of surface forcing of strength α  = 

0.0002 marginally increases the maximum value of ‹μ(t)›  at the peak of the recurrence cycle, but creates negligible change in 
the corresponding growth rate δ(t). Only for stronger wind forcing α  = 0.0003 does δ(t) exceed the breaking threshold δth 

in the range (1.30–1.50) × 10−3 proposed in Part I on the basis of our results for unforced evolution. Stronger wind forcing 
results in a faster evolution of ‹μ(t)›, earlier exceeding of the breaking threshold δth and a higher value of the growth rate 

δ
max just prior to breaking. 

We also examined an unforced case (case I, N = 5 and s0 = 0.12) just beyond the recurrence limit so that breaking occurs 

for the unforced case. For this case, the influence of surface forcing accelerates the onset of wave breaking, with the time 
to breaking decreasing from t/T = 60.5 for α  = 0 to t/T = 58.7 and 58.4 for α  = 0.0004 and 0.0016, respectively. The 

results for ‹μ(t)›  and δ(t) comparing zero surface forcing (α  = 0) and strong surface forcing (α  = 0.0016) are included 

subsequently in Fig. 5 , which also shows the comparative influence of shear. The steepness at breaking (ak)br increases 

from 0.3437 for α  = 0 to 0.3583 for α  = 0.0016. Table 1  contains a summary of the salient results. 

While the intuitive expectation is that surface forcing destabilizes the motion of the wave group and accelerates the onset 
of breaking, we found cases where the opposite can occur. In some cases, an unforced breaking case can become a 
recurrence case when surface forcing operates while breaking onset can be delayed by similar surface forcing levels for 
some unforced breaking cases. An example where wind forcing stabilizes the motion of the wave group is case I with N = 
10 and s0 = 0.089. In this case, breaking occurs at t/T = 126.4 without wind forcing, yet breaking does not occur for this 

same initial wave group geometry when wind forcing of strength α  = 0.0016 is applied. 

Another example of wind forcing delaying the breaking is case I with N = 7. Very strong surface forcing α  = 0.0016 

does not change the initial steepness s0 = 0.099 for marginal recurrence and only slightly accelerates the onset of breaking 

for the marginal breaking case of s0 = 0.10, decreasing the time to breaking slightly from t/T = 95 for α  = 0 to t/T = 94.9. 

However, for a slightly larger initial steepness s0 = 0.11 and the same surface forcing strength, the opposite behavior occurs, 

with the time to breaking increasing from t/T = 70.8 for α  = 0 to t/T = 72.7 and the steepness at breaking, (ak)br, 

increasing from 0.3500 for α  = 0 to 0.3558 for α  = 0.0016. This suggests that the influence of the wind forcing in 

accelerating breaking onset may depend on the nonlinearity of the windsea.

Nevertheless, our results for wind forcing, summarized in Table 1 , reinforce one of the central results of this study 
concerning the existence of a common breaking threshold δth. They confirm the critical aspect that even for extreme 

surface forcing, δmax < 1.30 × 10−3 continues to apply for each recurrence case, while δmax exceeds 1.50 × 10−3 for all 
breaking cases that we investigated. Thus for surface forcing levels typical of open ocean conditions, the same critical 

threshold range of (1.30–1.50) × 10−3 for δth found for zero surface forcing appears to be applicable when wave-coherent 



surface forcing is operative.

4. Influence of a uniform surface shear 

The actual depth distribution of the oceanic surface-layer shear current is a complex issue (e.g., Craig and Banner 1994), 
but following BT, we assumed a surface layer current O(0.03U10) that decreased linearly over a depth of one significant 

wave height Hs. Here, U10 is the mean wind speed at the reference height of 10 m above the mean sea level and the Hs is 

related to the mean energy ‹E›  of the waves by Hs = 4(‹E›  )½. Thus we assumed a shear profile of the form U(y) = Ωy, 

with y = 0 corresponding to mean sea level. The mean shear rate Ω was estimated using Hs calculated from the fully 

developed Pierson and Moskowitz (1964) windsea model for which 

 

For U10  10 m s−1, this yields Ω   0.12 s−1. Previously, BT investigated the effect of a strong background shearing 

current with Ω   0.2 s−1. In this study, representative shearing current strengths up to Ω = 0.1 s−1 were investigated. We 
were unable to define a robust reference velocity gradient for scaling Ω. However, when compared with a representative 
vertical gradient of the orbital motion of the initial carrier waves with typical initial steepness (ak)0 of O(0.1), it is easily 

shown that Ω = 0.1 sec−1 corresponds to a nondimensional shear level O(1). In any event, given the continually evolving 
nonlinear wave field with its fairly broad range of orbital speeds, we decided to retain the prescription of the dimensional 

shear level Ω (units: s1). The addition of a background uniform shear is available as an option in the DP model code. After 
suitable scaling, this background shear was configured within the DP model and the corresponding local energy density E 
given by Eq. (6) of Part I was calculated. The details of this calculation are given in the appendix.

