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ABSTRACT

The Ertel potential vorticity theorem for stratified viscous fluids in a rotating 
system is analyzed herein. A set of “tracers,”  that is, materially conserved 
scalar quantities, and the corresponding Ertel potential vorticities are used to 
obtain an absolute fluid velocity determination (including both horizontal and 
vertical components) that generalizes earlier formulations known in the 
literature within the framework of the beta-spiral method. Potential vorticity 
fields, respectively, of (i) density, (ii) potential temperature, (iii) salinity, and 
(iv) the latter's potential vorticities ratio are analyzed in order to infer properties 
of steady, or quasi-steady, nonhorizontal or slightly viscous currents. For 
horizontal flows, general conservative properties of a large class of tracer 
potential vorticities are found and discussed. These ideas are then applied to 
various steady cases of physical interest, such as density fronts and 
thermohaline currents. These arguments, together with observational data, are 
used to obtain some interesting results, even if the values obtained are affected 
by large experimental errors. Using this method allows the ratio of the vertical 
and horizontal components of the velocity field to be estimated with greater 
certainty. Further insight is also gained into a purely hydrological identification 
of the no-motion level, a classical difficulty in hydrology. 

1. Introduction  

Ertel's potential vorticity (EPV in the following) for inviscid fluids is 
fundamental in geophysical fluid dynamics (Ertel 1942; Gill 1982; Pedlosky 1987; 
Haynes and McIntyre 1987, 1990; Müller 1995; Salmon 1998; Kurgansky and 
Pisnichenko 2000). As nicely shown in Müller's (1995) review, principal vorticity 
and circulation theorems can be inferred from Ertel's theorem. Moreover, EPV 
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conservation can simplify fluid dynamics analyses. Finally, realistic aspects of 
physical oceanography are often investigated in terms of EPV (Pedlosky 1987; 
Rhines 1986; Ripa 1981; Salmon 1982; Cushman-Roisin 1994; and many others as well). 

On general grounds, Haynes and McIntyre (1987, 1990) investigated the effect of a realistic friction on EPV evolution. 
Also Salusti and Serravall (1999) obtained a relation that expresses the evolution of EPV in the presence of mild viscosity and 
identified novel EPV-related invariants. This relation may be useful both for approximating some particular problems and for 
diagnosing real current observations. Here we show how similar ideas can be extensively generalized through the application 
of EPV to oceanic tracer dynamics in order to obtain an absolute velocity determination, and how also rather unexpected 
properties are obtained for strictly horizontal flows.

In the first instance, the original EPV theorem can be applied to a large family of potential vorticities 
λ
 referring to any 

regular scalar quantity λ. In oceanography a popular choice is to assume that marine water density ρ is materially conserved, 
namely Dρ/Dt = 0 as for incompressible fluids, and thus to assume λ = ρ (Müller 1995). In so doing one arrives at the 
material conservation of the density potential vorticity 

ρ
, valid for incompressible inviscid fluids. So, if both ρ and 

ρ
 are 

conserved, it is the intersection of isopycnals ρ = const with surfaces 
ρ
 = const that identifies streamlines. Indeed, the 

direction of the velocity is known even if its magnitude remains undetermined. However, besides the density ρ, a number of 
materially conserved quantities such as salinity S, potential temperature θ (for adiabatic flows) and many chemically inert 
tracers may be found in the oceans. Unlike direct velocity field observations, some of these quantities are relatively easy to 
measure and interpret (Wunsch 1978). 

This naturally raises the general question of whether the “perfect”  knowledge of any of these fields, say χ, gives us any 
additional information of use in determining the fluid velocity. In steady cases, if density and its potential vorticity are 
materially conserved, the answer is negative since a streamline is identified as the intersection between these two surfaces ρ 
= const and 

ρ
 = const (Fig. 1 ). There is thus no point in adding that χ = const as it only gives a third plane passing 

through the streamline, a kind of mathematically degenerate problem.

However, it will be shown that, by considering a tracer χ and its potential vorticity 
χ
 with a well-known time evolution, a 

step toward absolute velocity determination can be made since the 
χ
 alongstream evolution in some cases will allow the 

absolute fluid velocity horizontal and vertical components to be estimated.

This approach and its validity are fully discussed in section 3, taking into account also its relationship with the Needler 
(1985) equation and with the absolute velocity vector determination outlined by Olbers et al. (1985) according to their beta-
spiral method (section 4). It must be borne in mind that the essence of the beta-spiral method involves using two 
independent tracer conservation equations in order, at any point, to know the direction of the absolute velocity of a current, 
which has to be essentially baroclinic. The original scheme of Stommel and Schott (1977) uses the thermal wind relation, 
tracer conservation equations, and also a linearized vorticity balance equation linking vortex stretching and the horizontal 
advection of planetary vorticity due to the beta term. Olbers et al. (1985) use potential vorticity balance instead of the 
vorticity equation. All this gives a complex integral–differential relation for the absolute velocity determination, which 
contains second-order spatial derivatives of the measured tracers. An interesting attempt has been also made by Needler 
(1985), who obtained from the Bernoulli theorem (cf. Pedlosky 1987; Wunsch 1996) a closed expression for the absolute 
velocity that is consistent with the beta-spiral method formulation. His tracers are potential density ρ and potential vorticity 

ρ
, and Needler's equation necessarily contains third-order derivatives of the potential density. 

