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ABSTRACT

This paper examines the stability properties of coastal currents having the same 
potential vorticity (PV) structure but different transports and widths. The PV 
structure is chosen so as to verify the Charney–Stern necessary condition for 
instability: two PV fronts associated with opposite sign gradients exist. The 
authors find that the characteristics of the eddies formed by the current are 
sensitive to the transport and current width, and very different vortex sizes can 
be obtained when varying the latter parameters. The diameter is indeed shown 
to diminish when increasing the transport or diminishing the current width. 
Analytical and numerical results also show that there are parameter ranges for 
which the current is stable, and that the Charney–Stern criterion is indeed not a 
sufficient condition for instability. Large transports are, however, necessary to 
stabilize the current. The model is then used to study the dynamics of a current 
subject to adiabatic changes, and a few scenarios are reviewed. In particular, 
the authors explain how eddies with different diameters can be generated from 
the same current.

1. Introduction  

a. Previous work and subject of this study  

As underlined by the pioneering work of Charney and Stern (1962), potential 
vorticity (PV) is a key factor when studying the stability of currents. These authors 
have indeed shown that, in the framework of the quasigeostrophic (QG) model, a 
necessary condition for a current to be unstable to barotropic/baroclinic instabilities 
is that its PV gradient changes sign somewhere in the fluid. Since then, different authors have examined the stability 
properties of systems in different dynamical regimes (see Griffiths et al. 1982; Ripa 1991; Swaters 1991; Kushner 1995; 
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Benilov 1993, 1994) and have shown that, even in configurations that are far from the QG assumptions, the Charney–Stern 
(C–S) principle seems still valid (see also in particular Boss et al. 1996). 

As the instability of oceanic currents is responsible for the generation of important features (such as meanders and 
coherent vortices), the sensitivity of their instability properties to different parameters has been the subject of many 
investigations too. For instance, the influence of boundary conditions and bottom topography have been examined in Mysak 
et al. (1981); Killworth and Stern (1982) examined the influence of a vertical boundary; Killworth (1983) and Killworth et al. 
(1984) studied the long-wave instability of a surface front, the effect of the lower layer, and the influence of the 
stratification; and the vertical shear of the current is studied in Smeed (1988). Pedlosky (1987, chapter 7.15) has considered 
the effect of horizontal velocity shear on a baroclinically unstable current. Paldor and Ghil (1991) have studied the influence 
of the total ocean depth and mean current speed, and Bush et al. (1995) the effect of the current symmetry or asymmetry. 
These papers have underlined the different regimes that can exist when determining parameters are modified. In particular, 
the most unstable wavelength and size of the eddies that are generated from the current instability can be very sensitive to 
these parameters. In general, simple models are able to predict the size of the vortices formed by the major oceanic currents, 
provided the latter are properly chosen. It is, however, interesting to notice that most parameters are linked to the PV of the 
flow, so changing these parameters also induces a modification of the PV structure. The stabilization of currents for some 
parameter range sometime observed in the previous studies is thus usually associated with strong transformations of the PV 
structure where gradients no longer change sign (see, for instance, Pedlosky 1987, chapter 7.15). 

Potential vorticity is conserved for each particle as long as the evolution is adiabatic, and is therefore a tracer. Thus, 
currents transporting a water mass with marked temperature and salinity anomalies have characteristic PV anomalies. The 
latter should be conserved along the current paths unless diabatic processes are clearly identified and their effect on the PV 
structure properly evaluated. The influence of mixing on the PV transformation and stability of currents has been examined 
recently (see Morel and McWilliams 2001), but to our knowledge there only exists few studies evaluating the stability of 
currents whose structure is changing under adiabatic processes and for which PV is thus fixed.

While the water mass characteristics and PV stay identical, the transport and width of a current can indeed change along 
its path (for instance the detachment of eddies reduces the transport downstream of the instability) or because of other 
adiabatic processes associated with seasonal or higher frequency variability. The stability properties or the size of the eddies 
generated by the current can then be modified. This is the spirit and the main subject of this paper: we study the dynamics 
of currents with the same PV structure but different transports and widths and analyze the influence of these parameters on 
the growth rates and most unstable wavelengths.

b. Plan of the study  

The configuration and equations we consider in this paper are given in section 2. In section 3, we present and interpret 
analytical and numerical results and then discuss their application to the ocean (section 4). A summary is given in the last 
section.

