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ABSTRACT

The authors study the splitting of a coherent vortex by a large-scale baroclinic 
background current. A criterion for the splitting of the vortex is defined, and 
the process is then studied numerically and analytically in a 2½-layer reduced-
gravity model in which the vortex is represented by a potential vorticity (PV) 
patch in each layer. Three effects are important for the process: 1) the vortex 
“coherence,”  which is a measure of the advective effect induced by the PV 
patches on each other; 2) the background current shear, which tears the 
vortex; and 3) the baroclinic β effect, associated with the background current 
PV gradient, which is shown to counteract the shear. When the baroclinic β 
effect is neglected, it is shown that PV patches oscillate around an equilibrium 
state, and they separate when the oscillation amplitude is larger than the 
splitting criterion. This model also shows that vortex core deformations play a 
(moderate) role when the vortex radius is larger than the first baroclinic radius 
of deformation. The baroclinic β effect substantially compensates the 
advective tearing and drastically reduces the oscillation amplitude. Thus, the 
vortex is able to resist much higher shear when the current PV gradient is 
taken into account. On the other hand, the baroclinic β effect also induces 
dispersion of the vortex, which is essential when the shear is strong enough. It 
is shown that, in fact, a vortex is generally scattered by Rossby waves before 
it is split.

1. Introduction  

Mesoscale and submesoscale coherent vortices are observed in all ocean basins. 
Their typical scale is much smaller than the domain size: in the Atlantic Ocean, for 
instance, their radii range from about 150 km for Agulhas rings to 60 km for Gulf Stream rings and 30 km for 
Mediterranean water lenses (or even a few kilometers for eddies associated with convective plumes), sometimes with strong 
variations among each vortex type (e.g., McWilliams 1985; Olson 1980, 1991; Joyce and McDougall 1992; Olson and Evans 
1986; van Ballegooyen et al. 1994; Pingree and Le Cann 1992, 1993a,b, 1994; Armi et al. 1989; Richardson et al. 1989; 
Chérubin et al. 1997; Paillet et al. 1999). They are able to trap fluid inside their cores and to propagate coherently for several 
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thousand kilometers, thus providing a significant contribution to the global heat and salt transport. Their maximum vorticity 
is less than the local Coriolis frequency f0 (0.1–0.5f0 or so), and it decreases during their lifetime, which is on the order of 

one to several years.

The influence of the planetary vorticity gradient, referred to as β effect, on the dynamics of vortices has been extensively 
analyzed. Its role on the vortex propagation has been studied in McWilliams and Flierl (1979), Sutyrin (1987), Reznik and 
Dewar (1994), Sutyrin and Flierl (1994), Sutyrin and Morel (1997), Morel and McWilliams (1997), and Reznik et al. (2000). 
These studies have shown how the background potential vorticity (PV) field is distorted by the vortex circulation and how 
this modification of the background PV generates a secondary circulation called the “β gyre,”  which in turn induces 
displacement and deformations of the vortex. A similar process is likely to take place whenever a vortex evolves in a 
background PV gradient.

In this study, we analyze the interaction of a vortex with “large-scale”  background currents (currents with constant 
velocity field in the horizontal plane) associated with a PV gradient. When the background currents have no horizontal shear, 
barotropic currents (currents without vertical shear) have a simple effect: they merely advect the vortex at the current 
speed. Baroclinic background currents are vertically sheared and thus have a more complicated effect. In a stratified fluid, 
they are also associated with sloping isopycnals and corresponding horizontal PV gradients, because PV depends on the layer 
thickness variations. In the following, the PV gradient associated with background baroclinic currents will be called 
“baroclinic β effect”  because of its similarity to the planetary β effect, and the β gyre will more generally refer to the 
secondary circulation that arises when the background PV gradient (in particular, associated with a background baroclinic 
current) is deformed by a vortex circulation. The influence of a current on the dynamics of a vortex has been studied by 
Meacham et al. (1990, 1994), Walsh (1995), Walsh and Pratt (1995), and, recently, Vandermeirsh et al. (2001, hereinafter 
VMS01). VMS01 have studied the influence of a large-scale baroclinic current on the vortex propagation. They showed that 
the advective effect of the current is always compensated by the baroclinic β effect, so that baroclinic large-scale currents 
only have a weak influence on the propagation of oceanic vortices.

A vertical shear also provides a mechanism for the destruction of oceanic vortices, which is the focus of this study. The 
tearing of a vortex by a vertically sheared current has been studied analytically by Hogg and Stommel (1990, hereinafter 
HS90) in a two-and-one-half-layer reduced-gravity model with point vortices and by Marshall and Parthasarathy (1993, 
hereinafter MP93) in a two-layer model with piecewise constant PV patches. In considering a vertically sheared mean 
current, they find regimes in which parts of the vortex core represented by point vortices (or PV patches) are not able to 
stay coherent and drift apart from each other when the current shear is strong enough in comparison with the vortex 
strength. However, the baroclinic β effect has been neglected in the HS90 and MP93 analytical calculations. MP93 
considered also a few numerical examples that included the effect of nonuniform ambient potential vorticity. They found 
only a slight effect of the secondary flow on the vortex tearing process for small current shear but did not investigate this 
effect in detail.

