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ABSTRACT

Mass, angular momentum, and energy budgets are examined in an analytical 
model of vortex merging relevant to midlatitude mesoscale eddies. The vortices 
are baroclinic and cyclogeostrophic. The fluid surrounding them is assumed to 
remain quiescent. It is shown that due to this surrounding fluid, angular 
momentum is conserved when expressed in both the inertial and rotating frames 
of reference.

Lens-shaped solid-body vortices can conserve mass, angular momentum, and 
energy when they merge. If an upper-layer of thickness H1 is included in the 

model, the merged vortex must have either less energy or mass than the sum of 
the original two vortices.

A more complex model of the vortex azimuthal structure is then considered, 
which includes a constant vorticity shell surrounding the solid-body core. If the 
shell is large compared to the core, the mass, angular momentum, and energy 
can all be conserved in the merged vortex. However, if the shell is small, the 
merged vortex must have less energy or mass than in the solid-body case. 

1. Introduction  

Like-sign vortices merge in rotating tanks (Nof and Simon 1987; Griffiths and 
Hopfinger 1987) and in the ocean (Cresswell 1982; Tokos et al. 1994). Merging has 
been numerically modeled in a wide range of settings (Melander et al. 1988; Verron and Valcke 1994; Carton and Bertrand 
1994; Valcke and Verron 1997). Presumably, the characteristics of the merged vortex are set by those of its parents and the 
relevant conservation laws. But what properties are conserved in vortex merging? Gill and Griffiths (1981) demonstrated 
that, if potential vorticity and mass are conserved by two merging anticyclones, the final state contains more energy than the 
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initial state. This “energy paradox”  is at odds with the known spontaneous nature of vortex merging (Cushman-Roisin 
1989). Several attempts to resolve this paradox have questioned the assumptions of potential vorticity or mass conservation 
(Nof 1988; Cushman-Roisin 1989; Pavia and Cushman-Roisin 1990). 

Once vortices come into contact, merging takes place in two stages: fusion and axisymmetrization. During fusion, the 
vortices rapidly exchange fluid and homogenize into a central, elliptical vortex. In the subsequent, relatively slow 
axisymmetrization stage, the elongated vortex becomes S-shaped and sheds part of its mass into spiral-shaped filaments 
while its core becomes circular. This inviscid process is particularly dramatic in potential-vorticity-conserving numerical 
models (Melander et al. 1988; Pavia and Cushman-Roisin 1988) and has been observed in tank experiments (Griffiths and 
Hopfinger 1987). Cushman-Roisin (1989) proposed that filamentation plays a fundamental role in the merging, acting to relax 

mass conservation in the framework of the Gill and Griffiths (1981) merging model.1 He also introduced an additional 
constraint, conservation of the absolute angular momentum (the angular momentum formulated in the inertial reference 
frame). He argued that this angular momentum must be conserved in the final vortex if the merging is complete, a condition 
not met by the solutions of Gill and Griffiths (1981) (Pavia and Cushman-Roisin 1990). 

Cushman-Roisin’s (1989) model assumes that the potential vorticity of each fluid parcel is conserved. He concludes that a 
significant fraction of the initial mass must be shed into filaments. However, when Nof and Simon (1987) allowed 
anticyclonic lenses to merge in a rotating tank, the initial vortex mass was conserved in the merged vortex (i.e., filamentation 
was negligible). Furthermore, the central depth of the vortices rapidly decreased as they fused. This depth must increase to 
conserve potential vorticity, suggesting that potential vorticity is not conserved during fusion (Nof and Simon 1987). Nof 
(1988) argued that highly viscous, turbulent mixing occurs along the interface of the vortices, which can cause an O(1) 
alteration in the fluid parcel’s potential vorticity (Nof 1986). This hypothesis suggests that the energy paradox can be 
resolved by relaxing the a priori assumption of potential vorticity conservation. However, Pavia and Cushman-Roisin (1990) 
examined solutions to the merging model that conserve mass and energy in the final vortex; they argued that angular 
momentum was not in general conserved, rendering these solutions physically unacceptable.