2. The configuration and equations  

a. Configuration  

We consider a model with two active layers overlying an infinitely deep and resting lower layer (see Fig. 1 ). The 

upper- and midlayer depths at rest H1, H2 and the reduced gravity g′1,2, g′2,3 of the interfaces between layers 1–2 and 2–3, 

respectively, are 

 

We also choose a constant Coriolis frequency f0 = 10−4 s−1. These values are fixed for the rest of this study as they are 

representative of a typical ocean stratification and our general conclusions do not depend on these choices.

The internal radii of deformation associated with this stratification are 

 

where 

 
 



are the dimensional Froude numbers. This yields Rd1 = 32 km and Rd2 = 12 km.

The domain is a half plane with a vertical wall at the eastern side. We consider coastal currents intensified near this 
boundary (located at y = 0; see Fig. 1 ) and associated with uniform PV anomalies in each layer (see Fig. 1 ). The 
strength and initial width of these PV strips are (Q1, Y1) and (Q2, Y2) for layers 1 and 2, respectively. 

b. Equations  

We restrict our investigations to QG dynamics. Strictly speaking, this assumption constrains the Rossby numbers and 
isopycnal deviations of the currents to be small. When this is not the case, the full shallow-water equations should be used. 
However, we believe this would only yield quantitative difference and we think most of the physics studied here is retained 
in the QG model, which permits simpler interpretations. This has been proven in particular by Boss and Paldor (1995) who 
show that the QG framework is adequate for describing the instability of a PV front even in regimes where the QG 
assumptions are violated.

It is convenient to nondimensionalize all equations using the first baroclinic radius of deformation Rd1 = 32 km as the 

horizontal length scale and the inverse PV anomaly in the first layer, 1/|Q1|, as the timescale. The nondimensional equations 

of motion are then (see Pedlosky 1987, chapter 6.16) 

tPVAk + J( k, PVAk) = 0 k = 1, 2, (1a)
 

where k is the streamfunction in layer k, PVAk is the PV anomaly and is given by 

 

and J(A, B) = xA yB −  xB yA is the Jacobian of A and B; t is the nondimensional time, x and y are the nondimensional 

coordinates, and Fi = FriR
2

d1 = 2.6 (i = 1, 2, 3) the nondimensional Froude numbers. 

c. Initial state and parameters  

As we have chosen piecewise constant PV field, PVAk can be written 

 

with q1 = Q1/|Q1| = ±1 and q2 = Q2/|Q1|.
 

In the appendix, we calculate the initial streamfunction and velocity field associated with the previous general PV anomaly. 
The calculations show that there exists two degrees of freedom for the velocity field of coastal currents given a PV 
structure (these corresponds to two Kelvin modes with infinite wavelength and no PV anomaly). These can be chosen so as 
to determine the velocity field at the coast for instance, but such a parameter is not easy to interpret. In this study, we have 
chosen to determine the transports within the PV strips of each layer T1 and T2. There indeed exists a conservation law for 

this quantity, which can offer interesting physical interpretations.

In our configuration, as there only exist two PV fronts, q1 and q2 must have opposite sign in order to verify the Charney–

Stern necessary condition for instability. In the following, to reduce the number of parameters, we chose q1 = −q2 = 1 and 

Y1 = Y2 = Y. We therefore study the sensitivity of the current instability to three parameters: the current width Y, and the 

transports in each layer, T1 and T2. 

d. Numerical model  

Potential vorticity anomalies can develop near boundaries as a consequence of viscosity (see Morel and McWilliams 
2001). Wall friction may be important in laboratory experiments (see Stern and Whitehead 1990) but in nature Reynolds 



numbers are high and the physical relevance of this phenomenon remains uncertain. It thus seems necessary to minimize this 
effect in the present study.