The influence of the baroclinic β effect on the vortex tearing by baroclinic currents therefore remains unclear. In this 
paper we present an analytical theory and numerical simulations in a two-and-one-half-layer reduced-gravity configuration 
that demonstrate that the secondary flow associated with nonuniform ambient potential vorticity plays an essential role in the 
vortex tearing process: it increases the ability of the vortex to resist the current tearing effect, but it also provides a way to 
scatter the vortex.

In section 2, we define the equations and the model configuration. In section 3 we describe the numerical and analytical 
models used in our study, as well as the criterion for the splitting of vortices. In section 4 we consider the dynamics of 
vortex splitting without the baroclinic β effect, and in section 5 we discuss the influence of the baroclinic β effect. 
Application of the results to oceanic vortices, discussion of the model limits, and our general conclusions are presented in 
section 6. 

2. The model configuration and the equations  

As in HS90, we here consider a quasigeostrophic model with two active layers that overlie an infinitely deep and resting 
lower layer (see Fig. 1 , in which Hk is the depth at rest of the kth layer and ρk is its density). We also take into account a 

background baroclinic current, with velocities Uk, that is zonal when the planetary β effect is taken into account. In each 

layer, PV consists of the background part βkY and vortex PV anomalies PVAk: 



 

where f0 is the Coriolis frequency; g′1,2 = g(ρ2 − ρ1)/ρ1 and g′2,3 = g(ρ3 − ρ2)/ρ1 are the reduced gravity of the interfaces 

between layers 1 and 2 and 2 and 3, respectively; βp is the gradient of the Coriolis parameter; Y is the meridional coordinate; 

k and is the streamfunction associated with the vortex signature in the kth layer. Notice that the mean current PV gradient 

βU
k varies between layers and represents the baroclinic β effect in addition to the planetary β effect (see VMS01). 

The initial vortex structure is depicted in Fig. 1 . The vortex core consists of two PV patches, one in each layer (with 
respective PV anomalies Q1 and Q2 and radii R1 and R2 in the upper and middle layers). The separation between the centers 

of each circular PV contour is denoted by  and represents the tearing of the vortex core. 

To focus on the physics of the tearing process, we consider regimes suitable to quasigeostrophic dynamics; that is to say, 
we only consider vortices associated with small PV anomalies |Qk|  f0. Further, we nondimensionalize all equations using 

the first baroclinic radius of deformation Rd1 (defined below) as the horizontal length scale and the inverse PV anomaly 

|Q1|−1 as the timescale. Thus, the equations of motion are (VMS01; Pedlosky 1987, chapter 6, section 16) 

 

Here, J(A, B) = xA yB −  xB yA is the Jacobian of A and B; t = T|Q1| is the nondimensional time; x = X/Rd1 and y = 

Y/Rd1 are the nondimensional east and poleward coordinates; β = βpRd1/|Q1| and βU
k = βU

kRd1/|Q1| are the nondimensional 

β coefficients, which are small for strong vortices; and Uk = Uk/Rd1|Q1| is the nondimensional large-scale current in layer k. 

In this study, the background stratification is fixed corresponding to the following typical oceanic conditions: f0 = 10−4 

s−1, H1 = H2 = 500 m, g′1,2 = 10−2 m s−2, and g′2,3 = 0.5 × 10−2 m s−2, yielding internal radii of deformation Rd1  29 

km and Rd2  12 km. The corresponding nondimensional stratification is thus given by F+
1 = 1.7, F−2 = 1.7, and F+

2 = 

3.4.

In our basic configuration, the background current will be nonzero only in the upper layer (U2 = 0). In this case, the 

interface between the lower (infinitely deep) and middle layers is horizontal, and the interface between the upper and middle 

layers slopes and the PV gradients in the upper and middle layers then have opposite signs (βU
1 = −βU

2, exactly as in 

MP93). Without the planetary beta, baroclinic instabilities develops (Pedlosky 1987, chapter 7) and can perturb the 
interaction between the large-scale flow and the isolated coherent vortex in the long-time-duration run. To ensure stability of 
the background flow in our 2½-layer configuration, either an appropriate current in the middle layer or a strong enough 
planetary β has to be taken into account. This will be discussed in section 5c. 

In this study, we consider a simple PV anomaly structure with Q1 = Q2 and R1 = R2. Without loss of generality, we 



consider anticyclonic vortices, so that the nondimensional PV anomalies are Δk = Qk/|Q1| = −1. In this configuration, the 

vortex characteristics strongly depend on the vortex radius: the maximum vortex velocity increases while the rotation rate at 
the center decreases with the vortex radius (see Fig. 2 ). Note also that, although PV anomalies are the same in both 
layers, the vortex circulation is weaker in the middle layer than in the upper layer because of the asymmetrical stratification. 