In this note, we examine an analytical model of vortex merging similar to those of Gill and Griffiths (1981) and Pavia and 
Cushman-Roisin (1990). We examine Nof’s (1988) hypothesis for resolving the energy paradox by relaxing the constraint of 
potential vorticity conservation. We formulate angular momentum conservation in the inertial reference frame; unlike 
Cushman-Roisin (1989) and Pavia and Cushman-Roisin (1990), we include the fluid that surrounds the merging vortices. 
While this fluid is assumed to remain quiescent, it bears absolute angular momentum, which is altered when the fluid is 
rearranged during merging. We demonstrate that the absolute angular momentum of the total system, vortices and 
surrounding fluid, is equal to the background angular momentum (the absolute angular momentum in the absence of 
vortices), plus the sum of the vortex relative angular momentum (the angular momentum seen in the rotating reference 
frame). As a consequence, conservation of the total absolute angular momentum is equivalent to conservation of the relative 
angular momentum of the vortices. We conclude that solutions exist for the merging model that do not present an energy or 
angular momentum paradox. Using a generalized model of the vortex structure, we present two possible merging scenarios 
based on the choices of conserved quantities. In the discussion, we highlight the difference between our formulation of 
angular momentum conservation and that of Cushman-Roisin (1989) and discuss physical mechanisms that can account for 
reduced mass or energy in the final state.

2. Development of the model  

The model has two layers: the upper layer (density ρ) extends from z = 0 to z = −H1 and the lower layer (density ρ + δρ) 

extends from z = −H1 to z = −H2 (Fig. 1 ). The system is rotating at angular speed Ω (Fig. 2 ) and is subject to a 

potential that includes gravity and centrifugal force (the familiar f-plane approximation). Before merging, there are two 
identical, azimuthally symmetric vortices in the upper layer, touching at a single point. We assume that the fluid is 
reorganized into quiescent fluid surrounding a single vortex. We assume that the final vortex has the same velocity structure 
as its parents; for example, vortices in solid-body rotation merge to produce a vortex also in solid-body rotation (though not 
necessarily rotating at the same rate). Because we assume the vortices are in contact at time t = 0, we do not address the 
sensitivity of merging on the initial separation distance of the vortices.

a. Mass and angular momentum of an isolated vortex  

Consider a vortex in the upper layer with radius ro, extending vertically from the surface z = η(r) to z = −H1 − h(r) (Fig. 1 

). The surface deflection η  is related to the azimuthal speed  by cyclogeostrophy:

 

where r is the radial distance from the vortex center and g is gravity. Since there are no horizontal pressure gradients in 
the lower layer,

 



where the reduced gravity g′  is g′/g = δρ/ρ. The total mass of the vortex is

M = mH + mh + m
η
,(3)

 

where

 

With (2), it follows that

 

In the rotating frame, the relative angular momentum2 of the vortex is

 

In the inertial frame, the vortex is centered at R = Ro (the position of R = 0, the axis of rotation, does not affect the 

solutions). Its absolute angular momentum is

 = L + MR2
oΩ + (IH + Ih + I

η
)Ω(7)

 

(the tilde indicating absolute quantities expressed in the inertial frame), where the moments of inertia are

 

Using (2), it follows that

 

b. Angular momentum of vortices immersed in quiescent fluid  

In the absence of vortices, the absolute angular momentum of the quiescent background state would be

 

where the integral is taken over an arbitrary finite domain A. 

