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ABSTRACT

A simple linear theory of the circulation in a meridionally bounded equatorial 
ocean driven by density mixing localized near the eastern boundary is used to 
model the subthermocline circulation of the equatorial oceans. The mixing is 
modeled by a specified, spatially limited source term in the density equation. The 
theory is for a steady circulation, and the model, which is continuously 
stratified, contains simple linear drag laws for frictional dissipation and a similar, 
linear damping for density anomalies. The model employs Gill's formulation of 
the basic linear equations near the equator. The satisfaction of the condition of 
zero zonal flow at both bounding meridians requires the determination of the 
amplitude of the Kelvin component (or its steady counterpart) by an integral 
condition over the domain of the flow. When that condition is satisfied, the 
solution, for reasonable settings of the parameters, naturally yields an alternating 
array of zonal currents localized within a deformation radius of the equator. An 
essential condition for the appearance of this high vertical mode zonal structure 
is the localization of the forcing to the eastern boundary and to a small vertical 
region at the top of the domain, which is identified with the mixing occurring at 
the base of the equatorial thermocline.

1. Introduction  

The discovery of alternating zonal currents at the equator, first in the Indian 
Ocean by Luyten and Swallow (1976) and their subsequent observation in both the 
Pacific and the Atlantic (see, e.g., O'Neill and Luyten 1984; Firing 1987; and Ponte 
et al. 1990), poses an extremely intriguing dynamical puzzle. The short vertical scale of the observed jets, about 100–300 m, 

and their moderate velocities (on the order of 20 cm s−1 or less) initially encouraged their identification as an equatorial wave 
response to forcing in the equatorial band on long timescales (see, e.g., the discussion in O'Neil and Luyten). Early 
theoretical attempts to explain the deep jets as a forced wave response to surface input (e.g., Wunsch 1977) were frustrated 
by the shallow angle of descent of energy pathways at the low frequencies required to obtain realistic vertical scales. In an 
ocean of finite longitudinal extent it is difficult to so explain the emergence of energy at great depths. Attempts have also 
been made to explain the jets as a consequence of time dependent forcing at the boundaries. Ponte (1989), for example, 
specifies the structure of the zonal velocity at either an eastern or western equatorial boundary and computes the interior 
structure. In such cases however, the vertical structure of the solution, in particular, the vertical wavenumber of the 
oscillating current, is completely specified as a boundary condition and this frustrates an attempt to explain the structure of 
the current as a response to external forcing.
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In this paper I present a model for the equatorial deep jets which is fundamentally based on the linear, steady equatorial 
model introduced by Gill (1980) and Anderson and Rowlands (1976; in particular see Gill 1982, his section 11.4). Similar 
investigations of the steady problem date to the pioneering work of McCreary (1981) who attempted a linear steady model 
for the Equatorial Undercurrent. More recently Wang et al. (1994) described a model driven by a specified zonal inflow 
within the equatorial region at the depth of the observed deep jets. Although yielding plausible structures, there is no 
explanation for the mechanism that produces this western boundary forcing.

The inclusion of both eastern and western boundaries to the domain adds elements of particular subtlety. The zonal 
velocity is forced to vanish at both boundaries in this model and it is assumed, and verified post hoc, that all solutions decay 
for increasing latitude so that the domain of motion is limited. The model is driven by an inhomogeneous forcing term in the 
equation for the density field and it is suggested that this represents the effects of turbulent mixing which is observed to 
occur at the base of the equatorial thermocline. There have been several studies of the distribution of thermocline mixing in 
the upper equatorial ocean. One of the most complete is the recent study of Sloyan et al. (2002, manuscript submitted to J. 
Phys. Oceanogr.). This study shows rather intense diapycnal velocities at and below the base of the thermocline in the 
eastern boundary region of the Pacific especially east of 95°W. In the theory to be presented that mixing enters as a forcing 
term for the equatorial density field and is spatially limited.