In sections 4–6 we investigate properties of tracer potential vorticities respectively related to 
ρ
, that is, 

ρ
; potential 

temperature θ and salinity S, that is, 
θ
, S; and finally of the latter's ratio 

θ
/ S. In each case a formula is given for 

absolute velocity determination, valid for steady inclined baroclinic marine currents. In addition, we show how some 
combinations of these potential vorticities and of the fluid parcel depth are conserved following horizontal motion, something 
not previously discussed in the literature. A comparison with velocity measurements in the Ross Sea (Antarctica) is 
discussed in section 7. 

2. Tracers and tracer potential vorticities  

Calling ωa the absolute vorticity, namely the sum of planetary and relative vorticities (Pedlosky 1987), one has ωa  2Ω 

+  × u  2Ω + ω, where x is the space position, t the time, u is the fluid relative velocity and 2Ω  (0, 0, f) is the 
Coriolis vector. For any scalar quantity λ(x, t) the Ertel theorem gives (Pedlosky 1987) 



 

where F represents frictional effects. 

Since ρ  ρ(p, θ, S), one has 

 

which will play a fundamental role in the following. In addition, for large-scale regular flows f   |ω| and consequently ωa 

 fk , with k  being the unit vertical vector. 

In the hydrostatic approximation (1) can be approximated as 

 

where ug is the horizontal velocity in geostrophic approximation.
 

In general, it is usually assumed that 
λ
 is conserved if, and only if, 1 = 0, 2 = 0, 3 = 0, an obviously unnecessarily 

rigid requirement. Indeed, also a milder relation such as 

 

can give a new conserved quantity P
λ
 that generalizes 

λ
 (Salusti and Serraval 1999).

 

Given the general validity of Eq. (1), it is of some interest to investigate the effect of this Ertel theorem on our 
understanding of tracer dynamics. Let us first consider one of the many tracers that can be found in the oceans, such as 
salt, inert chemicals, etc., say χ(x, t). If this quantity is neither “created”  nor “destroyed”  by any biochemical reaction in the 
marine layers, then the χ-conservation equation gives 

 

In three-dimensional nonstationary fluid flows a “perfect”  knowledge of any three tracers χi, i = 1, 2, 3, obeying (3) can 

completely determine the velocity u = (u, , w) if, and only if, all gradients χi are noncomplanar. If a current is stationary, 

as often happens in oceans, all gradients χi become complanar, as follows directly from stationary tracer equations 

 

and can also be seen in Fig. 1  showing the planes α, β,  = const and their intersection, namely a streamline. Every 
streamline can thus also be considered as the intersection of all the planes χi = const, giving the direction of velocity vector u 

but not its magnitude.

However, this opens up the interesting possibility of using essentially nonconservative quantities, but with a well-defined 
alongstream dynamical evolution, which would help us to determine the velocity field. Thus, the goal of the following 
sections is to show how these nonconservative quantities can be “tracer potential vorticities”  

χ
, the temporal evolution of 

which is fixed by the EPV theorem (1), possibly in the presence of frictional effects. 

3. Fluid tubes and basic equations  

In order to gain some general insight into these problems, let us go back to Vilhelm Bjerknes' classical idea (Godske et al. 
1957) that surfaces α(x, t) = const and β(x, t) = const of two conserved tracers α and β divide the fluid into fluid tubes (Fig. 
2 ), or simply tubes, along which the fluid parcels flow. By definition (α, β) tubes cannot terminate or originate inside the 
fluid. They can either be closed or end at the fluid boundaries.

In a steady case the mass continuity equation and tracer equations are 



 

One can moreover show (Wunsch 1996) that (5) implies 

ρu = (α, β) α × β, (6) 

where  is an arbitrary single-valued function: indeed the vector u is normal to both α and β, whilst ρu is divergence 
free (Ertel and Kuehler 1949);  depends on spatial coordinates x only implicitly, via α and β. Finally it should be noted that 
these relations (5)–(6) do not depend on the momentum equations, but only on continuity. 

Equation (6) enables both the horizontal and vertical components of the absolute velocity u to be determined, but a precise 
measurement of the velocity should be made at least in one point for each streamline, in order to specify the function (α, 
β). This is not always the best option, so here we discuss another choice that may prove useful when a supplementary third 
scalar field is known: let us assume that we have some information about a nonconservative quantity γ(x, t), such that Dγ/Dt 
= Γ(x, t) where Γ  0. In a steady case, when 

u · γ = Γ, (7) 

Eqs. (6) and (7) give that 

 

allowing one to obtain u from a knowledge of α, β, γ, and Γ. In Eq. (7) the dynamics may appear, as it is in (1). 