In the presence of N vortices (denoted by the subscript α = 1, · · · , N), the absolute angular momentum of the quiescent 
surrounding fluid is



 

This is less than back because the vortices occupy some volume below z = 0. The absolute angular momentum of the 

total system (with N vortices) is obtained by adding (7) and (11):

 
(Click the equation graphic to enlarge/reduce size)

Vortices extend to height η  above z = 0; revolution and rotation of this mass at speed Ω adds angular momentum to the 
background state. Similarly, vortices extend a distance h

α
 into the lower layer; because this fluid is lower in density, it 

subtracts angular momentum from the background state. Using (5) and (9), (12) simplifies to

 

Angular momentum added by surface bulges is equal to angular momentum subtracted by layer interface bulges, and they 
cancel. The absolute angular momentum of the entire system differs from the angular momentum of the background state 
only by the sum of the relative angular momentum of the vortices.

c. Energy of vortices  

The fluid in the rotating reference frame is subject to a potential that includes the centrifugal force. In the inertial frame, 
the potential consists of only gravity, complicating the formulation of energy conservation in that frame. Thus, following Gill 
and Griffiths (1981) and Cushman-Roisin (1989), we examine the energy of the vortices in the algebraically simpler rotating 
reference frame, that is, using the familiar definitions of the kinetic and potential energy, the sum of which is invariant for a 
closed system (Gill 1982, p. 220). The kinetic energy of a vortex is

 

and the potential energy is

 

The net energy E = KE + PE may be related to the relative angular momentum as follows. The relative angular momentum 
L is given by (6). From cyclogeostrophy (1),

 

Substitution yields

 

The term containing rη  may be integrated by parts, yielding



 

Using (4), (14), and (15), this becomes

E = −ΩL − gH1m
η
.(19)

 

The total energy of N vortices is then

 

If H1 = 0, that is, the vortices are lens-shaped, their energy is proportional to their relative angular momentum.
 

3. Vortex merging  

When two identical vortices (denoted by subscripts a and b) merge to produce a single vortex (c) without entraining 
surrounding fluid, mass conservation requires

Mc = Ma + Mb,(21)
 

where the masses are given by (3). 

By definition, the background angular momentum back remains unchanged. Thus, from (13), conservation of angular 

momentum requires

Lc = La + Lb.(22)
 

Conservation of the absolute angular momentum reduces to conservation of the relative angular momentum of the 

vortices.3 

From (20), energy conservation Ec = Ea + Eb requires

ΩLc + gH1m
η,c = ΩLa + gH1m

η,a + ΩLb + gH1m
η,b.(23)

 

Mass, angular momentum, and energy can be simultaneously conserved when either

m
η,c = m

η,a + m
η,b(24)

 

or H1 = 0.
 

We now examine the merging properties of particular vortex structures.

a. Solid-body vortices  

A solid-body vortex has the velocity structure (r) = ωr, where ω is constant. By imposing η  = 0 at r = ro, 

cyclogeostrophy (1) may be integrated to yield

 

The relative angular momentum is

L = (IH + Ih + I
η
)ω.(26)

 

Consider two identical solid-body vortices (a and b) merging to produce vortex c, assumed to be also in solid-body 
rotation. Given ωa, ωb, ra, and rb, two independent conservation laws determine ωc and rc. This leads to the dilemma faced 

by Pavia and Cushman-Roisin (1990): which of the three constraints (mass, angular momentum, and energy conservation) 
should apply? Following Pavia and Cushman-Roisin, we consider two separate merging scenarios; in each we conserve two 
of these properties and examine what happens to the third. Physical interpretations of the results will be discussed in the final 



section. We restrict the development to the particular case of identical merging vortices (ωa = ωb, ra = rb), and reject values 

of (ωa, ra) that yield a nonpositive central thickness H1 + h(r) + η(r). 

1) CONSERVING MASS AND ANGULAR MOMENTUM 

Figure 3  shows the values of ωc and rc, which conserve mass and angular momentum. Several curves are shown, 

each corresponding to a fixed ratio of ra to the internal Rossby radius Rd:

 

In the limit H1  0 or ra/Rd  ∞, the vortices become anticyclonic lenses; in particular, zero potential vorticity lenses 

(ω1 = −Ω) merge such that

 

In the limit H1  ∞ or ra/Rd  0, the vortices become 2D cylinders that merge such that

 

The bottom panel of Fig. 3  shows the ratio of final energy Ec to initial energy 2Ea. For lens-shaped anticyclonic 

vortices, energy is conserved. However, for finite ra/Rd, energy must be lost in the merging; the loss reaches 50% at the 

limit of cylindrical vortices.