It is particularly important to the theory that this forcing be limited in its zonal extent and its vertical range. The mixing 
exponentially decays away from both the eastern boundary and the upper surface, taken here to represent the base of the 
thermocline. It is important to note that such a forcing does not impose the vertical scale for the deep jets nor does it locally 
force the flow except near the boundary.

The forcing excites the steady equivalent of the whole class of equatorial wave modes, the amplitudes of which are 
determined by the forcing, the boundary conditions on the zonal flow and the integral condition of mass conservation. In 
particular, these conditions set the amplitudes of the steady equivalent Kelvin modes that are seen to dominate the solution. A 
parameter range is chosen that would allow the lowest few free Kelvin waves to transit the basin but strongly thermally 
damps the higher modes. In this case the steady response consists of a sequence of equatorial zonal jets whose vertical 
wavenumber depends of the ratio of the transit time to the damping timescale. The longer the damping time the smaller is the 
vertical wavelength of the zonal jet response. For strong thermal damping the forced signal would not exit the forcing 
region. For extremely weak thermal damping the solution responds in a Sverdrup type response in which the motion is 
limited to the depth of the forcing. Deep jets occur over a range of thermal damping coefficient intermediate to these two 
extremes.

Section 2 describes the formulation of the basic model. Section 3 outlines the analysis in terms of vertical and meridional 
modes and describes the determination of the solution in response to the boundary conditions. Section 4 describes the 
integral condition and closes the problem. In section 5, I present the principal results of the calculation, and section 6 
concludes with summary and discussion of the results.

There is no question that the linearity of the proposed model and the specification a priori of the density mixing are the 
weakest points of the theory. It is offered as a simple explanation for an intriguing and perplexing phenomenon and, it is 
hoped, the basis for more complete modeling.

2. Formulation  

The model used in this study is, fundamentally, the model first introduced by Gill and discussed at length in his text (Gill 
1982). The ocean model is centered at the equator and is bounded at x = 0 and x = L by meridional walls. The fluid's vertical 
domain is −H < z < 0. The system of linearized momentum and density equations, supplemented by the continuity equation is 

 

where the operator D is defined as 

 

where κ is both the Rayleigh friction drag inverse timescale as well as the scale for linear damping of density anomalies 
and it is the latter that is most crucial for the structure of the response. Here, N is the buoyancy frequency while b is the 
ratio of the density anomaly to the background density, and P is the pressure divided by the background density in the 



Boussinesq approximation. The Coriolis parameter in the equatorial beta plane approximation is f  = βy. We consider the 
region unbounded in y but the solutions will be naturally limited to a finite region in y. 

The function Q is the forcing in our model. Positive Q represents a reduction in density; one might think of it as 
representing the entrainment of lighter fluid from the thermocline into the deeper ocean by mixing. It thus represents a 
source of buoyancy and is meant to stand in for mixing of the fluid by processes unresolved in the model but present in 
observations of equatorial mixing as described in the introduction. It will be limited to a region near the eastern boundary and 
to a narrow zone at the top of the fluid at z = 0 which we identify with the base of the equatorial thermocline. In the present 
model the buoyancy frequency N will be taken to be constant. This condition can be easily relaxed but it is simpler to 
consider N constant and little is gained by using more realistic buoyancy profiles. The simplicity of the theory does not really 
justify such attempts at detailed realism.

The appropriate boundary conditions for our model are 

 

With constant buoyancy frequency, and with the boundary conditions (2.3b) it is convenient to represent the solution as a 
Fourier series in z, namely, 

 

Note that the sums for the horizontal velocity start with n = 1. The barotropic response (n = 0) to pure buoyancy forcing 
in this linear model is identically zero as can be easily shown. After projecting (2.2) on the appropriate Fourier functions, 
eliminating the density between the density and hydrostatic equations and using the continuity equation, the resulting 
equations for the amplitudes are 

 

In the above equations, the subscript n on each amplitude has been suppressed for typographic clarity. That suppressed 
index is, of course, implicitly present and used when reconstructing the total solution. The constant h(n) is the equivalent 
depth for the nth mode and is, for the case of constant N, 

 

corresponding to gravity wave speeds 

 

Following Gill (1982) it is useful to introduce the variables 

 

in terms of which we obtain from (2.5 a,c) 



 

These variables allow a convenient way to express the projection of the forcing exciting the zonal velocity.

