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ABSTRACT

The response of a basin with a topographic barrier to spatially localized and 
time periodic forcing is considered. The barrier, which almost completely 
divides the full basin into two adjacent subbasins, is offered as a model of 
either a planetary island in the wind-driven circulation or a portion of the 
midocean ridge in the abyssal circulation.

The barrier completely blocks the flow between the two adjacent subbasins 
except for the possibility of flow through two small gaps at the termini of the 
barrier. The barrier has nonzero thickness, and scale-dependent lateral friction 
acts in the gap channels to impede the flow from one subbasin to the next. 
Bottom friction also acts uniformly on the flow in the basin. The degree to 
which localized forcing is able to excite large-scale motions in the adjacent 
subbasin is shown to be connected to the structure of the forcing and its 
frequency.

In the absence of forcing and friction a set of full basin normal modes exist. 
The degree to which the forcing is able to resonate with such modes 
determines the degree to which energy can be transmitted from one subbasin 
to the other. Friction in the gaps reduces both the amplitude of that 
transmission and smooths the peaks of the response curve of the motion as a 
function of frequency in both subbasins. However, even for substantial 
friction, a considerable amount of large-scale variability can be excited in the 
adjacent basin. The quantitative dependence of the response on the degree of 
friction, the length of the channels representing the gaps, and the meridional 
structure of the forcing are discussed.

In cases where the western boundary of the basin is nonreflecting, so that no full basin normal modes are possible, 
substantial energy transmission is still demonstrated. Whether resonance occurs or not, the necessity for energy 
transmission is closely related to the existence of the integral circulation constraint around the island barrier and the 
possibility of resonance acts mainly to set the level of the response.
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1. Introduction  

In a recent paper (Pedlosky and Spall 1999, hereafter PS), the Rossby beta-plane normal modes were studied in a basin 
very nearly separated into two distinct subbasins by a long, thin meridional barrier. The two subbasins were allowed to 
communicate only through very narrow gaps in the barrier. The study was motivated by the results of numerical 
experiments carried out by Spall and described in PS. Briefly, the calculations showed instabilities of baroclinic type that 
grew on the mean flow generated by steady forcing in a two-layer model. The instabilities were of relatively small scale, of 
the order of the deformation radius, but it was observed that basin-scale variability was present in both subbasins apparently 
excited by the small-scale instabilities localized on the eastern side of the barrier. In some manner, the naturally generated 
variability on one side of the barrier is able to communicate to the other subbasin and excite large-scale oscillations there. We 
thought of the basic model as an idealization of the circulation around planetary-scale islands or equally apt, as the circulation 
of abyssal waters around and through the large-scale midocean ridge systems with their gaps. Our preliminary work on the 
steady-state problem has been reported in Pedlosky et al. (1998). 

It seemed to us that the first step in understanding the ability of time-dependent oscillations to be excited across the 
narrow gaps separating the subbasins was to examine the possible Rossby wave normal modes that could exist in such 
geometries. We were well aware of the heavy idealization of the total problem involved in searching for inviscid normal 
modes, but we felt it was illuminating as a first step in understanding how basin-scale oscillations could be transmitted 
through such narrow passageways.

The key feature of the problem that helped understand the process of transmission was the presence of the integral 
constraint of conservation of circulation around the island. For periodic, inviscid motions, the constraint reduces to the 
statement that the tangential velocity component to the island, integrated around the island or ridge segment, must integrate 
to zero. So, for example, a long meridional island or ridge segment could not have motion in one direction along the ridge 
only on one side of the ridge in, say, the gravest meridional mode, without violating the circulation integral constraint. This 
forced such modes to have motion in both subbasins. The integral constraint is equivalent to the condition that the pressure 
perturbation on one side of the ridge can penetrate through the gap to excite motion in the other subbasin. Indeed, in PS we 
found two classes of free modes. In one class the meridional mode structure was even around the mid latitude of the basin. 
Such modes contain meridional velocities on the east side of the ridge that do not integrate to zero on that side alone and so 
excite full basin modes. Another class of modes were those that were antisymmetric about the mid latitude. Such modes are 
limited to one or the other of the subbasins and satisfy the integral constraint simply by having a meridional velocity that 
integrates to zero on the side of the island bounding the subbasin in which the mode is found. It is important to emphasize 
the crucial role of there being at least two gaps so that the segment is islandlike and Kelvin’s theorem obtains. Were there a 
single gap, as discussed in Pedlosky and Spall (1999), the wave would be largely blocked. 

Surprisingly, the normal mode frequencies for the full basin modes in the case of the thin meridional island were very 
close to the normal frequencies for the full basin without the barrier. Of course the frequencies for the subbasin modes were 
precisely those of the Rossby basin modes for the appropriate subbasin.