Unlike wind forcing, the presence of the shearing current considered here always destabilizes the wave group from 
recurrence to breaking and accelerates its onset. In some cases, an unforced case with recurrence can develop into a 
breaking case in the presence of a uniform surface shear layer. For example, for the marginally stable unforced case I with 

N = 5 and s0 = 0.111, breaking occurs at t/T = 82.6 when a weak shear Ω = 0.02 s−1 is present. Our results confirmed the 

BT findings that the surface shear current accelerates the onset of breaking. For example, for above case (i.e., case I with N 
= 5 and s0 = 0.111), the breaking time decreases to t/T = 69.2 when a background linear vertical shear current with Ω = 0.1 

s−1 is applied. The corresponding evolution curves of μ(t), ‹μ(t)›, and δ(t) for this marginal recurrence, unforced case in the 

presence of shear Ω = 0.02 and Ω = 0.1 s−1, respectively, are shown in Fig. 4 . 

In a typical case where wind forcing delays the onset of breaking (i.e., case I with N = 7), the unforced marginal 

recurrence case with s0 = 0.099 breaks at t/T = 87 when a background shear of strength Ω = 0.1 s−1 is present. For s0 = 

0.11, the breaking time is t/T = 70.8 for Ω = 0. The breaking onset time decreases to t/T = 70.1 for a weaker background 

shear with Ω = 0.02 s−1 and to t/T = 67 for a stronger shear of strength Ω = 0.1 s−1. Also, we found that shear reduces the 

critical initial steepness for marginal breaking. This means the critical initial steepnesses sRc
0 and sBc

0 become smaller when 

shear is present. For example, sRc
0 and sBc

0 reduce to 0.107 and 0.108, respectively, from 0.111 and 0.112 for the unforced 

cases of case I with N = 5 with a shear of strength Ω = 0.1 s−1. Corresponding changes in δmax are documented in Table 1 
 and reveal that the presence of shear significantly changes the behavior of wave group evolution and breaking process. 

For an unforced recurrence case, the presence of shear can make it break. For a breaking case, the presence of shear 

accelerates its onset and marginally modifies the value of δmax. However, the onset of breaking is still determined by the 

common threshold δth value in the range (1.30–1.50) × 10−3. 

5. Combined wind forcing and shear 

It is appropriate to consider the effect of simultaneous shear and surface forcing as they usually act in unison. One 
example of the influence of a background shear for a case where surface forcing accelerates the onset of breaking is shown 

in Fig. 5 . This is case I with N = 5, s0 = 0.12, α  = 0.0016, and Ω = 0.1 s−1, for which breaking occurs at t/T = 51.4. 



In comparison, for this same case but with a shear of strength Ω = 0.1 s−1 and zero surface forcing, breaking occurs at t/T 
= 53.5, while for the very strong surface forcing level α  = 0.0016 in the absence of shear, the breaking time increases to 

t/T = 58.4.

Another typical example of the influence of a background shear for a case where surface forcing delays the onset of 
breaking is shown in Fig. 6  for a weak shear with very strong wind forcing. In this example, N = 7, s0 = 0.11, and a 

weaker background linear vertical shearing current of magnitude Ω = 0.02 s−1 was used, as stronger shear masked the 
influence of the surface forcing. For strong surface forcing α  = 0.0016 in the presence of this background shear, breaking 

occurred at t/T = 70.4. Correspondingly, for very strong surface forcing α  = 0.0016 in the absence of shear, breaking 

occurred at t/T = 72.7. With the same weak background shear Ω = 0.02 s−1 and zero surface forcing, the time to breaking 
decreased to t/T = 70.1. Thus the presence of a shearing current accelerates the onset of breaking, even if the shear is weak. 
This parallels the influence of shear on unforced cases discussed in BT. In passing, we noticed that surface layer shear 
tends to modify the surface profile and the evolution process of the nonlinear wave group more strongly than the wind 
forcing, although the modifications arising from either influence should be considered secondary in importance to the 
nonlinear wave group hydrodynamics. This is apparent from the properties of the representative case I examples 
summarized in Table 1 .