This is closer to reality than the configuration with F+
2 = 0 considered in MP93. 

In the following, the variable parameters of the study are the background current shear U = U1 − U2 and vortex radius r1 

= R1/Rd1. 

3. The approaches  

a. The numerical model  

In the following, numerical results are obtained with a pseudospectral code, described in Dewar and Flierl (1987). The 
domain is square and biperiodic with a width of about 12 vortex radii to avoid interaction of the vortex with the periodic 
continuation of the velocity field. The horizontal resolution is 128 × 128, giving a grid size Δx  0.1r1. A weak biharmonic 

vorticity diffusion term is used with a nondimensional coefficient (ν  4 × 10−8) to suppress small-scale numerical noise. 

b. The analytical model  

The analytical model used in the study is a generalization of MP93 in which the baroclinic β effect can be taken into 
account but the PV contours remain circular (as in HS90 and MP93). The different analytical steps are given in the 
appendix, and the basic idea behind its derivation is that three processes intervene in the evolution of the PV center 
separation: mutual PV patch interactions, advection by the background current, and β-gyre development. Each process is 
evaluated independently, and the evolution of the PV center separation (written in complex form  = xc + iyc, where i is 

(−1 )½) is a simple superimposition of these three effects and can be written (see the appendix) 

d /dt = i Ω(| |) + U + βterm(t), (3)
 

where the following apply:

1. The first term represents the mutual advection effect of the PV patches. It is simply associated with the velocity 
induced by a patch at the center of the other one and is calculated under the hypothesis that each patch remains 
circular.

2. Parameter U = U2 − U1 is the background shear effect.
 

3. Parameter βterm(t) is the β-gyre effect, which is associated with the background PV deformation. It is calculated by 

assuming that this deformation is simply due to advection by the vortex initial symmetric circulation. Once the 
deformation of the background PV field has been evaluated, it can be inverted to derive the associated β gyre (see 
VMS01). 

Notice that the Rossby wave dynamics are not represented in Eq. (3), because βterm is associated with a single azimuthal 

mode (mode 1; see the appendix and VMS01), which is the most important for the vortex propagation. When βterm is 

neglected, Eq. (3) reduces to the MP93 model. 

c. Methods  

The numerical and analytical models presented above will be used to calculate the critical shear necessary for the splitting 
of a vortex and to understand the physics of this process. Indeed, a comparison between the results of different models 
permits assessment of the importance of each effect.

1. As in Eq. (3), all processes are taken into account except the deformation of the PV contours and the general Rossby 
wave dynamics. The differences between analytical model and numerical solutions can be attributed to vortex 
deformation and/or Rossby wave effects.

2. In a similar way, neglecting βterm in Eq. (3) and then comparing with the results of the full equation permits an 

assessment of the influence of β-gyre development. Also, a comparison with numerical solutions in which βU
k has 

been artificially set to 0 allows examination of the influence of vortex deformation alone (without the influence of the 
Rossby waves, which are absent in that case).



d. A criterion for splitting  

To analyze the sensitivity of vortex splitting to different parameters, we also have to define a precise criterion that 
indicates when a vortex core consisting of two PV patches will be considered as split.

The results presented below show that splitting is, in general, very rapid, and we found that an appropriate criterion can 
be approximated as 

  r1 2
Vmax + r2 1

Vmax for t  [0, 100], (4)

 

where  is the separation between PV centers, t is time1 nondimensionalized such that Δ1 = −1 as in VMS01 (thus t = 

100 time units represents about 10 vortex rotation periods), r1 2
Vmax is the radius at which the velocity induced by the PV 

patch in layer 1 on layer 2 reaches its maximum (V1 2
max; see Fig. 3 ), and r2 1

Vmax is the radius at which the 

velocity induced by the PV patch in layer 2 on layer 1 is maximum. The physical ground behind the criterion in Eq. (4) is 
associated with the decrease of the velocity field induced by a PV patch in the adjacent layer when r  rVmax (see Fig. 3 

). Indeed, if a particle located beyond rVmax is displaced outward by an external process (such as a background current), 

the influence of the vortex on the particle becomes weaker and the separation is then likely to increase further.

It can be shown that, for small vortices (r1  0.5 or so), r1 2
Vmax is much higher than r1. This means that, for small 

vortices, splitting occurs when the PV patches are fairly far apart. This is illustrated in Fig. 4  for a vortex radius r1 = r2 

= 0.15. For this radius, rVmax  1.7r1, much higher than the PV patch radii. For such structure, we found that the critical 

shear for splitting is Ucrit = 0.0052. Figure 4  is associated with a shear U = 0.0051 slightly below the latter, and the 

vortex stays coherent even if the separation distance reaches about 4 vortex radii (which roughly represents the previous 

criterion). However, when r1  0.5, which is the case of most oceanic coherent vortices, r1 2
Vmax is roughly equal to r1, 

and the vortex can be considered as split when the PV patches no longer overlap. This result shows that strong tilting of 
vertical axis of a structure can be achieved before it loses its coherence. In the ocean, significant tilting has been observed 
for vortices that did remain coherent (Richardson et al. 1989; Walsh et al. 1996). 