Contour dynamics and contour surgery algorithms (Dritschel 1988, 1989) consider piecewise constant PV structures for 
which the velocity field can be diagnosed from contour integral. Discretizing PV fronts and advecting each nodes with the 
calculated velocity fields yields a Lagrangian model with adequate PV conservation properties.

The numerical model used in this study is the Contour–Advective Semi Lagrangian (CASL) developed by Drischel and 
Ambaum (1997). This hybrid algorithm incorporates all aspects of contour surgery, but the PV field is projected on a fine 
grid and inverted (by finite differences or fast Fourier transforms, depending on the model geometry) to obtain the velocity 
field. Again this model prevents the development of new PV anomalies.

3. Results  

a. Linear instability  

In the appendix, we develop an analytical model to calculate the unstable modes and associated growth rates in a general 
configuration (N layers and as many piecewise constant PV strips as wanted). In our 2½-layer system, Eqs. (A17)–(A18) 
can be used to study their sensitivity to the transport and current width. In Fig. 2 , we plot the maximum growth rate 
(Fig. 2a ) and corresponding wavenumber (Fig. 2b ) as a function of the transports in each layer for a fixed current 
width Y = 0.75. In Fig. 3 , we plot the maximum growth rate (Fig. 3a ) and corresponding wavenumber (Fig. 3b ) 
as a function of the current width and the transport, assuming T1 = T2. 

Figures 2  and 3  show that there exist ranges of transport and width for which the current is stable, which is 
intriguing as the Charney–Stern necessary condition for instability is verified (there exist opposite sign PV gradients). This 
underlines that the latter criterion is indeed not sufficient to ensure instability. It is worth noticing that the regions in which 
the current remains stable are associated with strong transport, preferentially with opposite sign in each layer or small 
current width.

Another interesting result is the sensitivity of the most unstable wavenumber (and growth rate) to the transport and 
current width. Instability gives rise to eddies whose scale are related with the most unstable wavelengths and Figs. 2–3  
therefore suggest that the size of the emerging eddies can reach different values provided Y, T1, and T2 are properly chosen. 

Indeed, changing these parameters can lead to the generation of eddies with different characteristics and is illustrated in the 
next section.

b. Nonlinear evolution  

Three experiments, labeled S1, S2, and S3 with different parameter values (see Table 1 ), are performed to illustrate the 

previous results. The CASL model of Dritschel and Ambaum (1997) is initialized with the previous configurations. A small 
white noise perturbation is added to trigger the development of unstable modes. Figure 4  represents the PV front in each 
layer (plain line for the upper layer, dashed one for the middle one) for S1 (Fig. 4a ), S2 (Fig. 4b ), and S3 (Fig. 4c ) 

and at t = 15 nondimensional time units. In all cases, the opposite sign PV fronts interact, forming hetons that detach from 
the main current. The eddy length scales are very different from an experiment to another as expected from the linear 
analysis. For instance the radius of the vortices generated in S1 is about twice that in S2. Notice the latter is associated with a 

stronger transport in the upper layer.

c. Interpretation  

Different authors have pointed out the physics behind the C–S principle in terms of PV front interaction (see for instance 
Hoskins et al. 1985; Sakai 1989; Cushman-Roisin 1994, chapters 7 and 16; Pichevin 1998; Morel and McWilliams 2001): 
when PV fronts associated with opposite sign gradients exist, perturbations can form on each front and interact so as to 
amplify each other and generate hetons (when the opposite sign PV fronts are located in different layers as in our 
configuration). As pointed out by Hoskins et al. and Sakai, perturbations along both fronts can only interact and grow if they 
propagate at the same speed. Conditions are therefore required on their propagation speeds for the instability to develop. 

