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ABSTRACT

To calculate the effects of turbulent relaxation on oscillatory turbulent 
boundary layers, a viscoelastic term is added to an eddy viscosity model. 
The viscoelastic term parameterizes the lag of turbulent properties in 
response to imposed oscillatory shear and is proportional to the ratio 
between the timescales of eddy dissipation and of the oscillating flow. It is 
found that the turbulent relaxation plays an important role in the phase 
variations of velocity and shear stress with elevation, and that it decreases 
the friction factor and the phase lead of bed shear stress over free stream 
velocity.

To assess the effects of turbulent diffusion in this problem, the viscoelastic 
model is extended by further introducing a turbulent diffusion term in the 
model. The comparisons between these two models indicate that turbulent 
diffusion significantly reduces the magnitudes of shear stress and velocity 
perturbation in the outer region of the boundary layer. It is also found that 
the effects of turbulent relaxation and diffusion increase with increasing 
relative roughness. As a result, the analytical solutions demonstrate an 
overall improvement over the eddy viscosity model in predicting the 
observed temporal evolution of velocity and shear stress profiles; this 
improvement is more distinct for rough beds than smooth beds.

1. Introduction 

Shallow water waves and tidal flows generate an oscillatory boundary layer at the ocean bottom that is often very thin 
compared to the water depth. This problem is significant to our understanding of coastal processes such as wave energy 
dissipation (cf. Weber 1991; Tolman 1994; Young and Gorman 1995; Agrawal et al. 1992), sediment transport, and 
suspension (Nielsen 1992; Fredsoe and Deigaard 1992). Quantitative evaluation of velocity fields, shear stress, drag force, 
and mass transport within the layer depends on the Reynolds closure models used in solving the Reynolds-averaged Navier–
Stokes equation (see Sleath 1990 for review and Grant and Madsen 1986 for background knowledge). Among these models, 
only the relatively primitive eddy viscosity models have yielded analytical solutions (Kajiura 1968; Johns 1969; Grant 1977; 
Smith 1977; Brevik 1981; Myrhaug 1982; Lavelle and Mofjeld 1983; Trowbridge and Madsen 1984; Davies 1986; Madsen
and Wikramanayake 1991). In fact, the analytical tractability and comparative simplicity of eddy viscosity models have 
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resulted in their prominence and widespread application.

Nonetheless, these models neglect turbulent relaxation or vertical diffusion effects; therefore, none of them allow the 
phase of the eddy viscosity to change with height above the bed (cf. Davies 1986). These effects are included in the second-
order turbulent closure models (cf. Sleath 1990; Fredsoe and Deigaard 1992) and their solutions, however, have to be 
evaluated numerically; therefore, they are hard to interpret and far less accessible than their analytical counterparts. As a 
compromise between these two types of model, we approach this problem differently by using a viscoelastic model that 
includes the most important aspects of the second-order closure models, yet is simple enough to yield analytical solutions in 
a closed form. The reader should refer to Speziale (1991) for a review on Reynolds-stress closures in steady turbulent flow 
and Hanjalic (1994) and Brereton and Mankbadi (1995) for a review of the treatment of unsteady turbulent flow.

Measurements of suspended sediment in tidal flows indicate a lag in concentration behind the free stream velocity and the 
bed shear stress (cf. Davies 1977; Dyer 1986). It is also observed that, at any level, the suspended sediment concentration is 
higher within a decelerating current than that within an accelerating current. During their measurements of sediment 
suspension under wave groups, Hay and Bowen (1994) noticed a lag between the sediment concentration and wave group 
envelope that increases with the distance from the bed. From their measurements of bottom turbulent layers induced by tidal 
flows, both Gordon (1974) and McLean (1983) found that shear stress and turbulent kinetic energy are larger during the 
decelerating phase of the flow than those during the accelerating phase. The hysteresis of sediment concentration is a 
consequence of the hysteresis of shear stress and turbulent kinetic energy combined with the nonzero fall velocity of the 
sediment. It has also been found that, away from the bottom, shear stress lags the free stream velocity and that maximum 
bedload sediment transport occurs before the maximum free stream velocity and shear stress aloft (cf. Lavelle and Mofjeld
1983).

These field measurements suggest that the phase lead of shear stress over free stream velocity decreases from a positive 
value at the bed to a negative value away from the bed. In laboratory studies of oscillating flow, Sleath (1987) observed a 
180° phase shift in shear stress between the bed and a certain height above. He suggested that it is caused by the jets of fluid 
associated with vortex formation and ejection in oscillatory flow over rough beds. It is obvious that such a proposal does not 
apply to the wave boundary layer over smooth beds where a similar phenomenon was observed by Jensen et al. (1989). In 
contrast, from the comparison of the present viscoelastic model with observations, we draw the conclusion that eddy 
relaxation is the mechanism behind this behavior.

The theoretical studies of oscillatory turbulent boundary layer prior to the 1980s were prevailed by the time-invariant eddy 
viscosity models of different forms. They were proposed initially by analogy with the steady turbulent flow. Experimental 
studies of oscillatory turbulent flow have been mostly mean (ensemble average) flow measurements (cf. Jonsson and
Carlsen 1976; Van Doorn 1982). As a result, few theoretical studies of this problem are able to justify their predictions of 
Reynolds stresses by comparison with direct measurements. Sleath's (1987) and Jensen et al.'s (1989) measurements 
complement each other and provide a comprehensive dataset of turbulence properties in addition to the mean flow.