These relations produce two immediate consequences of experimental interest. First, from (8) the ratio of horizontal and 
vertical velocity components is readily obtained, without any of the experimental uncertainties due to the ratio Γ[( α × β)

· γ]−1. Only the gradients of α and β, entering α × β in the numerator of (8), contribute to these errors. Second, in 
cases where some materially conserved tracers are known, such as salinity, potential temperature, and some chemicals, one 
can tentatively identify the no-motion level by searching for cases where α × β = 0. In general cases, it may be wrong: it 
is easy to imagine a barotropic flow with α × β  0, with α being the potential-temperature salinity and β the salinity. 
Nevertheless, for inclined baroclinic or slightly viscous flows, see also below, this idea can work and will be applied to 
known cases of the Mediterranean Sea in a subsequent paper.

Furthermore, if we consider two fixed α and β tracers and different possible choices (γ, Γ), (γ1, Γ1), (γ2, Γ2), etc., the 

resulting velocities u must be the same, as far as (5)–(8) are exactly verified. But, if we sum or multiply these different (γ, 
Γ) tracers, interesting properties may be found such as 

 

that underline a general algebraic structure of (5)–(8), of some interest in applications. 

In addition, it is clear that the hypotheses relative to (5)–(8) are not easily satisfied in realistic problems, as discussed in 
section 7. We therefore now discuss the limits of validity of our equations (5)–(8). The general case is actually 

 

for general time- and space-dependent quantities A′, B′, Γ′ that act as sources of α, β, and γ. Clearly, real field 
observations give values of the various tracers that are not actually constant, but in most cases show time-dependent 
fluctuations due to external forcing such as atmospheric winds or tides, and also due to fronts, internal waves, turbulence, 
etc. Nevertheless these tracer variations usually have relatively small amplitude compared with the time-average of the 
various tracer concentrations. On the other hand, the velocity field u = u + u′ displays considerable fluctuations u′, often 
much larger than the time-averaged value of the velocity u, as nicely discussed by Wunsch (1978). So the main difference 
between (5)–(8) and (10) is in the strongly time-varying velocity field u′. Note that, in addition, A′ and B′ can contain small, 
steady terms to describe mixing and diffusion of α and β. 

In conclusion, we seek a solution for the velocity vector in the form 



 

an absolutely general representation provided that γ · α × β  0. Setting A* = A′ − tα, B* = B′ −  tβ, and Γ* = Γ′ − 

tγ now leads to a general solution 

 

where the first right-hand term corresponds to (8). The second right-hand term describes the velocity of flow towards 
the tube walls, namely 

u* = U α + V β, 

with 

 

Note how it follows from (11)–(13) that 

 

Finally the third right-hand term in (12) provides corrections for the alongtube velocity component. 

In general, in (12) for small tα and tβ there is a steady, or quasi-steady, flow related to Γ and possibly to u* · γ, 

superimposed on a time-dependent flow related to tα and tβ. In addition, from (12) we see how for small tα and tβ the 

large velocity fluctuations are essentially due to Γ′ −  tγ. All this allows the validity of our Eqs. (11)–(14) to be checked: 

indeed, if tα, A′,  tβ, B′, and Γ* are large, our treatment does not hold and different relations have to be used. 

Finally an intuitive depth-dependent representation of potential vorticities for steady flows is discussed. From (8) one 
easily obtains that 

 

Particularly interesting general solutions of (15) are 

γ = F(α, β)L(z) + G(α, β), (16) 

valid for arbitrary functions L, F, and G, as long as α, β, and k  = z are not complanar. Equation (16) shows how 
inside an inclined (α, β) tube, each γ value can be seen as a mere function of z. Consequently a combination of γ and z 
becomes a constant of motion.

4. Applications to the density field  

The most natural example to consider is to take γ as a radioactive isotope concentration with u · γ = Γ = − γ, where τ 

= −1 is the temporal decrement of radioactive decay (Roether et al. 1999; England and Maier-Reimer 2001). This point is 
intended to form the basis of a forthcoming study.

Let us now analyze incompressible inviscid fluids: following Needler (1985) we set α = ρ, β = 
ρ
, and γ = 

β
 to extract 

all the possible information from the density field alone. Thus Eq. (15) implies that the streamlines lie along the intersections 



of ρ = const and 
ρ
 = const surfaces (Olbers et al. 1985; Marshall et al. 1993). 

From the EPV theorem for such incompressible inviscid currents it follows that 

 

which is generally not zero. In a hydrostatic steady case, all this yields 

 
(Click the equation graphic to enlarge/reduce size)

Interestingly, 
β
 and u are proportional to the vertical velocity w. Note also that, if w  0, we have from (18) that (u ·

β
) u  0. So, either u ·

β
  0 or u  0, but in the last case w  u2, which is not possible since, for w  0, one 

has u2 = u2 + 2 + w2  u2 + 2  Cw (C is a constant). So for w  0 one has that u ·
β
  0 and in (18) u is 

consequently an undetermined quantity. On physical grounds this means that for horizontal inviscid flows, with w = 0, 
β
 

does not vary along the streamline, as follows directly also from Ertel's theorem. This is probably the fundamental reason for 
some difficulties being encountered in applying Needler's (1985) relation.

In general, the last member of (18) may appear as highly nonlinear because of the concomitant effect of w, u, |u|, and so 
on. This difficulty can be solved by approximating w/|u| from experimental knowledge of the current pathway. For instance, 
one can identify the slope of the intersection of ρ = const and 

ρ
 = const surfaces or, in order to diagnose density currents, 

the bottom inclination beneath the current.