The equation for potential vorticity 

D(  − f /h) + β  = Ef/h (2.10) 

can be used with (2.5b) to obtain 

D(cqy + fq) + (D2  − cD x) − βc  = −cEf/h, (2.11)

 

while (2.5b) alone can be written as 

(cqy + fq) + (cry − fr) = −2D . (2.12)
 

3. Analysis in meridional modes  

For each vertical mode, the meridional structure of the solution is most conveniently given in terms of a series in Hermite 
eigenfunctions, functions defined, as in Moore and Philander (1977), as 

 

where the Hj are the Hermite polynomials and the functions in (3.1) are orthonormal over the infinite interval −∞   y  

∞. Note that the new meridional variable   is the meridional distance scaled with the deformation radius for the pertinent 
vertical mode. 

Thus each variable is represented as a series in the eigenfunctions j: 

 

where the amplitudes of the expansion (the j subscripted variables) are functions of x alone and, were there time 
dependence, functions also of time. However, in our case they are functions only of longitude.

If (2.9), (2.10), and (2.11) are projected on the eigenfunctions j the following equations result after using standard 

identities involving the Hermite functions. The reader is referred to any standard handbook of mathematical functions (e.g., 
Abramowitz and Stegun 1970) for the necessary identities. In the following, the longitude variable x has been scaled by L, 
the basin width, so that now 0  x  1. In terms of this new variable we obtain the following equations. [A similar 
development can be found in Anderson and Rowlands (1976).] 

For j > 0, 

 

and for j  0 



 

while for j = 0, the equation governing the important lowest meridional mode for the q field is simply, 

 

which yields the steady equivalent of the Kelvin wave.

In the above equations there are two important length scales against which the basin width is measured. They are 

 

The first is the Stommel boundary layer scale and we will assume that it is very small with respect to L. The second is the 
density decay scale and is the ratio of the Kelvin wave speed to the inverse of the dissipation time scale. Since c is a function 
of vertical mode number this parameter varies as a function of vertical mode. As n increases LT decreases inversely with n. 

Finally, the parameter F is the square of the ratio of the basin width to the equatorial deformation radius, 

 

and is also a function of n, increasing linearly with n. We note that F = L2/(δsLT) and we recall to the reader that the 

above equations hold separately for each vertical mode with mode number n. 

To satisfy the condition of no zonal flow on x = 0 and x = 1, we must have 

qj − rj = 0, x = 0, 1 (3.7)
 

for each j. 

The lowest order mode, qo corresponds to the equatorial Kelvin mode (in the time-dependent solution) but note that to 

determine the j = 0 contribution to the zonal velocity ro must also be determined. The mode j = 0 corresponds to a structure 

which is Gaussian in y. 

We specify the forcing E(n) in a particularly simple form. We note from (3.3), (3.4), and (3.5) that the forcing is 
amplified by the very large factor L/h and given its arbitrary nature we restrict the forcing to the lowest meridional mode, 
that is, Gaussian in : 

 

that is, Ej = 0, j  0.
 

The particular structure that is chosen for the forcing Q is 

 
(Click the equation graphic to enlarge/reduce size)

corresponding to a distribution of heating on the equator concentrated near the upper surface and the eastern boundary. On 
the equator this yields a heating with a vertical and meridional structure decaying from the upper surface (the base of the 
thermocline) and decaying from the eastern boundary; that is, 

Q(x, o, z) = (J/π1/4)e−α(1−x)eμz/H sin(πz/H), (3.10)

 

where 



 

The structure of the forcing is such that it decays sharply away from the upper surface. The assumed symmetry of E 
with y (i.e., ) implies that only terms even in j will be generated in the sums for q and r (and only odd j for ). 