From his analysis of Jonsson and Carlsen's (1976) experiment, Nielsen (1985) observed a phase shift between shear 
stress and velocity gradient that varies with height above the bed. He suggested that either a time-variant real eddy viscosity 
or a complex eddy viscosity be adapted to explain such behavior. Meanwhile, he pointed out the lack of a theoretical basis 
for the complex eddy viscosity. As shown later in this presentation, introducing a turbulent relaxation term to the 
conventional eddy viscosity model leads to a complex eddy viscosity and results in an improved prediction of the observed 
velocity profiles of Jonsson and Carlsen (1976) and others.

Different from their predecessors, each of Lavelle and Mofjeld (1983), Trowbridge and Madsen (1984), Davies (1986), 
and Madsen and Wikramanayake (1991) postulated a time-varying eddy viscosity in their study of the wave turbulent 
boundary. Nevertheless, these models all assume that the time-dependent part of eddy viscosity has the same vertical 
structure as the steady part, therefore, the phase of eddy viscosity does not vary with height above the bed. This 
assumption, which contradicts the existing observations and the numerical results provided by the second-order turbulent 
closure models, is avoided in the present investigation of this problem.

It takes time for the turbulent properties, represented by Reynolds stresses, to relax to attain a new equilibrium state set by 
a new mean velocity strain at each instant. The lag depends on the ratio between the time scales of eddy relaxation and of 
the oscillating shear flow, and therefore varies with height. This relaxation aspect of turbulent flow is not adequately 
described by any of the eddy viscosity models listed above.

Adding a viscoelastic term to an eddy viscosity model, we obtain the following equation that is analogous to Maxwell's 
equation for non-Newtonian flow (cf. Zou 1995, 1998); that is, 

 

where τ is the shear stress, τ0 is the corresponding shear stress in the eddy viscosity model with a Boussinesq viscosity 

ν0, Te = le/(a1u ) is the eddy relaxation time, τ0 = u2  is the peak shear stress at the bed, u  is the friction velocity, le = κz 

is the eddy mixing length, κ is von Kármán's constant, a1 = −‹u′w′›/q2 is the ratio between shear stress −‹u′w′›, 



turbulent energy q2 and its empirical value for steady flow is a1 = O(κ2) (cf. Townsend 1976; Bradshaw et al. 1967), and 

the subscripts x and z signify partial differentiation hereinafter. Viscoelastic model (1.1) could be derived from Townsend's 
turbulent energy equation for steady turbulent flow by neglecting the vertical diffusion term (cf. appendix A of Zou 1998). 
Following many previous investigators of this problem, we will apply it directly to the oscillatory turbulent flow in this 
problem.

We assume the near-bottom orbital velocity induced by a progressive wave or tidal flow of the form 

u∞ = aω exp(iωt − ikx) + c.c., (1.2)
 

where a is the excursion amplitude of the orbital motion, ω is the radian frequency, k is the wavenumber, and c.c. is the 
complex conjugate of the preceding variable and will be omitted hereinafter. The convective term in (1.1) is O(ka), therefore 
negligible for a small wave slope, the associated shear stress τ has the same (x, t) dependence as the near-bottom orbital 
velocity (1.2) and (1.1) reduces to a complex effective eddy viscosity 

 

where α = κ2/a1 is taken as the weight coefficient of eddy relaxation and l = κu /ω is equivalent to the wave boundary 

layer thickness proposed by previous investigators. In contrast to the eddy viscosity model ν = ν0  κu z, both amplitude 

and phase of the eddy viscosity (1.3) depend on the oscillatory frequency. The phase of the effective eddy viscosity (1.3), 

ν = −arctan(αz/l), decreases from zero at the bed to about −90° at the top of wave boundary layer z/l  ∞, where the 

shear stress and velocity strain are in quadrature. In the case of α = 0, namely in the absence of eddy relaxation, the closure 
model (1.3) reduces to the eddy viscosity model, ν = ν0  κu z. The former approaches the later asymptotically in the 

region z  l where eddies attain a local equilibrium with the ambient mean flow.

As demonstrated later, it is necessary to further include turbulent diffusion in (1.1) to accurately predict the observed 
rapid decay of shear stress and velocity defect in the outer region of the boundary layer. Assuming the vertical diffusion of 
turbulent energy is proportional to its gradient with a diffusivity ν0 = κu z, we have (cf. Townsend 1972; Zou's 1998 

appendix A) 

 

Similar to the second-order closure models, the viscoelastic–diffusion model (1.4) represents the turbulent energy balance 
due to production, dissipation, relaxation, and vertical diffusion. Unlike these models, (1.4) can be solved analytically. 
Furthermore, most previous eddy viscosity models involve a discontinuity in eddy viscosity or its gradient and a 
preassumption of matching height between adjacent layers. As shown later, by avoiding these physically unrealistic 
assumptions, (1.4) results in improved predictions of observed velocity and shear stress profiles within the wave bottom 
boundary layers.

Although eddy relaxation effects in oscillatory turbulent flow have been recognized by some investigators (Lavelle and
Mofjeld 1983; Trowbridge and Madsen 1984; Nielsen 1992, etc.), their quantitative evaluation has not been the focus of 
previous analysis. Our objective is to apply the viscoelastic closure model (1.1) to the Reynolds-averaged Navier–Stokes 
equation and calculate the effects of eddy relaxation on oscillatory turbulent flow. Further comparison between the 
viscoelastic–diffusion model (1.4), the viscoelastic model (1.1) and observations allows us to examine the role of turbulent 
vertical diffusion in this problem. In section 2, we give a detailed discussion of these two models, substitute them into the 
Reynolds-averaged Navier–Stokes equation, and derive their analytical solutions. The theoretical and experimental results are 
compared in section 3. Finally, in section 4, the major findings of this study are summarized and discussed.