For large-scale currents, this equation (18) can be simplified to give 

 

and finally 

 

where N is the Brunt–Väisälä frequency. The last expression is the well-known Needler's (1985) formula, involving third-



order space derivatives of ρ. Using (21), the density can be inverted (Müller 1995). 

Equations (15) and (16) applied to this kind of streamtube give 

 

with L, F, and G as arbitrary functions. So, inside a given inclined fluid tube fN2 is a function of z only. For a special 

choice of L, F, and G some illuminating analytical u representations are discussed in appendix A. For steady motions, in 
hydrostatic approximation we have 

 

which leads to fN2 constancy for steady horizontal and slightly viscous motions.
 

Furthermore, (22) allows an interesting simplification of (21), namely 

 

since, in general, 

 

This formulation is, interestingly, related only to local quantities since both the vector product and the second vertical 

derivative of N2 are measurable in a single transect. So in the following we will call this kind of formula “local.” 

In short, although we obtained some useful properties of fN2 we also had to overcome the basic difficulty that, even if ρ 

is not a dramatically varying function, then 
ρ
 can be affected by a quickly varying velocity field. In addition, the gradients 

of p, ρ, N2, and N2/ z are all comparatively similar functions, even if we are sure that their triple vector products do not 
vanish. So, it is the fine structure of the potential density field that rules the velocity amplitudes, and this could represent a 
practical difficulty when field measurements do not give clear enough information about these quantities (Wunsch 1978). 
Consequently, the approximations outlined in (17)–(23) cannot always be used, which represents a basic difficulty affecting 
this kind of tracers, such as density and its potential vorticity.

5. Importance of T–S tubes  

The preceding difficulties concerning potential density raise some fundamental questions. For instance, could we use 
information about an additional tracer, say χ, to obtain a relation similar to Needler's formula but avoiding third-order space 
derivatives, often producing large experimental errors? The answer is affirmative: indeed, let us take α = ρ, β = χ, γ = 

χ
. In 

hydrostatic approximation we thus obtain 



 

the latter being the local equation. Note that we again obtain the interesting property that D
χ
/Dt  w, thus showing that 

each 
χ
 is constant for purely horizontal or slightly viscous currents, a feature of some general interest. 

For steady adiabatic flows from (2) it is natural to assume that χ is the salinity S or the potential temperature θ. This 
would also enable one to use more complete information about θ and S, as obtained from in situ measurements. So, in 
general, we now analyze an adiabatic inviscid current with materially conserved potential temperature and salinity, assuming 
α = θ, β = S, γ = 

θ
. In hydrostatic approximation we have 

 

the last equation giving a local value. For a viscous fluid one instead has 

 

written in general form without the hydrostatic approximation. The presence of the viscous correction in (27), as in the 
other case to be discussed (29), are of fundamental importance since it allows the preceding considerations to be extended 
to slightly viscous fluids, also for horizontal flows. Indeed for horizontal flows the first right-hand term in (27) is zero and 
the main term is the viscous correction. This could be essential in order to identify the no-motion level, where the inviscid 
formulation (26) could give confusing results. 

Two different absolute velocity determinations, namely for {θ, S, 
θ
} like (26) and (27) and for {θ, S, S} as below: 

 

the last being a local value, and for a viscous fluid, 



 

must result at the same vector u for every dynamically possible case of θ and S. Indeed, subtracting (29) from (26) for 

steady currents of incompressible fluids shows that these two formulations are equivalent since, for c2 = ρ/ p  ∞ from 

(26)–(28), we have 

 

We again stress that both θ and S are the tracers that are most often observed in field measurements. So the 
aforementioned ratio of horizontal and vertical velocity components is best obtained from these (26)–(29) relations, which 
are valid also in the case that mild friction must be taken into consideration. Again, similar considerations hold also for the 
search of the hydrologic no-motion level. 

To get some idea of the practical applicability of these relations (26)–(29), in appendix B we discuss a classical density 
current, that of salty dense Mediterranean Water that crosses the deepest part of the Strait of Gibraltar and flows towards 
the Atlantic Ocean (Baringer and Price 1997a,b). More in detail, this density current flows along the local topography into 
the Atlantic Ocean (Fig. 3 ). Between the hydrological sections B and D the current turns northward with a curvature 
radius of R  40 km; beyond these sections the flow is essentially rectilinear. From sections A to F, over an irregular sea 
bottom, the current thickness h and its width W are found to increase while the velocity u and density difference Δρ 
compared with the surrounding water masses decrease as the current moves off Gibraltar (Table 1 ). From (26)–(29) the 
velocity is obviously along the θ = const and S = const surfaces, even if friction is considered. The velocity intensity is ruled 
by the gradients of θ, S, as well as by F. In Table 1  we show how the nonlocal u estimates obtained from Eq. (26) fit 
the experimental data satisfactorily, while the local u computations are affected by errors that are difficult to estimate. In 
addition, the viscous corrections are seen to be smaller than the estimates of experimental errors.