Perturbations propagate as a result of advection and PV gradient effects. The former is associated with the velocity field 
in the vicinity of the front and is the same for all wavelengths in a layer. When the velocity fields at both PV fronts are 
different and the current is vertically sheared, advection keeps perturbations from interacting and growing. Obviously, this 
effect depends on the choice of the transport: the velocity field at a PV front increases (decreases) with the transport in this 
layer. The PV gradient effect is similar to the planetary β effect on the propagation of Rossby waves and will also be 
referred to as β-current effect here. As for planetary Rossby waves, it is maximum for long waves (small wavenumbers), 
decreases toward zero for short waves, and perturbations propagate with high PV values on their right. This effect therefore 
induces positive propagation speeds in the first layer and negative propagation speeds in the second layer. Thus, wavelengths 
may exist for which the β-current effect compensates the vertical shear associated with advection so that perturbations can 
interact as shown for the configurations studied here on Fig. 5 . For a given PV gradient, the propagation speed 
associated with the β-current effect is limited, however. Thus, it cannot compensate the advective effect when the 



transports become large. This explains the existence of the stability regions in Figs. 2  and 3 . 

This is underlined in Fig. 6  which represents the velocity profiles for T2 = 0.2 and Y = 0.75 and for different values of 

T1 (T1 = 0.6, 0.2, −0.2, −0.6, and −0.8). The velocity profile in layer 2 does not vary much for these configurations, and we 

have only represented the case T1 = 0.6 (thick solid line). The maximum growth rate is given for each configuration. Notice 

that it is zero for T1 = 0.6 (dashed line on Fig. 6 ) and T1 = −0.8 (dash-dotted line on Fig. 6 ), which means that these 

configuration are stable. As seen above, the difference between the upper- and lower-layer propagation speeds associated 
with the β-current effect is always positive and can thus only compensate a negative velocity shear. When T1 = 0.6, Fig. 6 

 shows that the velocity shear is positive and the PV fronts thus cannot interact. When T1 = −0.8, the shear is negative, 

but its value is large and cannot be compensated by the β-current effect. Again the PV fronts cannot interact and the current 
becomes stable.

These arguments can also explain the decrease of the generated eddy size when increasing the transport in the previous 
numerical experiments. Indeed, increasing the transport from 0.2 (S1) to 0.6 (S2) in the first layer while keeping the same 

midlayer transport drastically decreases in absolute value the velocity field difference as a consequence of our relation 
between streamfunctions and velocities. As a result, weaker β-current-induced propagation speeds are necessary to achieve 
interaction between both fronts. This is the case for shorter waves that therefore become the most unstable waves. 
Increasing the transport from 0.2 to 0.5 in both layers leads to the same process: selection of shorter waves and generation 
of smaller eddies.

4. Discussion  

a. Charney–Stern criterion and stability  

The Charney–Stern necessary condition for instability often seems sufficient: in most studies, currents with opposite-sign 
PV gradients are generally unstable to certain wavelengths (see Smeed 1988; Capet and Carton 2002, manuscript submitted 
to J. Phys. Oceanogr.). A few authors, however, noticed the sensitivity of current stability properties to some parameters 
and that unstable currents can become stable for some regimes.

The influence of the Rossby number on the stability of a coastal current is studied in rotating-tank experiments by Baey 
(1997). He finds that the current become stable for large Rossby numbers (Ro  1 or so). The coastal currents studied in 
his experiments are generated by a source of intermediate water and, to achieve large Rossby numbers, the intermediate 
water flux is increased.

Garnier et al. (1998) use a nonhydrostatic model with very high vertical resolution to examine the evolution of secondary 
baroclinic instabilities. They analyze the ratio of the local Rossby and Froude numbers (respectively Ro and Fr) and find that 
instability only develops in regions where Ro/Fr  1.5. 