4. Vortex splitting without the baroclinic β effect  

As a preliminary consideration, we revisit MP93 results for our 2½-layer configuration and artificially set βU
k = βterm  

0. The realism for the this set up will be discussed in section 6. The numerical and analytical models provide a way to 
explore the sensitivity of the vortex splitting to different parameters and to understand the governing physics.

a. A sufficient condition  

When the baroclinic β effect is zero, one can expect the splitting criteria to be reduced to a simple kinematic condition. 
Indeed, when βterm = 0, a sufficient condition for splitting can be derived from Eq. (3): 

U > max[| |Ω(| |)]. (5) 

This condition states that the maximum velocity induced by the PV patches on each other has to be weaker than the 
background velocity shear. Also notice that Eq. (5) is associated with the condition for the existence of a stationary state 
(HS90). Indeed, for a background shear weaker than max[| |Ω(| |)], there exists a steady configuration ( t  = 0 for  = 

s) given by 

i sΩ(| s|) = −U. (6)
 

When all β effects are neglected, we can thus expect oscillations around the latter steady state when it exists, and splitting 
otherwise. We will see below that the dynamics are not so simple.

b. Results  

Figure 5  represents the critical shear U necessary to split the vortex as a function of the core radius r1 and with βU
k = 

0. Crosses represent results from numerical experiments. For a given radius r1, each cross represents the critical shear 

beyond which Eq. (4) is met and the vortex is split. Below this value, the vortex remains coherent. The solid line 

corresponds to the analytical model: Eq. (3) predicts that Eq. (4) is met and the vortex is split2 for background shears below 
the solid line, and it remains coherent for background shears above it. The dashed line represents the sufficient condition in 
Eq. (5). 



Figure 5  shows that all models are qualitatively consistent: increasing the vortex radius (or equivalently decreasing the 
stratification or increasing the layer depths to decrease Rd1) increases the critical shear necessary to split the structure. This 

is expected because the vortex coherence increases with the vortex size.

c. Interpretation  

Results from the analytical model in Eq. (3) are close to numerical results when r1  1, but some deviation appears for 

larger vortex radius. Because the PV patch deformations are neglected in Eq. (3), the difference between the solid line and 
crosses can be attributed to the deformation of the vortex. Indeed, numerical results reveal that for large radii, the 
deformation is very strong and sometimes leads to filamentation of one of the vortices, which thus becomes weaker. As a 
result, the vortex coherence decreases, and a weaker shear is necessary to split the structure.

As seen in Fig. 5 , the sufficient condition in Eq. (5) overestimates the critical shear necessary for splitting: the 
condition in Eq. (5) is sufficient but far from necessary, which also means that the existence of a stationary state does not 
warrant coherence of the structure. In fact, this emphasizes the influence of the initial condition (the PV patches are 
vertically aligned) and subsequent oscillation induced by the background shear. Indeed, because the PV patches are initially 
aligned (  = 0 at t = 0), the separation does not tend to the stationary state s but oscillates around it (see also MP93). The 

oscillation amplitude corresponds to the maximum vortex separation and can be larger than s. It can thus reach values 

higher than r1 2
Vmax + r2 1

Vmax, and, in such a case, splitting is expected. 

We thus conclude that PV patch deformation favors splitting but only plays a (moderate) role for large vortices. In 
addition, the oscillation of the structure is essential for the splitting process, and with the aligned initial state, splitting is 
possible even if the background current shear is smaller than the PV patch mutual advection.

5. Vortex resistance with βterm  0 
 

In the following, we study the influence of the baroclinic β effect by comparing the previous results with the solutions 
obtained when the β-gyre development is taken into account in the numerical and the analytical models. 

a. Results  

Figure 6  represents the same results as Fig. 5  does but with the baroclinic β terms taken into account. The solid 
line represents the results obtained with the analytical model, and the crosses indicate numerical results. The previous results 
without baroclinic β effect have been superimposed (dashed line) for a better comparison. It is obvious that the critical shear 
necessary to split the structure is now much higher. When vortex radius r1  1 or so, the critical shear is almost 2 times as 

large.