6. The ratio 
θ
/ S and its dynamical properties 

 

This general symmetry between θ and S suggests the utility of a further possibility, namely α = θ, β = S, γ = 
θ
/ S, an 

element of the algebra (9) generated by S and 
θ
. A somewhat analogous construction, the ratio of EPV and the magnetic 

analogue of EPV, was introduced by Hide (1996) in a magnetohydrodynamics context. We limit the present analysis to 
inviscid flows; from (1) we obtain 

 
(Click the equation graphic to enlarge/reduce size)

Therefore we again have (D/Dt)(
θ
/ S)  w, so for purely horizontal flows 

θ
/ S is constant. Also of interest is the fact 

that for inclined flows the ratio 
θ
/ S takes on a particularly elegant form: 

 

in a quasigeostrophic approximation, so 
θ
/ S  ( θ/ z)/( S/ z) remains invariant also in the course of extended meridional 



excursions of ocean water masses when f  changes because of the β effect. So, (31) shows how 
θ
/ S changes 

deterministically because of the sole effect of baroclinicity, as described by the term 2 in Eq. (1). In addition, 
θ
/ S can 

easily be computed from a single CTD cast as Δθ/ΔS, using finite differences to approximate vertical derivatives.

For inclined steady motions one ultimately has 

 

In addition from (15) and (16) one has 

 

with arbitrary functions F, L, and G. So, inside a (θ–S) tube, 
θ
/ S is a function only of the depth z, and the local 

version of (32) is 

 

This can be compared directly to Needler's (1985) classical result (21). Unlike (21), this equation (33) involves only 
second-order derivatives of θ and S, which is a definite advantage since θ and S are known more exactly and have richer 
space variability than the other quantities in (21), as illustrated above. 

To examine the relation (33) more properly, we define a pseudovector U = [U(z), V(z), 0] with horizontal components U 
= θ/ z and V = S/ z. In (33) the quantity 

 

stands for the rate of change of direction of U with z: indeed, one can likewise write 

 

where  is the angle (measured anticlockwise) between U and a fixed direction in the horizontal plane. If U were the 
horizontal velocity vector, then H could be called the kinematic helicity (Hide 1989); in our case we call H the “thermohaline 
helicity.” 

In order to estimate water velocity, H has to be computed. Note how (33) fails when H = 0; that is, the vector U changes 
only in magnitude with depth, but not in direction. In particular, this failure occurs when θ;cl z and S/ z are substantially 
nonzero and vary with depth, but their ratio remains constant. So, absolute velocity determinations based on Eq. (33) should 
be restricted to a range of depths with H  0. The marine currents, which satisfy this necessary condition, may very well 
be considered essentially as thermohaline currents.

In practical calculations of section 7, in order to avoid large experimental errors coming from taking second vertical 
derivatives of θ and S in (34), we shall approximate H with its space-averaged value, as also hydrological velocity estimates 



are related to space averages. Plotting the U hodograph and estimating the area swept up by the U vector facilitates this 
procedure.

7. The Ross Sea dataset  

It must be stressed that practical applications of the above relations are not an easy task in the open sea. Indeed, in this 
approach we are forced to assume that

1. the flow is steady, or at least quasi-steady; 

2. there are enough detailed observations of two distinct, materially conserved tracers; and

3. one can identify a tracer potential vorticity with a well-known time or space evolution. 

These requirements are not easy to satisfy. Indeed, as a realistic concluding example we now analyze current meter and 
hydrologic data obtained in the Ross Sea (Antarctica) during the CLIMA Project (Budillon et al. 2002) relative to a current 
flowing over the continental shelf. To study a flow that is clearly not horizontal we use θ–S data for stations 87 and 88 of 
transect D, and for stations 89 and 90 of transect E (Fig. 4 ) positioned at 75°S (transect D) and half a degree ( 55 km) 
north (transect E). Stations 88 and 90 were located at 19 km and 24 km, respectively, west of stations 87 and 89 (Table 
2 ).

The hydrologic data (Fig. 5 ) show in all transects A–E the northward flow of a particularly dense cold water mass, 
the “Deep Ice Shelf Water”  (DISW), beneath another cold lighter water, the “Low Salinity Shelf Water”  (LSSW). Using 

mass conservation properties, Budillon et al. estimated the northward DISW velocity as 8 cm s−1 at the bottom transect D, 

with errors that were rather difficult to define, probably 2–3 cm s−1. No similar estimate was however possible in transect E 
since DISW was no longer clearly identifiable. On the other hand, in the western part of both transects a warmer water was 
also observable, the Circumpolar Deep Water (CDW). The northward velocity of CDW is smaller than that of the bottom 

DISW; it is 4 cm s−1, with an overall error of 3–4 cm s−1. So some rather large spatial gradients, both vertical and 
horizontal, of the northward velocity must have been present.

In addition direct current meter data show that the mean flow in the mooring , south of transect D (shown in Fig. 4 

), was directed northeastwards at all depths at a velocity of 3–4 cm s−1. In particular the most superficial current meter, 

at a depth of 282 m, gave a northward horizontal velocity of 6.3 cm s−1 during the CTD observation time (July 1995). 