2) CONSERVING ANGULAR MOMENTUM AND ENERGY 

Figure 4  shows the values of ωc and rc, which conserve angular momentum and energy. Compared to the mass-

conserving scenario (Fig. 3 ), the change in period (ωa/ωc) is smaller for a given ra/Rd and decreases with decreasing 

ra/Rd; the final radius is also smaller. For finite ra/Rd, the final vortex has less mass than the initial two vortices. At the limit 

of cylindrical vortices (ra/Rd  0), the mass loss is Mc/2Ma = 1/(2 )½. For lens-shaped anticyclonic vortices (ra/Rd = ∞), 

mass is conserved.

b. Vortices with finite-shear edges  

In the solid-body model, vortices have an infinite-shear edge separating vortex fluid from surrounding upper-layer fluid of 
identical density. However, momentum diffusion would rapidly smear the edge vorticity into a shell surrounding the solid-
body core. Within this shell, (r) decreases with increasing r. If the shell’s width is allowed to adjust during merging, its 
inclusion in the model adds a degree of freedom to the solutions. Consider vortices with the velocity structure:

 

The azimuthal speed  is continuous at r = ri, ro (Fig. 5 ). The solid-body core extends to r = ri, and is surrounded by 

a constant vorticity shell extending to r = ro. Outside this shell, there is no circulation induced by the vortex [i.e., this is an 

“exactly shielded”  vortex as defined by Carton and Bertrand (1994)]. The vortices are completely included over an arbitrary 
finite domain. The ratio of shell vorticity o to core vorticity i is

 



In the limit ro  ri, the outer shell is nearly irrotational and the vortex becomes Rankine-like. If ro < (2 )½ri, the 

magnitude of the shell vorticity is larger than that of the core vorticity.

Vortices of this structure may be centrifugally unstable. If a fluid parcel orbiting a cyclogeostrophic vortex is 
infinitesmally perturbed, it experiences a restoring force proportional to

F = r( r + Ωr2)2(32)

 

(Kloosterziel and van Heijst 1991). If F < 0 anywhere in the vortex, perturbations will grow exponentially. Applying this 
stability criterion to the inner edge of the shell shows that anticyclones are unstable if i < −Ω, while cyclones are unstable if 

the anticyclonic shell vorticity o is less than −Ω. Thus, rapidly spinning anticyclones and narrow-shelled cyclones are 

unstable. In this paper, we do not explore solutions in the (ω, ri, ro) parameter space describing unstable vortices. We also 

discard choices of these parameters that yield nonpositive central depths for the cyclonic vortices.

There is no guarantee that the set of nonlinear conservation laws can be simultaneously satisfied by a unique combination 
of ωc, ri,c, and ro,c. Paralleling the solid-body case, we examine two merging scenarios: one in which mass is conserved a 

priori and the other in which energy is conserved. In both scenarios, we assume that the mass Mi of the solid-body core is 

conserved:

 

This constraint demands that fluid parcels retain the sign of their vorticity; that is, the core of the merged vortex is the 

fused cores of the initial vortices, and mass changes in the energy-conserving scenario are associated solely with shell fluid.4 

1) CONSERVING TOTAL MASS AND ANGULAR MOMENTUM 

Figure 6  shows the characteristics of the merged vortex (ωc, ri,c and ro,c) as functions of ωa/Ω for ro,a/ri,a = 10. 

Compared to the solid-body counterpart to this scenario (Fig. 3 ), the period jump ωa/ωc is closer to 2 and the radius 

jump ri,c/ri,a is closer to (2 )½, that is, closer to those of the limiting case of infinite cylinders. 

The energy loss is nearly independent of ωa/Ω. Energy is lost for small ri,a/Rd, but less so than in the solid-body 

counterpart (Fig. 3 ). For ri,a/Rd  8, energy is conserved within 0.1% for all values of ωa/Ω. 