Notice that the results from numerical experiments are only shown for r1  1. It was, in fact, difficult to interpret the 

numerical solutions in terms of splitting for r1 > 1 or so, because in this case Rossby wave dynamics become very 

important. This problem is discussed in detail below.

b. Interpretation  

The differences between the solutions without and with the baroclinic β effect for r1  1 shows that the latter reduces 

the effectiveness of tearing by the background shear. This effect is general and was expected. VMS01 have indeed shown 
that baroclinic large-scale currents have weak influence on the propagation of coherent vortices because the baroclinic β 
effect compensates the advective effect of the current [VMS01 have indeed shown that βterm(t)  −U when t  ∞], so 

that the effectiveness of tearing by the background current decreases with time. The reason for this is associated with the 
distortion of the background PV field by the differential vortex advection, as long as the vortex is stronger than the 
background current and can be considered to be coherent. Indeed, as discussed in VMS01, there is a direct correspondence 
between background PV and the background velocity field tearing the vortex. As shown in Sutyrin and Flierl (1994) and 
VMS01, the circulation induced by the vortex strongly distorts the background PV field and, after a few vortex turnovers, 
leads to the development of small-scale PV structures, rolled up into a spiral, where opposite sign PV filaments alternate 
along a vortex radius. As the streamfunction or current field averages out the small-scale PV structure, the background 
current becomes weaker and weaker in all layers where the vortex signature is strong, so that its tearing properties weaken 
(again, we refer to VMS01 for a detailed discussion). 

As a result, the shear necessary to split the vortex is so strong that the vortex can actually no longer be considered to be 
coherent: the nonlinear term in Eq. (2a) becomes smaller than the β terms and can be neglected. The dynamics of the vortex 
then boil down to the evolution of a Rossby wave packet with wavelengths on the order of the vortex radius and smaller. 
Because Rossby waves are very dispersive, the vortex is scattered before it can be split. Because the baroclinic β effect 
varies vertically, the vertical structure of each wave is more complicated than on the planetary β plane (for which it boils 



down to the usual baroclinic modes associated with the stratification): it depends on the wavelength, the vortex, and the 
background current vertical structure (Dewar 1998). 

Earlier studies have shown that a vortex is dispersed into Rossby waves if the change of background PV over the vortex 
core is nonnegligible in comparison with the vortex PV anomaly (Flierl 1977; McWilliams and Flierl 1979; Thierry and Morel 

1999). In our study, the former is associated with the background current and is measured by βU
1r1, which gives a measure 

of dispersion. When βU
1r1  1, the vortex represents only a perturbation of the background PV. There are no closed PV 

contours, and this perturbation is scattered by Rossby waves. When βU
1r1 is small, the vortex has closed PV contours and 

is strong, and fast fluid rotation prevents the vortex from being dispersed.

To evaluate whether the vortex is scattered by Rossby waves before it is split by the current shear, we calculated βU
1r1 

using the critical shear for splitting given by the solid line in Fig. 6 . The results are shown in Fig. 7 , which represents 

 = βUc
1r1 (where βUc

1 = F+
1Ucrit) as a function of the vortex radius. Therefore,  measures the vortex dispersion when it 

is close to splitting. The value of  above which the vortex is dispersed by Rossby waves is not well defined, but notice that 
 is no longer small when r1  1 or so. Figure 8  shows the total potential vorticity evolution in layer 1 (Fig. 8a ) and 

layer 2 (Fig. 8b ) of a vortex with radius r1 = 1.5 and with a background current U = 0.75Ucrit  0.15. The dispersion 

coefficient in this case is   0.25. Notice how the vortex is distorted and dispersed by Rossby waves even if it stays 
aligned. Also notice that the propagation is weak, which illustrates the compensation of the background current advection by 
the baroclinic β effect. 

The baroclinic β effect therefore drastically changes the physics of the interaction between a vortex and a background 
current. It strongly increases the critical shear for splitting, and, for vortices with radii larger than the internal radius of 
deformation (r1  1), splitting becomes impossible. This result is summarized in Fig. 9 , which represents the behavior 

of the vortex as a function of its radius and background shear. Three regions exist in which the vortex either remains 
coherent, is split, or is scattered. The solid line is the same as in Fig. 6  and represents the critical shear beyond which the 
vortex is split. It has been calculated from the analytical model in Eq. (3). We did not define precisely when scattering 
seriously alters the vortex, but from numerical solutions we can estimate that scattering becomes important when   0.2–
0.3. The hatched zone corresponds to   [0.2, 0.3] and is associated with this fuzzy frontier between scattering and 
coherence. Note that, for a given vortex strength, large-scale vortices are more easily destroyed than are vortices with 
moderate radius (r1  1), because they are more sensitive to dispersion. A similar result was obtained by Thierry and Morel 

(1999) for the scattering of vortices by topographic Rossby waves. 

c. Influence of the middle-layer background PV gradient  

As already mentioned, in our configuration the background PV gradients in the upper and middle layers are opposite, and 
the configuration is unstable to baroclinic perturbations. In this section, we consider the additional effect of the planetary β 
or/and of a current in the middle layer, and we study how it affects the vortex splitting. These additional effects can be 
easily taken into account in the analytical model: as shown in the appendix [see Eq. (A7)] the equation for the general βterm is 

simply the sum of the planetary and baroclinic β effects. 