Although a surface layer shearing current more strongly modifies the surface shape and the evolution process than the 
wind forcing, the wave steepness at breaking was only modified (increased or reduced) slightly (i.e., by 5%) in the 

presence of a linear shear of strength Ω = 0.02 or 0.1 s−1. For example, (ak)br increased from 0.3069 to 0.3213 when the 

shear was reduced from Ω = 0.1 to Ω = 0.02 s−1 for case I with N = 5 and s0 = 0.111. For case I with N = 7 and s0 = 0.11, 

(ak)br changed to 0.3440 and 0.3513, respectively, from the unforced case where (ak)br = 0.3500 when shears of strength 

Ω = 0.02 and 0.1 s−1 were present. These modifications to the breaking steepness are considerably smaller than the findings 

reported by BT for a stronger shear of Ω = 0.2 s−1. 

A summary of our results for δmax and other parameters of interest for a number of representative shear and surface 
forcing cases is presented in Table 1 . Of central importance is that the results validate our proposed critical average 

growth rate threshold range δth = (1.30–1.50) × 10−3 for the diagnostic growth rate δ(t). Based on results in Table 1 , 

Fig. 7  summarizes graphically the relationship between the growth rate δmax and our proposed breaking threshold for 
various case I wave group configurations for cases of wind forcing of strength α  = 0.0016 in the absence of shear and 

shear of strength Ω = 0.1 s−1 in the absence of wind forcing. 

In section 5c of Part I, it was proposed that the strength of breaking events was proportional to the growth rate δmax. 
Figure 8  shows comparative results for the influence of wind forcing and shear on the predicted breaking strength. This 

figure shows separately the marginal effect on the trend of our proposed breaking strength indicator δmax due to wind 

forcing of strength α  = 0.0016 in the absence of shear and also for shear of strength Ω = 0.1 s−1 in the absence of wind 

forcing. Results are shown for case I wave groups with N = 5 and N = 7 and suggest that the addition of wind forcing or 

shear does not produce significant variations from the trend of δmax with increasing initial steepness akc for the unforced, 

irrotational case I wave groups that we investigated. Table 2  summarizes the corresponding maximum growth rates 

δ
max, tbr, tth, and tlead. 

6. Conclusions 

This study extends the scope of the results obtained for the unforced, irrotational cases of initial wave groups studied in 
Part I to investigate representative effects of wind forcing, shear, and the combination of these two additional upper ocean 
influences. Our findings were:

1. The presence of wind forcing and vertical shear typical of upper ocean conditions results in a similar evolution to 
recurrence or breaking and reinforces our conclusions of Part I. The associated nondimensional diagnostic parameter 
μ(t) evolves in a complex fashion, with a “fast”  oscillation superimposed on a longer-term mean trend. As discussed 
in Part I, the trend of the local average of this parameter, ‹μ(t)›, encapsulates the observed systematic mean energy 
convergence toward (or away from) the maximum energy region within the wave group and this determines the 
ultimate breaking or recurrence behavior of the wave group. The fast oscillation, associated with the strong 
crest/trough asymmetry of the carrier waves, is believed to be primarily a kinematic effect.



2. Our results indicate that for a wide range of wave forcing and current shear, for representative examples of the three 
cases of initial wave group geometry we investigated, breaking or recurrence of deep water wave trains is still 

determined by the common threshold value δth in the range (1.30–1.50) ×10−3. This threshold, proposed in Part I for 

the nondimensional growth rate δ(t) of ‹μ(t)›  following the wave group maximum for unforced, irrotational wave 
groups, has been found to be applicable in the presence of these additional influences for the three classes of initial 
wave group structures we investigated.

3. In Part I, section 5c, it was suggested that the strength of breaking events may be controlled by the mean rate of 
convergence of energy at the group maximum immediately preceding breaking onset and reflected parametrically by 

the corresponding maximum value δmax of δ(t) at the time of breaking onset. The addition of wind forcing and/or 

shear did not result in significant variations from the unforced trend of δmax with increasing initial steepness for the 
set of case I realizations we investigated. In one case (N = 5), the addition of shear and wind forcing each tended to 
increase the maximum growth rates by a small margin, while in another case (N = 7), the addition of the same wind 
forcing or shear levels resulted in a comparable reduction. It remains for careful observations to confirm the 
correspondence between this proposed measure of breaking strength and actual energy losses.
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APPENDIX 