Figure 7  shows how the characteristics of the merged vortex vary as a function of shell width ro,a/ri,a, for the limiting 

case of a zero potential vorticity anticyclonic core (ωa/Ω = −1). For nearly irrotational shells (ro,a  ri,a), the merged vortex 

has a core period nearly double that of the original vortices (ωa/ωc  2) and inner and outer radii larger by (2 )½. The 

dependence of the solutions on ri,a/Rd increases as ro,a  ri,a (the solid-body limit), and energy is lost (particularly for 

small ri,a/Rd). 

2) CONSERVING ANGULAR MOMENTUM AND ENERGY 

Figure 8  shows the characteristics of the merged vortex for ro,a/ri,a = 10. Compared to the solid-body counterpart of 

this scenario (Fig. 4 ), ωa/ωc is again closer to 2 and ro,c/ro,a is closer to (2 )½, that is, closer to those of infinite 

cylinders.

Mass is conserved in the limit ri,a  Rd. Smaller vortices lose mass when they merge, nearly independently of ωa/Ω. For 

ri,a = Rd, 7%–8% of the mass is lost in the merging. 

Figure 9  shows the characteristics of the merged vortex as a function of ro,a/ri,a, for ωa/Ω = −1. For vortices with 

nearly irrotational shells, mass is conserved. The mass loss exceeds 10% for shell radius smaller than ro,a/Rd  10. 

4. Discussion  

Although we assume that the surrounding fluid remains quiescent, when the total depth H2 is finite, fluid columns 

underlying the vortices may be compressed or stretched in the merging. A column of quiescent fluid beneath a vortex bears 



potential vorticity 2Ω/(H2 − H1 − h), where h is the downward displacement of the interface. If during merging h increases 

by Δh, the underlying column must gain anticyclonic vorticity ,

 

in order to conserve its angular momentum. Thus, the assumption of a “quiescent surrounding fluid,”  which allowed us to 
simplify angular momentum conservation, is valid in the limit H2  Δh and exact in the 1½-layer limit H2  ∞. This limit 

is appropriate for midlatitude open ocean baroclinic eddies, but does not apply to lens-shaped vortices whose height are an 
appreciable fraction of the total water depth (Nof and Simon 1987). In this case, cyclonic motion induced in the second 
layer contributes significantly to the total energy of the system (Dewar and Killworth 1990). 

In their examination of lens-shaped vortex merging, Pavia and Cushman-Roisin (1990) conserved the mass and energy of 
the initial vortices, and showed that the absolute angular momentum of the vortices was not conserved. However, there is no 
“angular momentum paradox”  inherent in their result, due to the role of the surrounding fluid in the total angular momentum 
budget. A simple thought experiment can serve to highlight this role: consider a pair of cylinders (density ρ, mass ma, radius 

ra in solid-body rotation at relative rate ωa) touching at the center of a tank that rotates at Ω. The cylinders are surrounded 

by fluid of density ρ . Later, they have merged to produce a single cylinder of the same density with mass mc = 2ma, radius 

rc, and rotation rate ωc. It is centered on the contact point of the parent vortices. Conservation of mass requires rc = (2 )

½ra, and angular momentum conservation for the entire system requires

 

In the absence of surrounding fluid, ρ  = 0, and (35) becomes

 

This expression is analogous to the formulation of angular momentum conservation of Cushman-Roisin (1989) and Pavia 
and Cushman-Roisin (1990). With ρ  = 0, we are essentially considering coalescing fixed-height disks on a rotating table. 
To an observer in the rotating frame, the rotation rate of the resulting disk is more positive (for positive Ω) than it would be 
in the absence of rotation, due to Coriolis deflection applying a net torque on the coalescing particles (cf. Feynman et al. 
1987, p. 19-8). However, if ρ  = ρ, (35) simplifies to

 

that is, the period doubles and relative angular momentum is conserved. As the cylinders coalesce, they lose the absolute 
angular momentum associated with revolution about their contact point, but this is balanced by the absolute angular 
momentum gained by the displaced surrounding fluid. In the rotating frame, Coriolis deflection of the coalescing parcels is 
balanced by a pressure gradient in the surrounding fluid (Rossby 1936, 1948). 