From vertical density profiles for stations 87–90 we found an evident velocity variation in transect D at a depth of 50 
m, so we focused our attention on deeper layers around a streamtube present in both D and E transects bounded by surfaces 
θ = −1, −0.4°C and S = 34.3, 34.5 psu. Its mean depth is 75 ± 10 m in transect D and 120 ± 10 m in transect E: so 
moving northward this current deepens by 40 m over 55 km: this gives a ratio of vertical and alongstream velocities w/  

 −7 × 10−4, with an error of 20%. 

For this streamtube, in the more regular transect D we estimated 

 

where the x axis is directed westward, the y axis northward, and the z axis upward. The errors in the gradients in (35) 
were rather difficult to estimate: we assumed that θ and S between two stations is the linear interpolation of the observed 
values. So the relative errors here are assumed as that of the majority of hydrologic measurements, namely 10%. From 

these (35) the ratio w/  can be estimated as −4 × 10−4, with an error of 40%, in agreement with the previous estimate. 

To check the applicability of this method, from (33) we computed 

 

with H  0 given by (34). The northward component ( θ × S)y between the depths of 50 and 200 m is ( θ × S)y = 

(13 ± 2) × 10−8 °C psu m−2 for transect D and ( θ × S)y = (3.1 ± 0.8) × 10−8 °C psu m−2 for transect E, with N2 = (1.8 

± 0.1) × 10−5 s−2 for transect D and N2 = (2.5 ± 0.1) × 10−5 s−2 for transect E. The main uncertainty comes from the 
denominator of (36). From the arithmetic mean of depth averages H for stations 87, 88 and for 89, 90 we obtained HD = 



−9.6 × 10−7 °C psu m−2 and HE = −7.8 × 10−7 °C psu m−2 for transect D and E, respectively. Collecting all the numerical 

values we obtained D = 1.7 cm s−1 for transect D, with the uncertainty interval (0.9/3.4) cm s−1 mainly resulting from H 

values dispersion for individual stations, and E = 0.7 cm s−1 for transect E, with the uncertainty interval (0.4/2.7) cm s−1. 

From Table 2  we estimated in the center of each transect at a depth of about 90 m: 

 

Finally, using given above ( θ × S)y values, the local velocity estimates are D = (1.6 ± 0.8) cm s−1 and E = (0.3 ± 

0.2) cm s−1 applying the method relative to Eq. (26) and D = (6.6 ± 4.0) cm s−1 E = (1.5 ± 1.0) cm s−1 from Eq. (28). 

The main source of errors is uncertainty regarding the exact streamtube location, and the tracer spatial gradients. Further, all 
these concerns can be repeated for (26) and (28), which actually have rather large errors. This difficulty may, to some 
extent, be overcome by averaging the field variables over transects, as in (33). However, this procedure at least partially 
softens the gradient values, a fundamental difficulty also common to other hydrological estimates (Fig. 6 ). 

Applying the algebraic viewpoint (9), formula (33) may be said to be a mere consequence of (26) and (28), and therefore 
the observed scattering of  estimates from (26), (28), and (33) needs some discussion. One explanation involves the 

smallness of 2θ/ z2, the θ(z) profile being nearly linear, and this ultimately gives a large value D  6.6 cm s−1. In this 

context, a definite practical advantage is guaranteed by using (33) because of the nonsmallness of its denominator over a 
rather broad range of circumstances: indeed it becomes small only in a few cases, when both θ(z) and S(z) are nearly linear 
at the same time.

We also applied Needler's formula (21) by fitting the potential density from Table 2  with 

 

This procedure gives the average northward velocity component: D = 1.1 ± 0.5 cm s−1 for transect D and E = 0.8 ± 

0.7 cm s−1 for transect E. In this case also these estimates appear to be very sensitive, especially for transect E, to 
uncertainties over ρ data. 

Finally, to validate our computations, we took θ–S data for transect D and calculated the velocity difference, 4 cm s−1, 
between the bottom and our more superficial depths using the thermal wind equation. Due to the complex structure of the 

density field with steep spatial gradients, this is probably underestimated. So, considering the value of 8 cm s−1 from 
Budillon et al. (2002) in station 88 near the bottom, at a depth of 500 m, the northward velocity at our more superficial 

depths is 4 cm s−1, or even less, which matches the majority of our estimates, with the sole exception of that based on 
(28), the one discussed above. 

8. Discussion  

In this work Ertel's classical vorticity theorem is used for a class of potential vorticities relative to various materially 
conserved scalar quantities, also in the realistic case that a mild friction has to be considered. In the central part of our work 
chemically inert tracers and their potential vorticities are examined: we assume that the tracer time evolution is known, as is 
often the case in practice, and then try to identify the resulting velocity field.

Specifically, we investigate the question of the absolute velocity determination in a steady case relative to a streamtube, 
using the alongstream rate of change of some particular potential vorticity field. Our method can be seen as a generalization 
of Needler's (1985) classical arguments. A flow of well determined density field is then critically analyzed: in particular we 
infer the velocity field for nonhorizontal motions and recover Needler's formula related to a potential vorticity fN2  −g

ρ
 for inclined flows. Indeed, the time rate of change of this fN2 quantity is proportional to the vertical velocity 

component of the flow. Therefore, we show that D fN2/Dt = 0 for horizontal flows in hydrostatic approximation. Further, 

we show how this property holds also for any tracer potential vorticity 
χ
, associated with a materially conserved quantity 

χ. 