7. Calculation of the Local Energy Density E in the Presence of a Linear Shear Flow 

For the special case of two-dimensional linear shear flow in the x–y plane, we can decompose the motion (u, ) into the 
superposition of a potential flow (u0, 0) and a uniform shear flow (Ωy, 0), where (x, y) are the horizontal and vertical 

coordinates respectively, and Ω is the constant vorticity. Upon substituting (u, ) = (u0, 0) + (Ωy, 0) into Eq. (6) of Part I, 

the local energy density E is given by 

E = Ep + Er, (A.1)
 

where the potential flow contribution Ep is given by 

 

and the rotational flow contribution is given by 



 

We note that bottom boundary terms that arise in Ep and Er have been suppressed as they are not dynamically important 

in the present deep water wave context.

To calculate the influence of the uniform shear layer on the growth rate δ, the potential and rotational flow contributions 
Ep and Er are needed. The methodology is presented below for obtaining the irrotational and rotational interior velocity fields 

corresponding to the free surface solution from the DP code for the case of a uniform background shear of strength Ω. 
From these velocity fields, the contributions Ep and Er were calculated at each time step. 

As discussed in detail at the beginning of section 4 of this paper, we assumed a uniform shear layer down to a mean depth 
of y = −h, with h = 50 m. As a practical lower limit in the calculation of Er, we used h = −8 m. This was found to be 

necessary as the computed orbital velocity field developed very small, nonphysical residual mean offsets below this depth, 
where the orbital velocity was negligible even for the steepest waves for all cases investigated. The combination of these 
residual offsets with the large shear velocity at great depth produced spurious offsets in Er. We checked this carefully by 

removing these mean offsets below −8 m and found negligible difference to the computed μ, ‹μ›, and δ values.

For the irrotational flow component, we work with the complex velocity q0 = df/dz = u0 − i 0, where f  =  + i  in 

which  and  are the velocity potential and the streamfunction corresponding to this irrotational flow component. The 
components of q0 satisfy the familiar Cauchy–Riemann equations and the complex velocity q0 is analytic with respect to z = 

x + iy in the computational domain. The boundary condition y = 0 on the bed is satisfied by considering an image region, as 

shown in Fig. A.1a . In order to apply Cauchy's integral formula to calculate the value of q0 at any interior point, 

following Fornberg (1980), the physical area with infinite fluid surface and its image is first transformed from the z plane 
into a finite closed region in the Z plane (see Fig. A.1b ) by the conformal mapping: 

Z(z) = e−i(2π/λ)z(x,y), (A.4)

 

where λ is the spatial period of the wave group. In this investigation, λ was taken as 2π.

Since q0 is periodic, it is transformed to a single-valued function q0(Z) in the Z plane that is analytic between S1 and S2 

(see Fig. A.1  for notation).

At any interior point Z between S1 and S2, q0(Z) can be calculated by Cauchy's integral formula: 

 

The above equation can also be written as 

 

where Z is an interior point between S1 and S2, Z′ is on the contour S1 or S2, Z1 is on the contour S1, and Z2 is on the 

contour S2. We note that the integrand in (A.6) is never singular, no matter how closely Z approaches the boundaries. 



Following Fenton (1996), a numerical approximation is used here to transform the integral equation (A.6) into an algebraic 
equation by using the trapezoidal rules as follows: 

 

where Z1,j = Z(z1,j), Z2,j = Z(z2,j), z2,j = (z1,j)* − 2ih (the asterisk denotes complex conjugate), Z′1,j = dZ1(j)/dj, and Z′

2,j = dZ2(j)/dj. Here j is a continuous variable that takes on only integer values after the differentiation, and Eq. (A.7) then 

holds for each Z1,j and Z2,j with j = 0, 1, 2, · · · , N1 − 1, at which q0 is known on the boundary. Also, Zk with k = 1, 

2, · · · , M is the set of M interior points where the flow details are sought. 

The geometric coefficients G(1)
kj and G(2)

kj are introduced here as 

 

Then the Eq. (A.7) can be written as 

 

where q(1)
0,j = q0(Z1,j), q

(2)
0,j = q0(Z2,j), and q0,k = q0(Zk). Solving for the q0,k gives 

 

Clearly, if the values of the complex velocity are known on the boundary and the geometric coefficients above have been 
calculated, the value of the interior complex velocity q0,k can be estimated for any arbitrary point Zk. 