First consider the influence of the planetary β. For eastward (positive) flows in the upper layer, βU is positive (negative) in 
the upper (middle) layer so that this additional effect strengthens (weakens) the background PV gradient [see Eqs. (1a)–
(1b)]. Our investigations show that the planetary β favors destruction of the vortex both by splitting and dispersion 
(Vandermeirsch 1999). As one can expect, the addition of a planetary β effect increases the dispersive properties of the 
background current: a weaker current is now necessary to scatter the vortex. For instance, when βp = 0.1 and r1 = 1, we 

found that the critical shear needed to split the vortex is reduced from 0.14 to 0.11. The vortex also becomes more sensitive 
to splitting when r1  1. This can be explained by the fact that the rotational advections induced by the vortex are different 

in each layer, and the corresponding planetary β gyres are different, too. This induces different propagation speed for PV 
patches, resulting in increasing the vortex separation . 

For the configuration with an eastward flow in the upper layer, stability of the background flow is achieved when the PV 

gradient in the middle layer is zero or becomes positive as in the upper layer, β2 = βp + βU
2  0, which limits the 

background current strength. For instance, when βp = 2 × 10−11 m−1 s−1 and with the stratification considered in this 

paper, stable background currents should have shear equal to or less than 2 cm s−1. Adding an eastward flow in the middle 
layer, however, permits the consideration of stronger shears. Indeed, as shown by Eqs. (1a)–(1b) and (2d), even without 

the planetary β, βU
1 and βU

2 have the same sign if 1  U1/U2  1 + F+
2/F−2. In this case, the background current is 

baroclinically stable. For the stratification considered in this paper, the flow is thus stable if the velocity in the middle layer is 
one-third of the upper-layer velocity (U2  U1/3). The middle-layer thickness is then constant, and there is no baroclinic β 

effect in this layer. In this case, the results described above—in particular, the compensation of the current-tearing 
properties by the baroclinic β effect in the upper layer—remain generally valid (Vandermeirsch 1999). 



6. Discussion and conclusions  

In this paper, we studied the resistance of a coherent vortex to a vertically sheared current. Numerical and analytical 
models are compared to gain insight into the mechanisms influencing vortex splitting.

We first derived a splitting criterion and validated it in a model in which the baroclinic β effect was artificially neglected. 
We showed that large tilting can be achieved before the vortex actually splits. We also showed that the vortex deformations 
play a role in the splitting process when the vortex radius is larger than the Rossby radius of deformation but that the effect 
remains modest.

We then took the influence of baroclinic β effect into account to revisit MP93 preliminary investigations. In their 
numerical solutions with nonuniform ambient potential vorticity, MP93 did notice some influence of the baroclinic β effect 
on the behavior of vortices, but this process was only briefly discussed (see the last paragraph of their section 6), and they 
advocated for a more detailed study on this subject. Our results show that the baroclinic β effect plays a major role in the 
dynamics of the interaction between a vortex and a vertically sheared current, whenever it is not zero within the vortex core. 
The effect is indeed associated with the development of a secondary flow generated by the background current PV gradient, 
which drastically reduces the effectiveness of tearing by the current. Thus, relatively, strong shears are necessary to split 
the vortex, and with such shears the vortex is seriously affected by the Rossby wave dispersion. As a result, the vortex is 
generally dispersed before it can be split by the current, at least when its radius is above the first internal radius of 
deformation, which is the case of many coherent vortices in the ocean. The planetary β effect is shown to favor splitting 
and dispersion for an eastward current in the upper layer.

In practice, in the ocean, most large-scale currents have a moderate vertical shear that is below the critical shear for the 
splitting or dispersion of newly formed coherent vortices. For instance, in the case of Gulf Stream rings, the maximum 

velocity of the ring is V  0.5 m s−1 and is reached at a radius Rm  50 km (Olson 1991). The radius of deformation in 

this region is Rd  25 km so that we can estimate r1  2. The dimensional potential vorticity anomaly associated with 

such vortices is Q1 = V/RdVmax (r1 = 2), where Vmax = 0.5 as estimated using Fig. 2a . This yields Q1  4 × 10−5 s−1. 

Figure 9  shows that such vortices can only be destroyed by scattering effects of Rossby waves when U  U2 − U1  

0.1Rd1Q1. This corresponds to a current shear of U  10 cm s−1. For a smaller vortex with a similar PV but a smaller 

radius Rm  Rd, the critical background shear would be even larger: U  0.14Rd1Q1  14 cm s−1. Such intense shears 

can only be found in intense baroclinic jets.

Vortices with very small radii, such as eddies that are associated with convective plumes and have dimensional radii R1  

1–2 km (Gascard 1978, 1991), have a different behavior. Their nondimensional radii roughly correspond to 0.1–0.2 Rd1 (if 

we consider Rd1  10 km as in the Mediterranean Sea), and their potential vorticity anomaly is mainly associated with their 

relative vorticity, which is close to |Q1|  f0 = 10−4 s−1 (Legg and Marshall 1993). Because of their small size, the 

baroclinic β effect does not play a significant role (notice that the plain and dashed lines in Fig. 6  are close when r1 is 

small), so that the results for βU
k  0 can be applied. Our results predict a minimum dimensional shear of U = 

0.0052Rd1|Q1|  0.5 cm s−1 (with Rd1  10 km), which can be easily achieved. In fact, even though their PV anomaly is 

fairly strong, the coherence of these vortices is very low (their maximum speed is proportional to their radius and is 
therefore small), and we therefore do not expect these small-scale vortices to resist even modest vertical shears. 