For steady currents, if the potential temperature θ and salinity S can be considered as tracers, we also obtain an absolute 
velocity determination that essentially involves only first and second-order space derivatives of θ and S. This formulation 
allows one to account for friction and other forces acting on a fluid.

In the final part of the paper (section 6) it has been assumed that heat and salt are conserved in the sea, while momentum 
(vorticity) may be not conserved. It is well known that, unlike direct velocity observations, coarse-grained potential 
temperature and salinity fields are less contaminated by smaller-scale energetic eddies and internal waves. In strongly 
stratified marine layers the vertical momentum transport is much more efficient than that of heat and salt, the corresponding 
virtual (turbulent) Prandtl and Schmidt numbers typically being of the order of 10 (Jacobsen 1930; Taylor 1931; see also 
Turner 1973). We thus analyze the potential vorticities ratio 

θ
/ S  ( θ/ z)/( S/ z) for cases in which ρ is not easily 

determined. Again we find that 

 

for horizontal flows. We thus obtain a formulation of steady water absolute velocity, which is later applied to a rather 
superficial current in the Ross Sea. This formulation seems appropriate in marine currents that are stratified both in salinity 
and temperature, with pronounced baroclinic turning of horizontal velocity with depth. In certain circumstances our 
approach may serve as a useful supplementary procedure to the existing methods of steady current absolute velocity 
determination, including the well-known beta-spiral method first proposed by Stommel and Schott (1977) and applied, for 
example, by Olbers et al. (1985) to the North Atlantic. 

One further observation may be of some importance: for three main examples discussed, namely {ρ, 
ρ fN2}, {ρ, χ, 

χ
}, and {θ, S, 

θ
/ S}, for steady horizontal motions (in hydrostatic approximation) the property of D /Dt = 0 is 

obtained, which implies these three types of potential vorticities are constant for this sort of motion. This statement appears 
to be complementary to our other results, which hold for essentially inclined fluid motions.

In synthesis we applied our formulas to various cases, both analytically and computationally, and actually discovered the 
profound difficulties associated with the method. Indeed, the streamtubes are usually difficult to identify, the flows are not 
steady, the data are of good quality only near the station, and so on. Therefore, finally we have to discuss the applicability of 
our ideas to realistic cases. There are several demands that experimental data have to fulfill in order to apply our method of 
absolute velocity determination successfully. These include quasi-steadiness and strong baroclinicity of the flow, its 
pronounced inclination to the horizon evident in the measured hydrological characteristics, as well as the existence of a 
comparatively dense observational network, with sufficiently small horizontal spacing between the stations for which CTD 
casts are available. Within these limitations, the method enables one to obtain a spectrum of the absolute velocity estimates, 
sometimes affected by substantial experimental errors, which should in any case be checked using direct current meter 
measurements. Similar considerations can also be applied to other estimates obtained, namely of the ratio of vertical and 
horizontal velocities, and in the search for the hydrologic no-motion level. 
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APPENDIX A  

9. A Special Case of Needler's Formula  

Below we discuss a special case of Needler's formula (21) in which it allows an exact absolute velocity reconstruction 
through its own approximation. Calling Σ = logρ, formula (21) reads as 



 

As an example we take f  = f0 and 

 

where C1 and C2 are arbitrary functions, A is constant. The alongstream coordinate x is labelled by the parameter , and q 

= π/d, where d is the characteristic depth scale. From (A2) it follows that 2 Σ/ z2 = Azq2 − q2 Σ, and hence 

 

since k   z. Dividing both numerator and denominator of (A1) by k ·  Σ × (  Σ/ z)  0 one has 

 

which is a divergence-free velocity that satisfies the basic equations (5) for α = Σ and β = f0  Σ/ z under approximation 

of incompressible fluid.

To be more specific, in (A2) we set C2 = 0 and C1( x, y) = ayc( x). Here c( x) describes possible weak dependence of Σ 

on x in the case of   1 and the parameter a specifies the cross-stream density gradient. This flow mimics a marine front 
within the channel −D  y  D, with half-width D satisfying aD  1, the latter reflects the smallness of the cross-front 
density gradients. For the hydrostatic stability of the flow it should be  Σ/ z = A − cayq sinqz < 0 at any point or in any case 

caD < |A|q−1  |A|dπ−1. 

The velocity x component, based on (A3), is 

 

The first right-hand term in (A4) is merely the thermal wind, as follows from (A3) and the thermal wind relation f0( u/ z) 

= −g(  Σ/ y). The second term interestingly shows the barotropic velocity contribution, which is predicted by Needler's 
formula (21), an example of a flow with uniform horizontal velocity shear 

 

For a numerical estimate we adopt d = 1000 m, a−1 = 300 km, D = 30 km, c = 1, g = 9.81 m s−2, f0 = 1.41 × 10−4 s−1, 

and set N2 = −g(  Σ/ z) = −gA equal to 10−5 s−2, which specifies the constant A. For these parameter values, the above 

hydrostatic stability criterion is always satisfied, the amplitude of the thermal wind component in (A4) becomes 7.4 cm s−1, 

and the horizontal velocity shear (A5) is equal to 7.6 × 10−7 s−1, which at z = ±D gives the barotropic velocity 2.3 cm s−1, 
that is about 30% of the maximum baroclinic velocity contribution.