We also take the mixing to decay away from the eastern boundary so that it exponentially decays in a distance L/α from 
the eastern boundary.

This form allows particularly simple analytical solutions. For example, the solution of (3.5) is 

 

where Qo is an arbitrary constant. (Recall that it is also a function of n.)
 

To satisfy the boundary conditions on x = 0 and Lro must be found but from (3.4) this will depend on higher modes (in j) 

of q, so that ro will depend on the solution q2. That solution follows from (3.3), 

 

where the two constants 

 

The first root is always positive representing decay away from the eastern boundary. When, as in our case, δS/L  1, 

this root is O(L/LT) for moderate j. This root represents the thermal decay of signals from the eastern boundary on the scale 

LT, which, we recall, depends on mode number n. The second root is always negative, decaying from the western 

boundary, and for δS/L  1 is O(L/δS) and so is qualitatively similar to Stommel's mode of the western boundary layer. For 

very large j both roots approach F1/2 and correspond to baroclinic boundary layers whose width is of the order of the 
deformation radius. Although boundary layer solutions are possible with this problem the possibility of changes in scale for 
large n and j suggest use of the full solution for all parameter values. 

One can see now the crux of the problem. Using the condition that uj = 0 on x = 0 and L for each j separately, we can for 

j = 0 determine C2,1 and C2,2 in terms of Bo and Qo. However, to satisfy the condition that u2 = 0 at x = 0 and x = 1, since 

q2  0, requires that that we determine r2. This in turn requires [see (3.4)] the existence of a q4, and so on. All even j 

modes will thus be excited whose homogeneous solutions will be of the form for j > 2, 

qj = Cj,1egj,1(x−1) + Cj,2egj,2x, (3.15)

 

and with the use of the boundary conditions, each set of constants, Cj,1 and Cj,2, are determined in terms of previously 

determined constants for smaller j each of which ultimately will depend on the two constants Qo and Bo. In the appendix we 

list the table of the coefficients Cj,1 and Cj,2 in recursive form. Once these coefficients are determined the solutions for rj 

can be constructed as well. Although Bo is considered an externally imposed factor, the amplitude of the Kelvin-like solution, 

Qo must be determined. A convenient way to do so is to employ the integral condition described in the next section. 

 



4. The integral condition and the determination of Qo 

If (2.5c) is integrated over the entire domain of the problem and the boundary conditions are imposed, we obtain the 
integral condition, 

 

or in terms of q and r, 

 

where we have used (3.8), that is, that the imposed heating due to mixing is proportional to the first Hermite function. 
Using standard results from integral tables (e.g., Gradshteyn and Ryzhik 2000) we obtain, as the condition, 

 

With the aid of the coefficients given in the appendix, one can obtain a rather complicated formula for Qo. The sum on the 

left-hand side is first evaluated with Qo = 1 and Bo = 0 using the recursion relations of the appendix. Call that SumQ. The 

sum is then recalculated with Qo = 0 to obtain SumB. It then follows that 

 

and this must be done separately for each n. When Qo has been so determined the solution is complete and q, r, and  can 

easily be obtained.

5. Results  

For the calculations presented below the coefficient Q has been chosen in the form given by (3.9). The amplitude Bo is, 

of course, arbitrary in this linear problem and so the form of the solution is independent of its value. We frankly choose a 

value of Bo to obtain currents in the range of those observed. We choose Bo to yield of value of J = 6 × 10−9 s−1 

corresponding to a maximum value of Q of this order near the eastern boundary. Were this heating balanced entirely by 

vertical motion (diapycnal velocity in this model), it would give rise to a value of w on the order of 10−2–10−3 cm s−1, 
which is in the range of diapycnal velocity estimated by Sloyan et al. (2002, manuscript submitted to J. Phys. Oceanogr.). 