Even though it is delicate to compare our QG model to laboratory experiments with high Rossby numbers or 
nonhydrostatic simulations, we think Baey (1997) and Garnier et al. (1998) are in agreement with our results, which 
suggests that currents could become stable when their transport increases above a critical level. In particular, we believe that 
the stabilizing mechanism is not necessarily associated with ageostrophic effects but, as shown above, with the impossibility 
of opposite gradient PV fronts to interact when the velocity shear is too strong.

b. Application to the ocean  

In our configuration, the transports necessary to obtain stable configurations can be fairly strong and therefore difficult to 
achieve for oceanic currents. Indeed, for equal transports in each PV strip, Fig. 3  shows that positive transports with T1 

= T2  1 are necessary when Y  0.4. This yields dimensional transports i  1 × HR2
d1Q  4 Sv (Sv  106 m3 s−1) 

with Rd1  30 km, H = 400 m, and a moderate PV anomaly Q  0.1 × 10−4 s−1. For configurations with opposite sign 

transports in each layer, smaller transports are necessary (as seen in Fig. 2 , the critical nondimensional transports are in 

the range |Ti|  0.5, which yields i  ±2 Sv). These values are reasonable and can be achieved in the ocean, but most 

coastal currents are associated with much stronger PV anomalies1 and their critical transport for stability is higher and 
probably out of reach, at least for currents whose transport is limited.

However, as seen in the previous sections, realistic changes in the characteristics of a current can induces modifications 
of the eddies it generates. In particular, their horizontal scale can be drastically modified.

In nature, most unstable currents give rise to eddies with different sizes, and our results therefore offer an explanation for 
this behavior. For instance, the Mediterranean outflow along the Iberian continental slope is unstable and forms eddies 
(meddies, for Mediterranean Water eddies). Different formation sites exist (see Bower et al. 1997) and the sizes of the 

generated eddies are highly variable. The smallest meddy ever observed had a diameter2 D  20 km and was located in the 



Gulf of Cadiz (Prater and Sanford 1994). Larger meddies with diameter D  30–60 km were observed a few hundred 
kilometers off the Iberian coast (see Armi et al. 1989; Richardson et al. 1989; Pingree and Le Cann 1993; Tychensky and 
Carton 1998) or near Cape Finistere (Paillet et al. 1999). 

The Mediterranean outflow is also highly variable. Indeed, different authors have observed strong modifications of its 
maximum velocity or width along its path (see Rhein and Hinrichsen 1993; Baringer 1993; Baringer and Price 1997; 
Chérubin 2000). Seasonal, and higher-frequency, variability also exists that can lead to important changes in the current 
structure (Ambar et al. 1999). 

After it has mixed with central waters to form an equilibrated middepth current, we can hypothesize that the evolution of 
the Mediterranean outflow is roughly adiabatic and its PV is conserved. Thus, the existence of eddies with different 
diameters could be a direct consequence of the modification of the outflow characteristics as predicted by our results. It is, 
for instance, possible to relate the formation of small eddies in the Gulf of Cadiz to the strong transport that exists in this 
area. The largest eddies are apparently formed downstream in regions where the transports have decreased, partly as a 
consequence of meddy generation upstream.

Different interpretations, using different “paths”  in the transport/width space are also possible. The modification of these 
characteristics when an upwelling develops above the Mediterranean outflow could also have drastic consequences on the 
scale of the eddies generated, which would advocate the influence of seasonal variability. The spreading of the current while 
keeping the same transport also increases the length scale of the generated eddies (see Fig. 3 ). Lateral mixing with 
surrounding waters is likely to widen the current and also increase the nondimensional transport both because of additional 
waters entrainment and PV dilution. Increasing the current width and the transport have opposite influence so that the effect 
of lateral mixing is difficult to predict. It, however, modifies the (T, Y) properties of the current and we can expect this 
process to lead to different eddy scales in general in the ocean.

5. Summary  

In this paper, we have examined the different regimes of a coastal current when subject to adiabatic changes. The PV 
structure is unchanged and is chosen so as to verify the Charney–Stern necessary condition for instability. Other 
characteristics such as transport and width can, however, be modified, which has drastic consequences on the current 
dynamics. This is analyzed with an analytical model that calculates the growth rates of unstable waves and with a numerical 
contour surgery model. In most cases, the current is unstable and generates eddies, but the size of these eddies can be 
modified when changing the current transport and/or width. Obviously, nonlinear processes also play an important role to 
determine the scale of the emerging eddies, and this has not been studied here. However, we have shown that different 
vortex characteristics can be obtained when the transport and current width are modified. In particular, the diameter is 
shown to diminish when increasing the transport or diminishing the current width.