It can be shown that the solution (A2), (A3) satisfies the Bernoulli theorem for a steady flow, taken in the geostrophic 
approximation of “planetary scale”  motions (Pedlosky 1987, section 6.20) consistent with formula (21). This analytical 
solution may be of interest as a particular model of outcropping isopycnal surfaces in the thermocline ventilation theory (cf. 



Luyten et al. 1983). 

APPENDIX B  

10. Field Data off Gibraltar  

The Baringer and Price field data (1997a,b), relative to their transects A, C, and F (Fig. B1 ) downstream from the 
strait of Gibraltar, are now discussed in more detail. In Table 1  we estimate the main physical quantities of this outflow, 
denoting as “central region”  the one characterized by the highest velocities, and with S > 36.4 psu, as computed by Baringer 
and Price (1997a,b). We use (26)–(27) since S is better defined than θ, and this implies smaller uncertainties. 

We also computed the local estimate of u, as expressed in the last member of equations (26) and (28). These estimates 
have the considerable advantage that they can be computed using more “local”  hydrologic data, but in so doing it is difficult 
to avoid large errors. Similar considerations can be repeated for F/ρ, which we estimate as (τB + τI)/hρ using the Baringer 

and Price (1997) notations, τB and τI being viscous stresses on the sea bottom and current interface, respectively. The curl 

of the frictional force is approximated here by 

 

and is directed in a nearly horizontal cross-stream direction. All this ultimately means that the inviscid part of the velocity 

is (0.5–0.2) m s−1 and the viscous component is −(0.05–0.10) m s−1 with errors of 20%–100%, largely due to angle 
uncertainties (see Table 1 ); all this is in agreement with the experimental dataset. 

In addition, the steady velocity component due to salt and temperature diffusive effects, characterized by the vertical 
turbulent diffusivity coefficient κ, can interestingly be determined from (12) by |u*| = κH/( θ × S)y; see other notations in 

section 7. From (36) it now follows that the ratio of this additional and main alongstream component is merely |u*|/|u| = 

κN2/fu2, which is less than 1% if κ  10 cm2 s−1. 

In synthesis we see that the best estimates can be obtained using the most precisely defined set of data and “nonlocal”  
equations. On the other hand, if 

θ
 and S do not vary significantly between two transects, large experimental errors can 

prevent (26) and (28) being used in practice. Note however that our knowledge of the experimental dataset is only partial 
and all these estimates must be considered only a demonstration of general applicability of our relations. A more accurate 
estimate requires a detailed knowledge of the original dataset, as shown in section 7 for currents in the Ross Sea. 

Tables  

TABLE 1. Values relative to the bottom current flowing off Gibraltar, estimated from the Baringer and Price (1997a,b) dataset. In 
this table the first part comes from direct estimates taken from Baringer and Price (1997a,b), often without errors, although 
uncertainties of 10% may reasonably be assumed. The values of θ and S are the values of θ and S in the center of the 
current, minus the value along the S = 36.4 psu surface, over h. In the same way we have tentatively estimated the angles 

between θ and S. Finally, cD is usually taken to be 5 × 10−3 (MKS units), but the total stress (bottom and interfacial) from 

Baringer and Price (1997a,b) is about twice their bottom stress (in their Fig. 6a), given cD = (2–12) × 10−3 (MKS units); so we 

assumed cD = 0.02 (MKS units) (rht = right-hand term) 

 
Click on thumbnail for full-sized image. 

TABLE 2. Synthesis of hydrologic data obtained during the X Italian Expedition in the Ross Sea (CLIMA Project); see Budillon 
et al. (2002) for more details
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Figures  
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FIG. 1. Sketch of steady streamlines viewed as the intersection of α, β, , …  planes 
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FIG. 2. An (α, β) tube 
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FIG. 3. General geographical situation and position of transects A, C, and F observed by Baringer and Price (1997a,b) off 
Gibraltar. Depths are in fathoms
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FIG. 4. Mooring (triangle) and CTD cast (dots) positions in the Ross Sea (Antarctica); depths are in meters, depths below 500 m 
are shaded. The density vertical fields of the transects D–E are discussed in the text and shown in Fig. 5 . More details on the 
hydrological field are in Budillon et al. (2002) 
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FIG. 5. Vertical sections of potential density (kg m−3) relative to (a) transects D and (b) transect F observed in the Ross Sea 
(Antarctica). More details are in Budillon et al. (2002) 
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FIG. 6. Hodograph of pseudovector U = ( θ/ z × 50 m, S/ z × 50 m) for stations (a) 87, (b) 88, (c) 89, and (d) 90. Solid arrow 
corresponds to a depth of 150 m, dashed arrow to 115 m, small dashed arrow to 75 m, and dashed–small-dashed arrow to 50 m 
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FIG. B1. Hydrologic properties relative to transect A [(a) salinity, (b) temperature] and relative to transects (c) C, and (d) F 
(temperature) observed by Baringer and Price (1997a,b) off Gibraltar 
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