In the present study, we extend the results of PS by examining the case in which the island or ridge segment has a finite 
width and in which bottom friction and lateral friction are present. In particular, we examine the case in which lateral 
friction, strongly scale dependent, is important primarily in the gaps. We develop an analytical solution for the response of 
the fluid to a localized forcing in one subbasin at an arbitrary forcing frequency.

Of particular interest is the role of friction in the gaps in determining the degree to which variability, excited in one 
subbasin, will excite motion in the other. We shall show below that the transmission depends on the degree of friction in the 
gap, the width of the island (and so the gap length), and the spatial structure of the forcing. Much of this dependence can be 
understood in terms of the basic structure of the normal modes, even in those cases in which the friction is strong enough 
to eliminate any strong resonance with the modes. That is, the behavior of the forced response in the frictional case is well 
illuminated by the underlying structure of the inviscid normal modes described in PS.

In section 2 we develop the analytical solution for the forced problem. To keep matters as simple as possible a barotropic 
model is described, although it is not much more complicated to deal with the modes of a baroclinic model, each mode of 
which demonstrates similar behavior. The integral constraint is described and used as an important boundary condition to 
determine the flow through the gaps. In section 3 the basic solution is used to find the inviscid normal modes and in 
particular the dependence of the frequencies of the normal modes on the width of the island. In section 4 the response of the 
basin as a function of frequency is described. This is measured in terms of both the flow from one subbasin to the next, 
given by the island constant (described below) and the amplitude response at arbitrarily chosen points in each subbasin. 
Section 5 summarizes the results and discusses their significance. 



It is important to emphasize that although the problem discussed here is presented in the context of the response of a 
closed basin to periodic forcing and the consequent possibility of resonance, the more fundamental issue it addresses is the 
transmission of large-scale Rossby wave energy through barriers that contain only small openings. As such, it relates to the 
general problem of transmission of planetary-scale energy in the deep ocean in the presence of midocean ridges or the 
possibility of similar transmission from one ocean basin to another across island arc chains, such as the Atlantic–Caribbean 
complex.

2. The forced problem  

a. Model and solution  

The basin and the island within it are shown in Fig. 1 . The island is placed between longitudes x1 and x2 and in the 

meridional (y) direction leaves two channels of width d between the two subbasins of the overall basin. The containing basin 
lies between xw and xe. Additional gaps can be opened in the island but the added complexity, while of interest, can be 

intuited from the simple model described here. The meridional extent of the basin in dimensional units is L, which is used to 

scale lengths in the problem. Time is scaled by the characteristic Rossby wave period (βL)−1. 

The mathematical model for the flow that is employed is the linearized, quasigeostrophic vorticity equation (Pedlosky 
1987) including lateral and bottom friction. In the scaled units described above, the equation is

2
t + x = −r 2  + A 4  + W(x, y, t).(2.1)

 

In (2.1)  is the streamfunction for the motion. The first term on the right-hand side of (2.1) represents the bottom 
friction and r can be thought of as the ratio of Stommel’s boundary layer thickness to the basin scale L. The second term on 
the right-hand side of (2.1) is the lateral friction and in these nondimensional units it is the cube of the ratio of Munk’s 
boundary layer thickness to L. We will consider both A and r as small parameters. 

The last term on the right-hand side of the equation is the external forcing. It is fundamentally a source of potential 
vorticity and within the context of quasigeostrophic dynamics it can be considered either as a wind stress curl or the 
vorticity source due to Ekman pumping. For abyssal flow it can be related to the upwelling from the abyss into the 
thermocline.

We will consider forcing harmonic in time so that

W = Re[eiω0tw(x, y)].(2.2a)

 

Solutions for  will be sought in the form,

 = Re[eiω0t (x, y)],(2.2b)

 

where ω0 is the forcing frequency. The problem for  then becomes

iω 2  + x = A 4  + w(x, y).(2.3)

 

In (2.3) the bottom friction has been included by defining

ω = ω0 − ir.(2.4)
 

Outside of the narrow gaps we shall ignore the effect of lateral friction. This will not allow us to satisfy no-slip (or no 
stress) conditions on the meridional boundaries of the island. If we were to include lateral friction, it would add a term of 

order A1/2 to the solution for the streamfunction and only slightly alter the response of the fluid to the forcing. The major 
effect of the lateral friction occurs, rather, in the narrow gaps between the two subbasins where its role will be considered 
in detail. In the gaps the measure of lateral friction depends on the ratio of the Munk boundary layer width to the gap width; 
that is, if A  is the dimensional lateral viscosity,



 

which may be order unity.