2. Governing equations and their solutions 

We consider here the wave turbulent boundary layer generated by a progressive wave over a flat seabed. We assume that 
the associated turbulent flow is neutrally stable and fully developed. The x and z components of the Reynolds-averaged 
Navier–Stokes equations are 



 

where x is positive in the direction of wave propagation, z is positive upward with z = 0 at the bed, u  ‹u›  and w  ‹w›  
are the mean velocity components, p is the mean pressure, ρ is the density, u′ and w′ are randomly fluctuating velocities 
in the x and z directions, and angle brackets imply a phase average. The order of magnitude estimation of (2.1b) and the 
mass conservation equation 

ux + wz = 0 (2.2)
 

show that the vertical pressure gradient is O[(kl)2], hence 

 

where the subscript ∞ denotes the variable in the potential flow just outside of the boundary layer and hereinafter. 
Substituting (2.3) into (2.1a) and omitting terms of O(ka) and O(kl), we have 

 

a. The viscoelastic model 

Nondimensionalized by scalings 

 

and combined with (1.3), the momentum equation (2.4) becomes 

 

where 

 

and  = z/l is the stretched coordinate.

The boundary conditions follow from the no-slip condition at the bottom and the continuity of velocity at the top of the 
boundary layer; that is, 

 

where 0 = z0/l, z0 is a roughness length determined by the geometry of the roughness elements on the seabed, along with 

the flow condition.

Combination of (2.6a) and (2.6b) gives 



 

By introducing a new independent variable 

 = 2iβ , (2.9) 

where 

β = (α )½, (2.10)

 

we reduce (2.8) to Whittaker's equation [cf. Olver (1974); Abramowitz and Stegun, sec13.1.31], 

 

The solution to (2.11) that vanishes at | |  ∞ is 

 

where U is the confluent hypergeometric function and the constant coefficient C is determined by the no-slip boundary 
condition at the bed, (2.7a) in combination with (2.6a); that is, 

 

Differentiating (2.12) about  and combining with (2.13) and (2.9) gives 

 

where the function F(β, ) is related to the confluent hypergeometric function U by 

 

Substituting (2.14) into (2.6b), we obtain 

 

In appendix a, we show that, as β  0, the eddy relaxation term becomes zero and (2.14a) becomes 

 

which is identical to solution of the eddy viscosity model, ν = ν0  κu z (cf. Grant and Madsen 1986). It follows that 



(2.14) and (2.15) are general solutions for the viscoelastic model with an arbitrary relaxation coefficient β.

On the assumption that the roughness length z0 is much smaller than the wave turbulent boundary layer thickness l, that 

is, 0 = z0/l  1, near the surface (   0), u approaches its asymptotic value of 

 
(Click the equation graphic to enlarge/reduce size)

where  is digamma function and γ is Euler's constant, while τ approaches its asymptotic value of 

 

which is the bed shear stress. As indicated by (2.17a,b) and (2.18a,b), the near-wall flow exhibits a logarithmic velocity 
profile and a constant shear stress that depend on the viscoelasticity coefficient β.

The bed shear stress is related to the orbital velocity by 

 

where fw is the wave friction factor, τ0
 is the phase lead of the bed shear stress τ0 over the free stream velocity u∞. 

The amplitude of the bed shear stress τ0 is u2 ; that is, 

 

Invoking 0 = ωz0/(κu ), u∞ = aω/u , and z0 = r/30, where r is the Nikuradse equivalent roughness of the bed, (2.20) 

reduces to 

 

Using the Newton–Raphson method, 0 can be calculated for each value of a/r and substituted into (2.19) to obtain the 

friction factor, that is, 



 

and then substituted into (2.18b) to obtain τ0
. As β  0, (2.18b) and (2.21) become 

 

which are identical to the corresponding formula of the eddy viscosity model (A.6b) and (A.7a).

b. The viscoelastic–diffusion model  

To quantitatively evaluate the effects of eddy vertical diffusion, we nondimensionalize the viscoelastic–diffusion model 
(1.4) by the scalings (2.5) and combine it with the momentum equation (2.6a) and thus have 

 

Different from the viscoelastic model (1.3), the viscoelastic–diffusion model (1.4) does not yield exact analytical solutions 
that satisfy the governing equations (2.6a) and (2.24) and boundary conditions (2.7a,b). In addition, the boundary conditions 
(2.7a,b) are not complete at the bed (z = 0), so it is not possible to integrate (2.6a) and (2.24) directly starting at the bed. 
Instead a shooting method has to be implemented [cf. Zou (1995, 1998) for a detailed description of this method] to obtain 
the numerical solutions to the problem.

Nonetheless, the approximate solutions may be derived analytically by the following manipulations of the governing 
equations. Substituting (2.24) into (2.6a) leads to 

 

Substituting (2.6a) into (2.25) gives 

 

Introducing the transformation 

τ = (1 + iα )−1/2W (2.27)

 

in (2.26) gives 

 

For   1, (3/4) [α2/(1 + iα )2]  i/ ; therefore, (2.28) is well approximated by 

 



which is the same as the governing equation of shear stress for the eddy viscosity model; therefore, 

W = C1τe, (2.30a)
 

where C1 is a constant coefficient, 

 

is the shear stress solution of the eddy viscosity model (cf. appendix A), ker, kei, ker1, and kei1 are the zeroth and first-

order Kelvin functions. Substituting (2.30) into (2.27) yields 

τ = C1(1 + iα )−1/2
τe. (2.31)

 

Substituting (2.31) into (2.6a) gives 

 

where 

 

is the perturbation velocity solution of the eddy viscosity model (cf. appendix A). Substituting (2.32b) and (2.30b) into 
(2.32a), we obtain 

 

The constant coefficient C1 is determined by the no-slip boundary condition at the bed (2.7a); that is, ud = −u∞ as   

0 so that the velocity solution (2.33) becomes 

 

where 

 
(Click the equation graphic to enlarge/reduce size)

and the shear stress solution (2.31) becomes 



 

Similar to the velocity and shear stress solutions of viscoelastic model, (2.14) and (2.15), those of viscoelastic–diffusion 
model, (2.34) and (2.35), reduce to those of the eddy viscosity model, (2.30b) and (2.32b), as α  0.