We have also shown that a critical transport exists above which the current becomes stable, which shows the Charney–
Stern criterion is indeed not a sufficient condition for instability. For our stratification our simple PV structure and for 
coastal currents with strong PV anomalies, we find, however, that the transport necessary to achieve stability is very large, 
so the Charney–Stern criterion is in practice sufficient for the configuration studied in this paper. The latter result can 
however not be generalized as it may be sensitive to the PV structures (when |Q1|  |Q2| or Y1  Y2, for instance), whose 

influence has not been explored here.

The physics behind these mechanisms is shown to be related to the interaction of the opposite gradient PV front that exist 
when the Charney–Stern criterion is verified. Perturbations on both fronts can only interact and lead to meander growth 
when they propagate at the same speed. Two effects have to be taken into account: advection of the perturbation by the 
local velocity and self-propagation associated with the PV gradient. The latter depends on the wavelength of the perturbation, 
which offers a mechanism for scale selection.

Observations often show eddies with various length scales generated from the same current. We then suggest this can be 
explained by changes in the current characteristics along its path (for instance change in transport due to upstream 
generation of eddies, or lateral entrainment of surrounding waters) or seasonal or higher frequency variability. Obviously, 
other explanations are possible. Triggering of some wavelengths by bottom topography or capes (see Chérubin 2000; 
Pichevin and Nof 1996) or other nonlinear destabilization processes (see, for instance Stern, 1986) can participate in the 
generation of eddies with various sizes. However, the mechanisms discussed here are likely to play a role for some currents, 
too.
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APPENDIX  

6. Initial State and Growth Rate Calculation  

a. General case  

For the sake of generality we first consider the case of an N-layer system with as many piecewise constant PV strips as 
wanted in each layer. The potential vorticity anomaly is related to the streamfunction through the general equation 

 

where PVA = [PVA1, … , PVAk, … , PVAN]′,   = [ 1, … , N]′, and Fr is an N × N matrix and is associated with 

the stretching term. Potential vorticity is assumed piecewise constant, and we can thus write 

 

where  is the Heaviside function, Δk,j = Qk,j − Qk,j+1 is the potential vorticity jump at the jth boundary y = Yk,j + k,j(x, 

t) separating regions in the kth layer where potential vorticity is respectively Qk,j and Qk,j+1, Yk,j is the unperturbed (initial) 

position of the PV front, and k,j its distortions (see Fig. 1 ). 

As gradients of Qk give delta functions, Lagrangian conservation of PVAk yields 

 



Assuming small perturbations of the initial PV fronts (small ), we can decomposed the current flow into an initial part 
and a small perturbation, 

k = k(x) + ′
k(x, y, t) k = 1, … , N.

 

The initial part of the current k verifies for each layer k 

 

while ′
k then satisfies the equation 

 

which gives at leading order in the small  limit 

 

Equation (A3) can then be linearized and we get 

 

where Uk,j = −d k/dy(Yk,j) is the alongshore initial velocity field and V|Yk,j
 = x ′(x, Yk,j, t) is the cross-shore velocity 

associated with the perturbation of the PV front. Here Uk can be calculated by differentiating Eq. (A4), 

 

and Vk can be calculated assuming k,j = k,j exp(lx − ωt) and ′
k = ′

k(y) exp(lx − ωt), which yields for Eq. (A5) 

 

Notice that the latter equation is subject to a closed boundary condition at the eastern boundary 

′
k(y = 0) = 0, (A9)

 

while Eq. (A7) is not. 

Equations (A7) and (A8) are similar and their general form can be written 

2
l k + Fr |k = Γk (A10)

 

with 

2
l = y2 − l2.