Figure 2  shows a contour plot in the y–z plane of the zonal velocity for the case where μ = 10 and α = 4 (parameters 
used in Fig. 1 ). The cross section is shown at a location half way across the basin; that is, at x = 0.5. The thermal decay 
length LT has been chosen to be 5 times the basin width. The parameter F has been chosen to be 100 so we have an 

equatorial region whose longitudinal extent is 10 equatorial deformation radii. This yields a very narrow Stommel boundary 
layer width δS/L = 0.002 and in the figures that follow the flow in that region will not be shown although it is part of the 

overall solution as calculated; that is, no boundary layer approximation has been made. The solution is represented using 40 
vertical modes as well as 40 Hermite functions in latitude. By altering the number of modes maintained we have checked that 
this number is more than sufficient to properly represent the solution.

In Fig. 2  we see stacked jets, clearly reminiscent of the figures shown in the observational papers referenced in 
section 1. The horizontal scale of the currents is of the order of the deformation radius but in fact is somewhat smaller than 
the first deformation radius (one unit in the current scaling), reflecting the contribution made by higher vertical modes to the 
solution. Figure 3  shows the profile of the zonal velocity versus depth at the equator for the calculation, which was 
shown in the previous figure. Six jets are shown, three to the east and three to the west. Isolines of the zonal velocity in the 



x, y plane are shown in Fig. 4  at the level z/H = −0.7 in the region of an eastward jet. There is a smooth deceleration of 
the flow as the eastern boundary is approached where u = 0, and, consistent with the often noted observational fact, there is 
no sign of a recirculation to close the flow. Instead, as shown in Fig. 5 , the flow closes in the vertical plane eastward 
flow at one level (e.g., z/H = −0.7) is perfectly compensated by the reverse flow in the opposite direction at deeper levels. 
Figure 5c  shows the meridional velocity near the western boundary (note the stretched coordinate). The meridional 
velocity is induced by the local convergence of the zonal velocity and we note that it is limited to within a deformation radius 
of the equator. This similarly is true near the eastern boundary. The flow, driven by the localized buoyancy forcing is 
confined to the equatorial band.

As the buoyancy forcing is increasingly limited to the eastern boundary the wavelength in the vertical of the zonal jets 
decreases. Figure 6  shows the zonal velocity in the case where the exponential decay factor, α, has been increased from 
4 to 8. The number of jets has nearly doubled although the jet strength is now weaker. Similar calculations with increasing 
the vertical decay factor of the forcing will also increase the vertical wavenumber of the jets, although those results are not 
shown for the sake of brevity.

The solution depends significantly on the parameter L/LT(1), that is, on the ratio of the basin width to the thermal decay 

scale of the lowest Kelvin mode. In Fig. 2  that ratio is 0.2. For a basin 12 000 km wide and a value of c(1) of 240 cm 

s−1, this yields a value of κ of O(4 × 10−8)s−1 or a dissipation damping time of about 290 days. If that parameter is 
increased, that is, if the thermal dissipation is significantly increased the number of jets decreases as the higher modes of the 
solution become more strongly damped. Figure 7  shows the zonal velocity when the damping scale is 2.5 times shorter 
than that shown in Fig. 2 . Only the lowest mode survives and there are only two jets. Even stronger damping would 
eliminate those. For lower damping, that is, for smaller values of L/LT(1), the number of jets increases. However, should 

L/LT(1) become very small the jet structure is also eliminated. In this limit information at each z propagates directly 

westward and there is no penetration. For example we note from (3.5) that in this limit qo (n) will propagate unchanged 

outside the forcing region and therefore will maintain the z structure of the forcing for all x. An example is shown in Fig. 8 
 in the extreme limit L/LT(1) = 0.01. Thus, for moderately small L/LT(1) the lowest modes propagate directly across the 

basin without setting the deep ocean in motion, the very high vertical modes are trapped to the region of the forcing and it is 
the modes of intermediate n which are evident in the deep ocean. 

It is a naturally fragile part of this linear theory that the number of equatorial jets does depend on the damping rate about 
which we can only express great uncertainty. However, the observed ability of equatorial Kelvin and Rossby waves to easily 
transit the ocean basins leads one to suspect that a moderately small but O(1) value of L/LT(1) would be plausible. 