Near the surface (   0), τ approaches its asymptotic value of 

 

which is the bed shear stress. The bed shear stress is related to the orbital velocity by 

 

where fw is the wave friction factor and τ0
 is the phase lead of the bed shear stress over the free stream velocity u∞.

 

The amplitude of the bed shear stress τ0 is u2 ; that is, 

 

Invoking 0 = ωz0/(κu ), u∞ = aω/u  and z0 = r/30, where r is the Nikuradse equivalent roughness of the bed, (2.38) 

reduces to 

 

which is identical to the corresponding formula (2.23b) of the eddy viscosity model as α  0. From (2.39), 0 is 

calculated for a given value of a/r and substituted into (2.22) and (2.36) to obtain fw and τ0
. As demonstrated in the next 

section, solutions (2.34) and (2.35) compare well with the numerical results using the shooting method.

3. Comparison with experiment results 

We now compare the present analytical solutions, (2.34) and (2.35), of the viscoelastic–diffusion model, (2.14) and 
(2.15), of the viscoelastic model as well as those of the eddy viscosity model, (A3) and (A4), with measurements of the 
oscillatory boundary layer over rough and smooth beds. The former is more relevant to that in the natural environment. 

According to Jensen et al.'s (1989) measurement, α = κ2q2/‹u′w′›   2, so we will first use this value to evaluate the 
model in the comparisons, then carry out a sensitivity study of the viscoelastic–diffusion model relative to the choice of α. 

As demonstrated in Figs. 1a and 1b , in comparison with the eddy viscosity model, the viscoelastic–diffusion model 
provides improved overall predictions for the velocity profiles observed by Jonsson and Carlsen (1976). The two models 
give identical predictions of |u/u∞| in the near-bed region, while diverging in the outer region of the boundary layer. Both 

magnitude and location of the velocity overshoot are well captured by the present model, but poorly by the eddy viscosity 
model. The two models are also distinct from each other in predicting the observed phase variation of velocity through the 
wave boundary layer. The improvement represented by the present model is due to the incorporation of turbulent relaxation 
and diffusion. Also evident from Fig. 1  is the agreement of the analytical solutions (solid lines) with the numerical results 
(dashed-dot lines) obtained using a shooting method. As shown next, similar conclusions may be drawn from the 
comparisons between the present model and other observations with different relative roughness lengths.

Given a free stream velocity of u∞ = aω sinωt, Fig. 1c  shows the temporal evolution of predicted and observed 



velocity defect profiles, ud = (u − u∞)/u∞, over a half oscillatory cycle. After the flow reversal (ωt  0°), a velocity 

overshoot is generated near the bed, diffuses away from the bed with time, and intensifies with time until the flow reaches 
maximum amplitude at midcycle (ωt  90°). During the following decelerating stage, the velocity overshoot continues 
moving upward but declines in magnitude, and a new velocity overshoot is generated close to the bed in the opposite 
direction. Near the midcycle, both the present model and the eddy viscosity model predictions agree with the measurements 
fairly well in the near-bed region. Farther away from the bed, the two models start to deviate from each other, and the 
present model is in better agreement with the observations in the velocity overshoot region.

During the period of flow reversal (ωt  0° and ωt  180°), velocity overshoot comes into existence in both upper and 
lower parts of the boundary layer, the eddy viscosity model fails to capture the vertical variation of velocity throughout the 
layer, while the present model remains reasonable agreement with the observations. At this stage of the wave period, 
turbulence is generated and diffuses away from the bed, therefore has not reached an equilibrium with the mean flow. The 
associate strong turbulent relaxation and diffusion prohibit it from being adequately described by the eddy viscosity model. 
After flow maximum, turbulence is well developed and in a close analogy with its counterpart of steady flow, the eddy 
viscosity model becomes more suitable to characterize its dynamics.

There exists a wide range of relative roughness in both natural wave boundary layers and laboratory experiments. It is 
therefore useful to examine whether the present model is applicable for turbulent flows with a variety of relative roughness. 
We carried out similar comparisons with the measurements by Van Doorn (1982), Sleath (1987), and Jensen et al. (1989), 
and the results are displayed in Figs. 2 , 3 , and 4 , respectively. Table 1  lists wave period T, the semiexcursion 
amplitude of orbital velocity a, the Nikuradse equivalent roughness length r, and the relative roughness length r/a for these 
experiments.

From these figures, one may draw similar conclusions to those in the preceding paragraphs from Fig. 1 . To further 
quantify the performance of the viscoelastic–diffusion model relative to the eddy viscosity model in predicting these 
observations, Fig. 5  illustrates how the discrepancy between two models and observations varies across the boundary 
layer, and Table 2  lists their averaged values over the boundary layer thickness. Together with the intercomparisons 
among Figs. 1–4 , they suggest the following: 1) the velocity overshoot decreases as the bed roughness becomes smaller; 
2) in the rough bed case, a more rapid deduction of the mean velocity toward the bed is observed due to the enhanced 
momentum exchange by the increased bed roughness; 3) the deviation of the present model from the eddy viscosity model is 
dependent on the relative roughness and it is smaller in smooth bed case than in rough bed case; and 4) the discrepancy 
given by the present model is about one half or one quarter of that by the eddy viscosity model (cf. Fig. 5 , Table 2 ).