As discussed in detail by Fenton (1996), the derivatives Z′1,j = dZ1(j)/dj and Z′2,j = dZ2(j)/dj can be calculated using a 

Fourier approximation as 

 

where 



 

Since 

 

where q(1)
j = uj − i j = q(1)

0,j + Ωyj is the value of the complex velocity q = u − i  at the fluid surface point zj and (q(1)
j)

* is the complex conjugate of q(1)
j, Eq. (A.10) becomes 

 

Thus the interior velocity fields (u0, 0) can be computed based on (A.14), and Ep and E then can be calculated, 

respectively, by (A.2) and (A.1).

For deep water (h  ∞), Eq. (A.14) reduces to 

 

Taking Ω = 0, Eq. (A.15) reduces to the formula (A.9) of BT. Equation (A.14) can also be used in the calculations of the 
interior irrotational velocity fields for intermediate depth and shallow water waves by taking Ω = 0.

Tables 

TABLE 1. Summary of the maximum growth rates and key time scales from the numerical experiments for selected cases of 

interest with wind forcing and a uniform surface shear. δmax is the maximum growth rate; tbr is the breaking time; tth is the time 

when the growth rate δ(t) reaches the critical value δth = 1.50 × 10−3; tmax and tgr,max are the times of the recurrence peak and the 

corresponding maximum growth rate; tlead = tbr − tth is the lead time between δ(t) exceeding the threshold δth and the time of 

breaking onset; α* and Ω show, respectively, the strength of the wind forcing and the shear current; s0 is the initial steepness; N 

is the number of waves in the group; T is carrier wave period, R stands for recurrence; and B denotes breaking
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TABLE 2. Maximum growth rates and key time scales for breaking case I realizations with wind forcing or a background shear 
current, or with both of these effects operative, for different initial steepness s0 and different N. Symbols in this table have the 

same meanings as in Table 1
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Figures 
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FIG. 1. Observed nondimensional wind wave growth rates against the inverse wave age. Open circles and squares are field 
data; other symbols represent laboratory data. Cited from Komen et al. (1994)
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FIG. 2. Surface profiles showing the influence of the surface pressure (ps = α  x) in enhancing the onset of wave breaking for 

case I with N = 5 and s0 = 0.111. The reference period T of the carrier waves is 2π. (a)–(d) The evolution for pressure forcing with 

α  = 0.0002: (a) t/T = 0, (b) t/T = 60, (c) t/T = 82.9, (d) t/T = 125.7. (e)–(g) The evolution for pressure forcing with α  = 0.0003: (e) 

t/T = 0, (f) t/T = 60, (g) t/T = 82.9. The axes show lengths in meters
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FIG. 3. The influence of wind forcing strength on the evolution of the diagnostic parameter ‹μ›  and its associated growth rate δ
(t) for case I with N = 5, s0 = 0.111 and several surface forcing levels α  = 0, 0.0002, 0.0003, and 0.0016 
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FIG. 4. As in Fig. 3  but showing the influence of shear on the long-term evolution of ‹μ›  and its associated growth rate δ(t) 

for case I with N = 5, s0 = 0.111 and shear of strength Ω = 0, 0.02, and 0.1 s−1 
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FIG. 5. As in Fig. 3  but showing the influence of wind forcing, shear, and combined wind forcing and shear on the long-term 
evolution of the mean trend ‹μ›  and its associated growth rate δ(t) for case I wave groups with N = 5, s0 = 0.12 
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FIG. 6. As in Fig. 5  but for case I with N = 7 and s0 = 0.11
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FIG. 7. Dependence of δmax on N, the number of waves in the group for case I in the presence of a strong wind forcing or a 
uniform surface shear. Open and full circles correspond, respectively, to the marginal recurrence and marginal breaking cases of 
surface forcing with strength α  = 0.0016 in the absence of shear; open and full triangles, respectively, correspond to a shear 

level of Ω = 0.1 s−1 zero wind forcing. The shaded region δ = (1.30 × 10−3 − 1.50 × 10−3) indicates the proposed common breaking 

threshold band for δmax 
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FIG. 8. The influence of wind forcing and shear on the maximum growth rate δmax for case I breaking waves with different initial 
steepness akc: (top) N = 5 and (bottom) N = 7 
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FIG. A1. Typical example of the conformal mapping Z = e−i(2π/λ )z(x,y). The impermeable flat bottom is shown as a dotted line. (a) 
Periodic wave train with N = 5 and group length λ = 2π (solid line) and its image (dashed line) in the z plane. (b) The transformed 
region in the Z plane. The same line types used in (a) show the mapped water surface S1, image surface S2, and flat bottom, 

respectively
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