 

This equation can be solved in terms of the vertical eigenmodes P(n) = [P(n)
1, … , P(n)

k, … , P(n)
N] associated with the 

vortex-stretching matrix Fr, so 



FrP(n) = −γ2nP(n),

 

where −γ2n is the corresponding eigenvalue. We also define the matrix α, inverse of matrix P whose column are the 

eigenvectors P(n), with coefficients α(n)
k defined by Σn α(n)

kP(n)
m = δkm. Thus, if we set 

 

(n) verifies 

2
l

(n) − γ2n
(n) = Γ(n). (A11)

 

A Green's function G(n)
l(y|y′) for the operator of the left-hand side [when Γ(n) = δ(y − y′)] is given by 

 

with γl
n = (γ2n + l2 )½. In the rigid-lid approximation and for the flat-bottom case, there exists a barotropic mode 

associated with γ0 = 0 so that for l = 0 (A12) becomes 

 

The general solution of (A11) is thus 

 

so the general solution of (A10) is given by 

 

Using Eq. (A13) and the boundary conditions (A9), we can then solve Eqs. (A7)–(A8) with the previous general solutions, 
and we get 

 



(Click the equation graphic to enlarge/reduce size)

Notice that the coefficients A(n) and B(n) are degrees of freedom for the initial state. Finite velocity at y = +∞, however, 

imposes A(n) = 0, but B(n) can be calculated so as to choose the velocity field at the coast, for instance, or any other chosen 
constraint.

Equations (A6) and (A15)–(A16) then yield 

 

where 

 

The growth rates of the unstable wavenumbers l are then given by the imaginary part of the eigenvalues of matrix . 

b. Present configuration  

The previous calculation can then be used to calculate the growth rates in the 2½-layer configuration with a single PV 
front in each layer. The Froude matrix Fr is given by 

 

whose eigenvalues are 

 

The matrix P containing the eigenmodes P(1) and P(2) is given by 

 

and its inverse α by 

 

The free coefficients B(1) and B(2) are chosen so that 

 



where Uk is given by Eq. (A15). Notice that, in the present configuration, there only exist two PV fronts, one in each 

layer, with identical width, so that Yk,j = Y here. 

As there only exists a single PV front in each layer,  is a 2 × 2 matrix whose coefficients are given by 

 

with 

 

Tables  

TABLE 1. Transports in each layer (T, and T2) and current width (y) for expts S1, S2, and S3
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Click on thumbnail for full-sized image. 

FIG. 1. Model configuration. We consider a 2½-layer model with a piecewise constant PV strip against the eastern boundary in 
each layer
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FIG. 2. (a) Maximum growth rate as a function of the transports in each layer T1 and T2 (the PV strip width is fixed: Y1 = Y2 = Y = 

0.75), and (b) associated wavenumber k. Notice the stability regions 
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FIG. 3. As in Fig. 2  but (a) as a function of the transport T1 and PV strip width Y(T2 = T1 here) and (b) associated 

wavenumber k  
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FIG. 4. Potential vorticity fronts in the upper (plain line) and middle (dashed line) layers at t = 15 nondimensional time units. 
Experiments (a) S1, (b) S2, and (c) S3 are represented. Notice the drastic differences in the size of the eddies generated 
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FIG. 5. Schematic diagram of the propagation of perturbations along the PV fronts in layer 1 (plain) and 2 (dashed). The velocity 
field in the vicinity of each front (U1 and U2) induces a displacement that is independent of the perturbation wavelength. On the 

other hand, the latter is important for the propagation induced by the β-current effect associated with the PV gradients. To 
interact and reinforce each other, the perturbations in each layer must propagate at the same speed, so that the β-current effect 
must compensate the shear associated with advection
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FIG. 6. Velocity profiles for different values of the transport. In all cases, T2 is set to 0.2 and Y = 0.75. The layer-1 velocities are 

shown for T1 = 0.6 (dashed line), 0.2 (crosses), −0.2 (stars), −0.6 (plus signs), and −0.8 (dash-dotted line). The position of the PV 

fronts is indicated by the vertical solid line and the maximum growth rate is given for each configuration. The velocity profile in 
layer-2 weakly vary for these different choices of T1, and we have only represented the case T1 = 0.6 (thick solid line) 
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1 The PV anomaly can be estimated from the vorticity of the eddies they generate, which can be calculated from their turnover time.
 

2 The radius and diameter are estimated using the distance of the maximum velocity from the eddy center.
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