Nielsen (1985) was intrigued by the behavior of the nondimensional velocity defect Du = 1 − u/u∞. He noted that the 

identity relationship, log|Du|  arg(Du), which is valid for laminar flow, also holds with great accuracy for most turbulent 
flows with reasonable relative roughness. He also pointed out that neither the eddy viscosity models nor the numerical 
mixing length models are able to reproduce this behavior. In case of a rough bed, as demonstrated by Fig. 6a , the 
observed profiles of −log|Du| and −arg(Du) satisfy this relationship, while in case a smooth bed, as demonstrated by Fig. 6b 

, they diverge from each other significantly. This behavior is well captured by the present model but not by the eddy 
viscosity model.

Figure 7a  illustrates the temporal evolution of the predicted and observed shear stress profile over a half oscillatory 
cycle. During the accelerating stage, turbulence is generated near the bed, diffuses away from the bed with time until 
midcycle when it starts to distribute uniformly across the layer. During the decelerating stage, the adverse pressure gradient 
comes into play, it enhances the shear instability according to the inflection point criterion, which is in analogy to the 
separating flow in the steady turbulent flow. As a result, turbulence is intensified at the bed, moves upward, and decays until 
the flow starts to reverse and new eddies are created near the bed (cf. Jensen et al. 1989). The elevation of zero shear stress 
marks the division between the new and old turbulence. According to the observations, it moves from close to the bed to the 
top of the boundary layer within a half cycle. The other important feature exhibited in this figure is the shear stress 
overshoot moving upward with time. This feature is in connection with the similar upward motion of the velocity overshoot 
shown by Fig. 4c . The eddy viscosity model is unable to track either of the observations for these events, whereas the 
present model does an excellent job in predicting their elevations as well as the overshoot magnitude of shear stress.

The difference between these two models in predicting the observed shear stress profile is further elucidated in Figs. 7b
and 7c  where only the magnitude and phase of its complex amplitude are exhibited. The two models are identical to each 
other in the near-bed region while separate from each other farther up in the water column, where the present model gives 
improved prediction of the decreasing magnitude and phase of shear stress with the height above the bed. Nonetheless, it is 
noticeable in both Figs. 7a and 7b  that neither model predicts the shear stress magnitude well right next to the bed.

Both Sleath (1987) and Jensen et al. (1989) noticed that due to the reflection of the laser beam off the bed, the laser-
Doppler anemometer (LDA) tends to underestimate the shear stress in this region. Alternatively, the bed shear stress was 
estimated from the logarithmic fit of the near-bed velocity profile and through the momentum integration method (cf. Jensen 
1989). The former was used to derive the observed friction factor fw (denoted as circles) in Figs. 10  and 11 , while 

the later is listed as u2  in Table 1 of Jensen et al. (1989) and used as the scaling for nondimensionalizing the shear stress. 

They are consistent with each other and with the prediction by viscoelastic–diffusion model with α = 2 as shown in Fig. 10 
. They are, however, almost twice as much as that given by LDA at the measuring point closest to the bed (cf. Fig. 7b 



).

As pointed out in the introduction, the phase lead of shear stress τ relative to the free stream velocity is an important 

quantity in studies of wave dissipation and sediment transport and suspension in the ocean bottom boundary layers. As 
shown in Figs. 7b and 7c , the present model (solid lines) predicts τ remarkably well across the whole layer, whereas 

the eddy viscosity model (dashed lines) underestimates τ and the discrepancy increases with the height above the bed. This 

deviation is mainly attributed to the turbulent relaxation effect neglected by the eddy viscosity model. From (1.3), we have 
the phase of the effective eddy viscosity in the form of ν = −arctan(αz/l); accordingly, ν of viscoelastic models 

decreases from zero at the bed to about −90° at the top of wave boundary layer, whereas ν of the eddy viscosity model 

remains zero across the layer.

According to the viscoelastic model (1.3), β = (α )½ is a weight coefficient of eddy relaxation since, as β  0, (1.3) 
reduces to the eddy viscosity model. It is worthwhile examining how α affects the results. Therefore, we applied α = 0 (the 
eddy viscosity model, denoted by dashed lines), α = 2 (the present model, solid lines), and α = 4 (dashed-dot lines) to the 
viscoelastic–diffusion solutions (2.34) and (2.35). The predicted velocity and shear stress profiles are exhibited in Figs. 8  
and 9  together with the measurements by Jensen et al. (1989) and Jonsson and Carlsen (1976) respectively. Both figures 
suggest that, while α = 0 and α = 2 yield the diverging results that have been thoroughly discussed in the preceding 
paragraphs, α = 2 and α = 4 predict identical magnitudes of velocity and shear stress overshoot, but only the former 
manages to locate the velocity and shear stress overshoot correctly.

The friction factor fw and phase lead of the bed shear stress over free stream velocity, τ0
, are both important quantities 

to evaluate in any theoretical model of this problem. Figure 10  shows the predictions by (2.39), (2.22), and (2.36) for 

the viscoelastic–diffusion model with α = 0, 2, and 4 together with the measurements of fw and τ0
 for 104  a/r  101 by 

Kamphuis (1975), Jonsson and Carlsen (1976), Sleath (1987), and Jensen et al. (1989). The predicted fw and τ0
 decrease 

with increasing α and the deviations reduce considerably for small relative roughness r/a. The viscoelastic–diffusion model 

with α = 2 (denoted by solid line) provides the optimal prediction of the observed fw at a/r > 102 while underpredicting it at a 

larger roughness a/r < 102. This result is consistent with the fact that α = 2 gives the optimal prediction of the observed 
velocity and shear stress profiles (cf. Figs. 8  and 9 ). Also evident from Figs. 10a and 10b  is the close 
approximation between the predictions by the viscoelastic–diffusion model with α = 2 and those by the more sophisticated 
k–  turbulent closure model (denoted by diamonds: cf. Justesen 1988). The deviation between theory and observation at a/r 

< 102 is probably due to the significant form drag associated with the large roughness element in this parameter region, 
which is not included in the theory or models.