6. Discussion and summary  

The simple, steady linear theory presented here describes the equatorial deep jets as the response to a steady, spatially 
localized buoyancy forcing, which we suggest is due to mixing at the base of the thermocline, a mixing that has been 
observed. An attractive feature of the forcing is that the jets appear below the level of the imposed forcing. This 
distinguishes the present theory from earlier work (e.g., Ponte 1989; Wang et al. 1994) in which boundary forcing is 
required at the depth of the deep jets themselves. The localization of the forcing actually enhances the oscillatory character 
of the response. The steady forcing due to turbulent mixing at the base of the equatorial thermocline is a permanent feature 
of the dynamics and the steady response yields deep jets for a range of thermal damping which is plausibly 
oceanographically appropriate.

A fundamental feature of the solution is the Kelvin wave-like response, that is, that part of the solution represented by the 
function qo. The amplitude of that response is coupled to response of higher meridional modes by the integral condition of 

section 4, a condition that we have found necessary to complete the solution. The integral condition appears necessary to 
express the mass conservation condition at each level in the equatorial basin and is reminiscent of the dependence of the 
solution for the midlatitude problem in the treatment by Edwards and Pedlosky (1995) where a similar integral condition is 
required to complete the solution.

The model presented here has some grave deficiencies. The linear nature of the dynamics and thermodynamics might be 
plausibly accepted but the external and arbitrary specification of the forcing is a intrinsic weakness. It would be much more 
pleasing if a model which contained both the nonadiabatic dynamics of the thermocline and the deep jets could be analyzed 
that exposed the naturally occurring mixing in the model as the driving mechanism for the deep jets. Such a model, nonlinear 
by its nature is, of course, far beyond the scope of the present analysis which might best be considered as a hypothesis of 
the “if … then”  type. That is, if such mixing providing a buoyancy source is reasonable, then one would expect to see the 
deep jet response as predicted by the present model.
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APPENDIX  

7. Table of Coefficients Cj,1 and Cj,2 
 

It is helpful to define the following function: 

 

in terms of which we can determine the Cj,1 and Cj,2 as 



 
(Click the equation graphic to enlarge/reduce size)

Figures  

 
Click on thumbnail for full-sized image. 

FIG. 1. A cross section in the y–z plane showing the distribution of the function Q for the case μ = 10. The y variable is scaled 
with the equatorial deformation radius corresponding to the lowest vertical mode, while z is scaled with the total depth 

 
Click on thumbnail for full-sized image. 

FIG. 2. A y–z cross section of the zonal velocity for the parameters μ = 10, α = 4, L/LT = 0.2. The cross section is shown at x = 

0.5, i.e., half way across the basin. The magnitudes of the flow are determined by the arbitrary value chosen for the localized 
buoyancy source

 
Click on thumbnail for full-sized image. 

FIG. 3. A profile of the zonal velocity at the equator for the case described by Fig. 1  

 
Click on thumbnail for full-sized image. 

FIG. 4. The isolines of the zonal velocity at z/H = −0.7, in a region of an eastward jet 



 
Click on thumbnail for full-sized image. 

FIG. 5. The horizontal velocity for the case in Fig. 2 : (a) at z/H = −0.7, (b) at z/H = −0.3, and (c) isolines of the meridional 
velocity in the vicinity of the western boundary at the same z/H (note the expanded scale in x) 

 
Click on thumbnail for full-sized image. 

FIG. 5. (Continued) 

 
Click on thumbnail for full-sized image. 

FIG. 6. As in Fig. 2  for α = 8: (a) y–z cross section and (b) profile at the equator 

 
Click on thumbnail for full-sized image. 

FIG. 7. The cross section of the zonal velocity for the same parameter settings as Fig. 2  except for L/LT = 0.5: (a) cross 

section and (b) profile

 
Click on thumbnail for full-sized image. 

FIG. 8. The velocity profile at the equator for L/LT = 0.01. Note the absence of deep jets.
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