This study thus gives some insights on the life of mesoscale oceanic vortices. The way these structures are generated and 
propagate has been extensively studied, but not much is known in regard to their erosion. This is, however, important, 
because coherent vortices play an important role in the thermohaline circulation, and they release their heat and salt content 
through dissipative processes. We have shown that, during the early stages of their life, they are insensitive to the tearing by 
large-scale baroclinic currents (VMS01 also showed that the latter have weak influence on their propagation). Unless they 
interact with intense jets (such as the Gulf Stream, the Azores current, etc.), or large bottom topography (see, e.g., 
Richardson et al. 1989), their erosion is thus initially slow and is likely to be associated with dispersion by Rossby waves. 
Their radius and strength, however, decrease with time (see, e.g., Armi et al. 1989) and, after a few years, when they have 
become weak enough, our analysis shows that their remaining heat and salt anomalies are rapidly destroyed by surrounding 
currents. The distance over which they can transport tracers is, however, very large, in particular owing to the 
compensation of the background current tearing effect by the baroclinic β effect, which increases their lifetime. 

Note that in this paper we focused on a particular 2½-layer configuration with ambient PV gradients of opposite sign 
within the vortex core and weaker vortex rotation in the middle layer than in the upper layer. There do exist configurations in 

which the background baroclinic current may have no PV gradients within some part of the vortex core (e.g., βU
2 = 0 as 

discussed in section 5c) or even within the whole vortex core (see Fig. 10 ). In these configurations, the reduction of the 
tearing effectiveness within the vortex core due to the baroclinic β effect depends on the stratification and vortex structure. 
For instance, if the vortex circulation is weak and can be considered to be inactive in the layers above and below the vortex 



core, the β gyres in those layers will also be weak and the compensation of the background current tearing properties will 
not be effective. To our knowledge, these special configurations can only be obtained if the layers above and below the 
vortex core are very deep or if very strong background PV exists in these layers, scattering the motion induced by the 
vortex. Chassignet and Cushman-Roisin (1991) have shown that increasing the lower-layer depth to obtain negligible vortex 
circulation leads to unrealistic situations. On the other hand, strong PV gradients in some layers are possible. Thierry and 
Morel (1999) have indeed shown that a steep bottom slope (or small-scale topography with steep slopes) can rapidly scatter 
the vortex signature in the lower layer so that it can be considered to be at rest (see Fig. 10b ). 

Last, the analytical and numerical models we have used are based on the quasigeostrophic equations, and comparison of 
the results with oceanic vortices is thus questionable because the latter often have large PV anomalies and Rossby numbers 
(e.g., Sutyrin 1989). For strong vortices, quantitative differences can be expected, but we believe the physics and the 
general results summarized below are still valid when considering more general primitive equation models.
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APPENDIX  

7. Analytical Models  

Following HS90 or MP93, we assume that both PV patches remain circular and we first neglect the baroclinic β effect. In 
that case the PV patch centers (x1, y1) and (x2, y2) verify 

 

where (x1, y1) and (x2, y2) are the position of the centers in layer 1 and 2, respectively; r = [(x2 − x1)2 + (y2 − y1)2]1/2 is 

the distance between the centers; and V2 1(V1 2) is the velocity induced by the second (first) layer PV patch in the first 

(second) layer.

This yields for the vortex separation  = (x, y) = (x2 − x1, y2 − y1): 

 

or in complex form, with  = x + iy, 

 

where 

 

[see Eq. (A9) below for an algebraic expression of Ω]. 

As described in VMS01, the β-gyre development is important, too, and can drastically modify the vortex evolution. An 
additional term thus has to be considered in Eq. (A3), which becomes 

d /dt = i Ω(| |) + U + βterm, (A5)
 

where βterm accounts for the baroclinic β effect.
 

VMS01 developed an analytical model in which the latter is taken into account. The PV patch separation evolution is 
calculated, too [see Eqs. (A16)–(A18) in their appendix A] and is similar to Eq. (A5). It can indeed be written 

d /dt = i Ωo + U + βterm(t), (A6)
 

where Ωo = Ω(r1) is now constant and βterm(t) is a time function independent of  and has been calculated in VMS01: 



 

where Ωk represents the rotation rate of the initially axisymmetric vortex in layer k and is written 

 

Here, Ω(r) represents the sum of the rotation rate induced by a PV patch in the adjacent layer and is thus given by 

 

In these formulas, P(n) = [P(n)
1, … , P(n)

k, … , P(n)
N] is the nth vertical eigenmode associated with the stretching 

matrix ; −γ2n is its corresponding eigenvalue. The matrix α with coefficients α(n)
l is the inverse of the matrix  whose 

columns are the vectors P(n). Here, G(n)
1 is the Green function associated with the Helmholtz operator [r r(r r) − 1/r2 − 