The same comparison was conducted in Fig. 11  for the predictions by the viscoelastic model solutions (2.21), (2.22), 
and (2.18b) with α = 0, 2, and 4. Similar to the viscoelastic–diffusion model, the predicted fw and τ0

 decrease with 

increasing α and the deviations decrease for small relative roughness r/a. The intercomparison between Figs. 10  and 11 
 and Table 3  indicates that the predicted fw and τ0

 by the viscoelastic model using α = 4 is approximately the same 

as those by the viscoelastic–diffusion model using α = 2 and by the k–  turbulent closure model. 

The sensitivity study of model parameter α is carried out further in Fig. 12 . According to Fig. 12a , the depth-
averaged velocity discrepancy between the viscoelastic–diffusion model and observation attains a minimum value of 0.05, 
0.027, 0.027, and 0.028 at α = 1.5, 2.1, 2.2, and 1.2 for Jonsson and Carlsen (1976), Van Doorn (1982), Sleath (1987), and 
Jensen et al. (1989), respectively. As listed in Table 2 , the discrepancy goes up to 0.12, 0.09, 0.07, and 0.06 at α = 0 for 
the eddy viscosity model.

To study the effects of turbulent diffusion separately from those of turbulent relaxation, we compare the velocity and 
shear stress solutions according to the viscoelastic–diffusion model (1.4), the viscoelastic model (1.1), the eddy viscosity 
model, as well as the viscoelastic model with exponentially decaying mixing length (B.1). Figures 13  and 14  illustrate 
the comparisons for smooth and rough bed respectively. As demonstrated in these figures, in contrast to the eddy viscosity 
model, the viscoelastic and viscoelatic–diffusion models result in identical phase shifts for shear stress. Both of them are able 
to resolve the feature of overshooting velocity and shear stress. However, the viscoelastic model overestimates their heights 
and magnitudes. This deficiency is due to the turbulent diffusion neglected in the model, which tends to reduce the 
magnitudes of velocity and shear stress at the top of boundary layer. Unlike turbulent diffusion, turbulent relaxation is more 
relevant to the phase variations of velocity and shear stress in the vertical direction.

4. Conclusions and discussions 

In this work, by adding viscoelastic and diffusion terms to the conventional eddy viscosity model, we have constructed a 
viscoelastic–diffusion model to study the turbulent relaxation and diffusion effects in oscillatory boundary layers [cf. Eq. 
(1.4)]. The resulting analytical solutions are found to be in better agreement with observations than the previous solutions 
using time-invariant eddy viscosity and time-variant eddy viscosity models such as that by Madsen and Wikramanayake 



(1991, cf. their Fig. 26). Our analysis shows that the turbulent relaxation plays a key role in the phase variations of velocity 
and shear stress in the vertical direction, whereas the turbulent diffusion is mainly responsible for reducing the magnitude of 
these variables at the top of the boundary layer.

The present study yields a complex eddy viscosity instead of the real one assumed by the eddy viscosity models. 
Furthermore, unlike most eddy viscosity models (Kajiura 1968; Johns 1969; Grant 1977; Smith 1977; Brevik 1981; Myrhaug 
1982; Lavelle and Mofjeld 1983; Trowbridge and Madsen 1984; Davies 1986; Madsen and Wikramanayake 1991), the 
viscoelastic diffusion model (1.4) does not involve any discontinuity in eddy viscosity or its gradient and requires no pre-
assumption of matching height between adjacent layers. The merit of this modification is demonstrated by the better 
agreement between predicted and observed phase variations and the magnitude of the velocity and shear stress profiles.

The viscoelastic–diffusion model provides a good prediction of the velocity profile in both inner and outer regions of the 
boundary layer at any phase of wave cycle. Thus, the present velocity solution serves as a better candidate than that of the 
eddy viscosity model for estimating the roughness length and friction velocity from velocity profile measurements in the 
laboratory and field (cf. Zou and Hay 2002, manuscript submitted to J. Phys. Oceanogr.). Furthermore, the comparisons 
between the predicted and observed velocity and shear stress profiles, the friction factor fw and phase lead of the bed shear 

stress over free stream velocity, τ0
, over a smooth bed and a rough bed suggest that the deviation of the present model and 

the eddy viscosity model increases with increasing relative roughness. In the presence of a rough bed, for a given free-
stream velocity, the friction velocity is greater; so is the boundary layer thickness and eddy length scale le = κz. It follows 

that eddies with longer life span dominate the turbulent dynamics, which results in more significant eddy relaxation and 
diffusion effects.

As observed by Sleath (1987) and Jensen et al. (1989), the turbulence intensity showed a significant variation during an 
oscillatory cycle. To incorporate this characteristic, Lavelle and Mofjeld (1983), Trowbridge and Madsen (1984), Davies
(1986), and Madsen and Wikramanayake (1991) have used time-variant eddy viscosity models in their investigations of this 
problem. They have found that such modification improved the model comparisons with observed streaming velocity and 
wave–current interaction at an oblique angle. Nevertheless, these models all assume that the time-dependent part of the eddy 
viscosity has the same vertical structure as the steady part. As pointed out by some of these authors, this physically 
unrealistic assumption makes it unlikely that these models correctly resolve the vertical structure of streaming velocity within 
the wave bottom boundary layers. Therefore, it is worth revisiting this problem with a time-variant viscoelastic–diffusion 
model.