Our model demonstrates that solid-body vortices can conserve mass, angular momentum, and energy in the lens-shaped 
limit H1 = 0. For nonzero H1 either energy or mass conservation must be relaxed, leading to the two merging scenarios 

discussed in this paper.5 In the first scenario, if mass is conserved, the final vortex has less total energy than its parents. 
These solutions are thus “energetically allowable”  (Dewar and Killworth 1990) in the sense that an external energy source is 
not required, analogous to the classical Rossby adjustment problem that has a steady-state solution with one-third of the 
initial energy (cf. Gill 1982, pp. 191–203), the remaining energy having been removed via Poincaré wave radiation. Turbulent 
mixing during merging can also lower the energy state of the merged vortex (Nof 1986). 

In the second scenario, if energy is conserved, the final vortex has less mass than its parents. Cushman-Roisin (1989) 
proposed that merging vortices eject fluid in narrow filaments as they become axisymmetric (Griffiths and Hopfinger 1987; 
Melander et al. 1988). Because these filaments bear negligible energy and relative angular momentum but a significant 
fraction of the mass, they are modeled implicitly by relaxing mass conservation, as was done in the second scenario (Pavia 
and Cushman-Roisin 1990). 

In summary, vortices can conserve mass, angular momentum, and energy when they merge in two physically important 
limits of vortex structure: lens-shaped anticyclones and Rankine-like eddies. All three properties cannot be simultaneously 
conserved over the full range of parameters considered here; in general, mass or energy must be lost, presumably due to 
Poincaré wave radiation, turbulent dissipation, or filamentation. Future laboratory experiments and field observations could 



determine which scenario best describes the merging of oceanic vortices.
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Click on thumbnail for full-sized image. 

Fig. 1. Side view of a vortex and surrounding quiescent fluid in the 2-layer model. For a vortex in solid-body rotation, the 
surface and interface displacements are parabolic, as sketched here.

 
Click on thumbnail for full-sized image. 

Fig. 2. Top view of the merging model. The center of rotation of the system is at the x. 

 
Click on thumbnail for full-sized image. 

Fig. 3. Top: ratio of final rotational frequency ωc to initial frequency ωa as a function of ωa/Ω, for solid-body vortices, which 

conserve mass and angular momentum when they merge. The label for each curve indicates the value of ra/Rd. The heavy line 

gives the solution for a lens-shaped vortex (Rd = H1 = 0). Some curves end before reaching ωa = Ω; at greater values of ωa, the 

vortex has negative thickness H1 + h + η at its center and is thus not geometrically valid. Middle: ratio of final radius rc to initial 

radius ra as a function of ωa/Ω. Bottom: ratio of final energy Ec to initial energy 2Ea. Except in the lens-shaped case, the merged 

vortex has less energy.

 
Click on thumbnail for full-sized image. 

Fig. 4. Top: ratio of final rotational frequency ωc to initial frequency ωc as a function of ωa/Ω, for solid-body vortices, which 

conserve angular momentum and energy when they merge. The label for each curve indicates the value of ra/Rd. The heavy line 

gives the solution for a lens-shaped vortex (Rd = H1 = 0). Some curves end before reaching ωa = Ω; at greater values of ωa, the 

vortex has negative thickness H1 + h + η at its center and is thus not geometrically valid. Middle: ratio of final radius rc to initial 

radius ra as a function of ωa/Ω. Bottom: ratio of final mass Mc to initial mass 2Ma. Except in the lens-shaped case, the merged 

vortex has less mass.
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Fig. 5. Top: azimuthal velocity (r) vs radial distance for a vortex with a constant vorticity shell surrounding a solid body core. 
For this vortex, ω = −Ω. Bottom: sea surface displacement η vs radial distance, calculated by integrating the cyclogeostrophic 
relation (1). 

 
Click on thumbnail for full-sized image. 