γ2n] and is expressed in terms of modified Bessel functions K1 and I1 (Abramowitz and Stegun 1970, 231–233). When γn  

0, 

 

If there exists a barotropic mode (e.g., if F+
2 = 0) with eigenvalue γ0 = 0, G(0)

1(r|r′) becomes 

 

Equations (A6)–(A7) are linear, and (t) can be calculated explicitly. This model gives good results over a few tens of 
vortex turnover time; however, strictly speaking, the model is limited because it is based on a linearization of the evolution 
equations. Its limits are discussed in VMS01, but let us underline that it is only precise when  is small in comparison with 
the vortex radius. Because this hypothesis is not valid when the structure splits, in this study we expect nonlinearity of Ω to 
be important. To achieve quantitatively good results, the evolution equation we consider is thus Eq. (A5), where βterm is 

given by Eq. (A7). 

To clarify the calculation of all coefficients appearing in the previous formulas, we give their explicit expressions in the 
case of the 2½-layer system considered in this paper. The matrices we have defined above, and their corresponding 
elements, are therefore given by 



 

Figures  

 
Click on thumbnail for full-sized image. 

FIG. 1. Configuration used in this study. We consider a 2-layer system above an infinitely deep bottom layer. The vortex is 
composed of two PV patches (one in each layer) with radii R1 and R2 and strengths Q1 and Q2 in layers 1 and 2, respectively. 

Here,  represents the separation between the PV patch centers. A background current (U1, U2) is also taken into account 
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FIG. 2. (a) Maximum azimuthal velocity Vmax and (b) rotation rate Ω as a function of the vortex radius. The solid line is 

associated with the upper layer, and the dashed line is associated with the middle layer. Note how the rotation rate decreases 
with the vortex radius
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FIG. 3. Schematic diagram of the velocity induced by a PV patch in the adjacent layer. The maximum velocity Vk k±1
max is 

reached at a radius rk k±1
Vmax that can sensibly differ from rk, the radius of the PV patch 
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FIG. 4. Upper (solid line) and lower (dashed line) PV contour evolution at time t = 20, 300, 600, and 800 (nondimensional units) 
for a vortex structure Δ1 = Δ2 = −1 and r1 = r2 = 0.15 and for a background current (U1, U2) = (0.0051, 0). Note how the structure 

stays coherent even if the separation reaches almost 4 vortex radii
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FIG. 5. Critical shear U necessary to split the vortex, as a function of its radius r1. The baroclinic β effect is neglected. The solid 

line is the result for the analytical model, crosses represent numerical results, and the dashed line represents the sufficient 
condition for splitting
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FIG. 6. Same as Fig. 5  except that the baroclinic β effect is taken into account. The solid line is the result from the analytical 
model, crosses represent the validation by numerical tests, and the dashed line is for the previous results without β effect. Notice 
how the critical shear is modified and almost doubled. This is a feature of the compensation of the current advective properties 
by the baroclinic β effect 
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FIG. 7. Measurement of the background PV field dispersion effect  as a function of r1 and for a background current that 

corresponds to the critical shear given by the solid line in Fig. 6 . Notice that when r1  1 the dispersion effect can no longer 

be considered weak so that, for such shear, the vortex is scattered
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FIG. 8. Evolution of the total PV (vortex + background current) in (a) layer 1 and (b) layer 2. Times shown are t = 0, 20, 40, and 
60. The vortex radius is r1 = 1.5, and the background current is (U1, U2) = (0.75Ucrit, 0) = (0.15, 0). Note how the vortex is 

dispersed by Rossby waves
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FIG. 9. Vortex evolution diagram as a function of r1 and the background shear U. When the baroclinic β effect is taken into 

account, the dispersion effect of the current has to be taken into account. As a result, vortices with radii above the first internal 
radius of deformation are dispersed before they can be split. The frontier between coherence and dispersion roughly 
corresponds to the line  = 0.2–0.3 but is not well defined. The hatched region accounts for this fuzziness, and numerical 
experiments show that below the hatched region the PV patches stay coherent (at least for the time period considered here: 100 
nondimensional time units), whereas above they are dispersed
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FIG. 10. Configurations in which the current baroclinic β effect is negligible when interacting with a vortex. The background 
current shear must be constant within the vortex core (if the stratification is constant), and the layers above and below must be 
associated with strong PV gradients. This is possible for (a) strong current shear or (b) strong current shear in the upper layer 
and steep bottom topography in the lower layer
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1 Notice, however, that for vortices with small radii (rk  0.1 or so) the time period has to be increased because the background shear necessary to 

split the vortex is low and the time period necessary to get a significant separation is thus large. However, for vortices with “reasonable”  sizes (rk 

 0.5 or so), t  [0, 100] yields good results. 

2 Notice that the validity of Eq. (4) has been verified using both of these numerical and analytical solutions.
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