In summary, turbulent relaxation and diffusion have significant effects on the overshooting of velocity and shear stress, 
their phase variations across the wave boundary layers, as well as the magnitude and phase of bed shear stress. By including 
these effects, the present model obtains better agreement with the observations of these properties by previous investigators 
than the eddy viscosity model. It also provides readily evaluated solutions in a closed form which are applicable to both 
smooth and rough beds.
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APPENDIX A 

5. Comparison with Previous Eddy-Viscosity Model  

To check the consistency of analytical solutions (2.14) and (2.15), we derive the asymptotic behaviors as β  0 and 
compare them with those of the eddy-viscosity model (cf. Grant 1977). The following relationship is valid for confluent 
hypergeometric functions (cf. Abramowitz and Stegun 1970, sec. 13.3.3): 

 

Similarly, we have 

 

Substituting (A.1) and (A.2) into (2.14), we have 

 

Solutions (A.3) and (A.4) are identical to those by Grant (1977) using the eddy viscosity model. Near the surface (   

0), u approaches its asymptotic values of 

 



which is a logarithmic velocity profile, while τ approaches its asymptotic value of 

 

which is the bed shear stress. Following the same procedure as in section 2, we derive the following implicit equation for 

0: 

 

APPENDIX B 

6. Exponential Decay Viscoelastic Model 

As the outer region of wave turbulent layer is approached, the shear stress profile starts to display an exponential decay. 
Since the turbulent dissipation time is about the same as turbulent relaxation time Te and in the outer region the eddy-evolving 

time is about 1/ω, the turbulent intensity decays like exp(−ωTe) = exp(− ) as its origin at the bed. Accordingly, we add an 

exponential decay coefficient to both the original eddy viscosity ν0 and the viscoelastic term in (1.3); namely that, 

 

Effective eddy viscosity (B.1) is equivalent to (1.3) except at z  l. Following the same procedure as that in section 3, we 
derive the governing equation: 

 

where τ = τ/u2  is nondimensional shear stress,  = z/l and α = κ2/a1. The shear stress is related to velocity defect by 

 

where ud = (u − u∞)/u  is nondimensional velocity defect.
 

Equations (B.2) and (B.3) are analytically intractable. A simple WKB analysis shows that their solutions display an 
exponentially decaying asymptotic behavior at a very large . Eqs. (B.2) and (B.3) become equivalent to (2.6) and (2.4b) 
when   1. Accordingly, we estimate their solutions by multiplying (2.14) and (2.15) with exp(− /2); that is, 



 

The solutions to equation (B.2) and (B.3) are then calculated numerically using the shooting method described in Zou
(1995) and Zou (1998). To test the code, we use it to compute the solutions to Eq. (2.6) and boundary conditions (2.7) and 
then compare the results with analytical solutions (2.14) and (2.15). It was found that the analytical solutions (B.4) and (B.5) 
are in excellent agreement with the numerical results.

As expected, the predictions are identical to those given by the viscoelastic model at  < 1, but the comparisons between 
theory and experiment are improved remarkably at   1. It is also noticeable that neither phase lead of shear stress τ nor 

that of velocity u is influenced by this modification except that prediction of u near the bed is improved. 

Tables 

TABLE 1. The key parameters for the laboratory measurements of WBL 
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TABLE 2. The average discrepancy between predicted and observed velocity over the boundary layer thickness 
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TABLE 3. The friction factor fw calculated by the eddy viscosity, viscoelastic, viscoelastic–diffusion, and k–  models
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Figures 
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FIG. 1. The predicted and measured (a) magnitude and (b) phase of the dimensionless complex amplitude of velocity, u/u∞, for 

the wave boundary layer over a rough bed. (c) Evolution of dimensionless velocity defect, [u(t, z) − u∞(t)]/aω over one-half 

wave cycle for a free-stream velocity of u∞ = aω sinωt: analytical solution (2.34) (solid lines) and numerical solution (dashed-dot 



lines) of viscoelastic–diffusion model; the eddy viscosity model solution (2.32b) (dashed lines); Jonsson and Carlsen's (1976) 
test 2 (circles)

 
Click on thumbnail for full-sized image. 

FIG. 2. The predicted and measured (a) magnitude and (b) phase of the dimensionless complex amplitude of velocity, u/u∞, for 

the wave boundary layer over a rough bed. (c) Evolution of dimensionless velocity defect, [u(t, z) − u∞(t)]/aω over one-half 

wave cycle for a free-stream velocity of u∞ = aω sinωt: analytical solution (2.34) (solid lines) and numerical solution (dashed-dot 

lines) of viscoelastic–diffusion model; the eddy viscosity model solution (2.32b) (dashed lines); Van Doorn (1982) observations 
(circles)
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FIG. 3. The predicted and measured (a) magnitude and (b) phase of the dimensionless complex amplitude of velocity, u/u∞, for 

the wave boundary layer over a rough bed. (c) Evolution of dimensionless velocity defect, [u(t, z) − u∞(t)]/aω over one-half 

wave cycle for a free-stream velocity of u∞ = aω sinωt: analytical solution (2.34) (solid lines) and numerical solution (dashed-dot 

lines) of viscoelastic–diffusion model; the eddy viscosity model solution (2.32b) (dashed lines); Sleath (1987) observations 
(circles)
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FIG. 4. The predicted and measured (a) magnitude and (b) phase of the dimensionless complex amplitude of velocity, u/u∞, for 