Fig. 6. Top: ratio of final rotational frequency ωc to initial frequency ωa as a function of ωa/Ω, for finite-shear vortices, which 

conserve total mass and angular momentum when they merge (ro,a = 10ri,a). The label for each curve indicates the value of 

ri,a/Rd. Some curves end before reaching ωa = Ω; at greater values of ωa, the vortex would have negative thickness H1 + h + η at 

its center and is thus not geometrically valid. Middle, upper: ratio of final core radius ri,c to initial core radius ri,a. Middle, lower: 

ratio of final shell radius ro,c to initial shell radius ro,a. Bottom: ratio of final energy Ec to initial energy 2Ea. 
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Fig. 7. Top: ratio of final rotational frequency ωc to initial frequency ωa as a function of ro,a/ri,a, for finite-shear anticyclonic 

vortices, which conserve total mass and angular momentum when they merge, at the limit ωa/Ω = −1. The label for each curve 

indicates the value of ri,a/Rd. Middle, upper: ratio of final core radius ri,c to initial core radius ri,a. Middle, lower: ratio of final 

shell radius ro,c to initial shell radius ro,a. Bottom: ratio of final energy Ec to initial energy 2Ea. 
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Fig. 8. Top: ratio of final rotational frequency ωc to initial frequency ωa as a function of ωa/Ω, for finite-shear vortices, which 

conserve angular momentum and energy when they merge (ro,a = 10ri,a). The label for each curve indicates the value of ri,a/Rd. 

Some curves end before reaching ωa = Ω; at greater values of ωa, the vortex would have negative thickness H1 + h + η at its 

center and is thus not geometrically valid. Middle, upper: ratio of final core radius ri,c to initial core radius ri,a. Middle, lower: 

ratio of final shell radius ro,c to initial shell radius ro,a. Bottom: ratio of final mass Mc to initial mass 2Ma. 
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Fig. 9. Top: ratio of final rotational frequency ωc to initial frequency ωa as a function of ro,a/ri,a, for finite-shear vortices, which 

conserve angular momentum and energy when they merge (ωa/Ω = −1). The label for each curve indicates the value of ri,a/Rd. 

Middle, upper: ratio of final core radius ri,c to initial core radius ri,a. Middle, lower: ratio of final shell radius ro,c to initial shell 

radius ro,a. Bottom: ratio of final mass Mc to initial mass 2Ma. 

 

 

1 Cushman-Roisin explicitly included an idealized model for the filaments, and concluded that when zero potential vorticity lenses merge, 23% of 
their mass goes into the filaments while 96% of their energy is retained in the merged vortex.

2 Specifically, the vertical component of the angular momentum vector.
 

3 The equivalency of these invariants can also be derived directly from the momentum and continuity equations for a rotating, multilayer fluid (B. 
Cushman-Roisin, 1999, personal communication). 

4 When 2D vortices of the exactly shielded structure are brought into contact, their cores merge while shell fluid is lost. However, if they have shell 
vorticity greater than that given by (31) (and consequently induce circulation around the edge of any arbitrarily large, finite domain), their 
interaction in the presence of instability may cause the shell fluid to merge while core fluid is rejected (Carton and Bertrand 1994). The possibility 
of such an “inverted merging”  is not considered here. 

5 A third scenario was considered in which mass and energy were conserved. The final state contained more angular momentum than the initial 
state, leading us to reject this scenario as a physically meaningful description of free vortex merging.
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Corresponding author address: Dr. Pierre Flament, Department of Oceanography, University of Hawaii, 1000 Pope Road, Honolulu, HI 96822. 

E-mail: pierre@soest.hawaii.edu 

 

© 2008 American Meteorological Society Privacy Policy and Disclaimer 
 Headquarters: 45 Beacon Street Boston, MA 02108-3693  
  DC Office: 1120 G Street, NW, Suite 800 Washington DC, 20005-3826 
 amsinfo@ametsoc.org Phone: 617-227-2425 Fax: 617-742-8718 
Allen Press, Inc. assists in the online publication of AMS journals.  

 