the wave boundary layer over a rough bed. (c) Evolution of dimensionless velocity defect, [u(t, z) − u∞(t)]/aω over one half wave 

cycle for a free stream velocity of u∞ = aω sinωt: analytical solution (2.34) (solid lines) and numerical solution (dashed-dot lines) 

of viscoelastic–diffusion model; the eddy viscosity model solution (2.32b) (dashed lines); Jensen et al. (1989) test 13 (circles) 
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FIG. 5. The discrepancy between the predicted and observed dimensionless complex amplitude of velocity, |(upred − uobs)/u∞| 

for (a) Jonsson and Carlsen's (1976) test 2, (b) Van Doorn (1982), (c) Sleath (1987), and (d) Jensen et al. (1989) test 13: analytical 



solution (2.34) (solid lines) of viscoelastic–diffusion model; the eddy viscosity model solution (2.32b) (dashed lines) 
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FIG. 6. (a) The predicted and measured dimensionless complex amplitude of velocity defect Du = 1 − u/u∞ for rough bed: 

−ln|Du| (dark) and −arg(Du) (gray): analytical solution (2.34) (solid lines) and numerical solution (dashed-dot lines) of 
viscoelastic–diffusion model (1.3); the eddy viscosity model solution (2.32b) (dashed lines), Van Doorn (1982) Test M10 RAL 
(pluses and circles). (b) Jensen et al. (1989) test 13 (pluses and circles)
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FIG. 7. (a) Evolution of dimensionless shear stress profile, τ(t, z)/u2 , over one-half wave cycle. The predicted and measured 

(b) magnitude and (c) phase of the complex amplitude of shear stress τ/u2 : analytical solution (2.35) (solid lines) and numerical 

solution (dashed-dot lines) of viscoelastic–diffusion model; the eddy viscosity model solution (2.30b) (dashed lines), Jensen et 
al. (1989) test 13 (circles)
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FIG. 8. Comparison of the observed (a), (c) magnitude and (b), (d) phase of velocity and shear stress by Jensen et al. (1989) with 
the predictions by the analytical solutions (2.34) and (2.35) of viscoelastic–diffusion model using three different values of α; i.e., 
α = 0 (the eddy viscosity model; dashed lines), α = 2 (the present model; solid lines), and α = 4 (dashed-dot lines)
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FIG. 9. Comparison of the observed (a), (c) magnitude and (b), (d) phase of velocity and shear stress profiles by Jonsson and 
Carlsen (1976) with the predictions by the analytical solutions (2.34) and (2.35) of viscoelastic–diffusion model using three 
different values of α; i.e., α = 0 (the eddy viscosity model, dashed lines), α = 2 (the present model, solid lines), and α = 4 (dashed-
dot lines)
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FIG. 10. Friction factor (a) and phase lead (b) of the bed shear stress over the free stream velocity as a function of a/r. The 
predictions by the viscoelastic–diffusion model using three different values of α [cf. Eqs. (2.39), (2.22), and (2.36)]; i.e., α = 0 (the 
eddy viscosity model; dashed lines), α = 2 (the present model; solid lines), and α = 4 (dashed-dot lines) and by the k–  turbulent 
closure model (denoted by diamonds; cf. Justesen 1988). The observed results by Kamphuis (1975) (denoted by X), Jonsson and
Carlsen (1976) (denoted by +), Sleath (1987) (denoted by *), and Jensen et al. (1989) (denoted by )
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FIG. 11. Friction factor (a) and phase lead (b) of the bed shear stress over the free stream velocity as a function of a/r. The 
predictions by the viscoelastic model using three different values of α [cf. Eqs. (2.21), (2.22), (2.18b)]; i.e., α = 0 (the eddy 
viscosity model; dashed lines), α = 2 (the present model; solid lines), and α = 4 (dashed-dot lines) and by the k–  turbulent 
closure model (denoted by diamonds; cf. Justesen 1988). The observed results by Kamphuis (1975) (denoted by X), Jonsson and
Carlsen (1976) (denoted by +), Sleath (1987) (denoted by *), and Jensen et al. (1989) (denoted by )
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FIG. 12. The depth averaged discrepancy between the predicted and observed (a) dimensionless complex amplitude of velocity 

[  |(upred − uobs)/u∞|2 dz]1/2, (b) its amplitude [  (|upred| − |uobs|)
2/|u∞|2 dz]1/2, and (c) phase [  | pred

u −  obs
u|2 dz]1/2: Jonsson 

and Carlsen's (1976) test 2 (dashed lines); Van Doorn (1982) (solid lines); Sleath (1987) (dashed-dot lines); and Jensen et al. (1989) 
test 13 (dotted lines)
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FIG. 13. The predicted and observed (a), (c) magnitude and (b), (d) phase of velocity and shear stress for Jensen et al. (1989) by 
the viscoelastic–diffusion model [Eqs. (2.34) and (2.35); solid lines]; the eddy viscosity model [Eqs. (2.30b) and (2.32b); dashed 
lines]; the exponentially decayed viscoelastic model [Eqs. (B.4) and (B.5); dotted lines], and the viscoelastic model [Eqs. (2.14) 
and (2.15); dashed-dot lines] 
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FIG. 14. Comparisons of the predicted and observed (a), (c) magnitude and (b), (d) phase of velocity and shear stress for 
Jonsson and Carlsen (1976) by the viscoelastic–diffusion model [Eqs. (2.34) and (2.35); solid lines]; the eddy viscosity model 
[Eqs. (2.30b) and (2.32b); dashed lines]; the exponentially decayed viscoelastic model [Eqs. (B.4) and (B.5); dotted lines], and the 
viscoelastic model [Eqs. (2.14) and (2.15); dashed-dot lines] 
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