On the exterior boundary of the basin the streamfunction must be spatially constant, and without loss of generality we set 
it equal to zero. On the island the streamfunction must also be spatially constant and it will harmonically oscillate in response 
to the external forcing. Its value gives us the instantaneous measure of the flux through the gaps. Thus, on the island,

 = I.(2.6)
 

The forcing will be represented in the meridional direction by the Fourier series:

 

In the regions outside the gaps, where lateral friction is neglected, a convenient representation of the solution for the 
streamfunction is

 

where k = 1/(2ω) and where n satisfies

 

where a2
n = k2 − n2π2.

 

The solution that we consider is one in response to a localized forcing in the right-hand subbasin. Obviously, the problem 
changes in only a trivial way if the forcing is in the left subbasin. We consider the forcing to be (spatially) a delta function in 
x located at x = z so that

wn = Wnδ(x − z), x2 < z < xe.(2.10)
 

The particular form of Wn will determine the meridional structure of the forcing, which we will leave arbitrary for the 

moment. The solution of (2.9) is discussed in appendix A. 

In the gaps the y scale of the solution shrinks so that y derivatives become more important than x derivatives. The 
dominant terms in (2.1) become in the gaps

iω yy − A yyyy = 0.(2.11)
 

Note that the beta term is neglected in (2.11). The ratio of the beta term to the retained terms can be shown to be of order 

A /βL3  1. Indeed for nondimensional frequencies of order unity, the y scale obtained from (2.11) is

 

This is just the boundary layer scale for the Stokes layer for a nonrotating fluid (Batchelor 1967) in which the balance is 
between the acceleration of the velocity tangent to the boundary and the frictional force along the boundary. The beta effect 
plays no role. However, since ω is (in dimensional units) of order βL, the relative importance of the beta effect and the 

frictional force in the gap is measured by A /βL3  1. 

The solution of (2.11) in the region between y = 0 (the southern boundary of the basin) and the southern boundary of the 
island is given by

 



 = A = By/d + C1 exp({1 + i}y/δ) + C2 exp(−{1 + i}y/δ),(2.13)

subject to the conditions:

 

The solution is completed in appendix B. It is clear from the statement of the problem that each of the constant 
coefficients in (2.13) will be proportional to I. A similar solution in which y  1 − y holds in the gap north of the island. 

Thus along each of the longitudes of the island, x1 and x2, the streamfunction can be written as

 = Ig(y),(2.15)
 

where in the latitude band of the island the function g(y) is equal to unity, while in the gaps g(y) is given by the solution 
(2.13). At these longitudes we require that the solutions of (2.9) and (2.11) be continuous. The details are given in 
appendices A and B.

The total solution is then given in terms of the external forcing amplitude, for example, Wn and the unknown 

streamfunction constant on the island, I. 

b. The integral constraint  

The momentum equation consistent with (2.1) is

 

where we have represented the forcing as a wind stress but we could equally well have considered the forcing as due to a 
source–sink flow appropriate to the abyss. We will assume that the stress has no component along the island boundary. 

If the component of (2.16) tangent to the island is integrated around the island and if periodic motion is considered, as in 
the above analysis, we obtain as a fundamental integral constraint,

 

where n is the unit normal vector to the island and we recall that ω includes the effect of bottom friction. The contour in 
(2.17) encircles the island on the contour CI. 

Since we have neglected lateral friction except in the gaps, the last term in (2.17) can be neglected along the contour 
except in the gaps where it must be considered. However, in the gaps, Eq. (2.11) implies that the terms in the solution (2.12) 
that reflect the structure of the frictional forces in the gap self-cancel in (2.17). Hence in applying (2.17) only the terms 
proportional to A and B in (B.1) enter and for them the last term in (2.17) is identically zero. Thus the integral constraint 
reduces to the statement that the first integral in (2.17) must itself satisfy the integral constraint in which the terms in C1 and 

C2 in (B.1) are not considered. This simplification leads to an equation relating the island constant I and the forcing. After 

a little algebra, one obtains,



 

where the constants in (2.18) are given in appendices A and B. Here Lx = xe − xw and lx = x2 − x1 are the widths of the 

basin and island, respectively. Note that, since μn = 1 − (−1)n, the right-hand side of (2.18) is zero if Wn is zero for n odd. 

Thus, if the forcing is antisymmetric about the midlatitude of the basin, the right-hand side of (2.19) will vanish, which 
implies that I will be zero in that case since the square bracket on the left-hand side cannot vanish for real ω0 if friction is 

different from zero. Thus, antisymmetric forcing will not excite flow through the gaps. Such forcing will yield a response 
limited to the right-hand basin in which the forcing acts and the left-hand basin will remain at rest. For forcings that have an 
even component around the midlatitude; that is, if Wn  0 for n odd, I will be different from zero and motion will be 

excited in the other subbasin. This is precisely the symmetry character of the global and subbasin normal modes previously 
found in PS.

3. The normal modes  

Friction, especially in the gaps, will eliminate the possibility of perpetually oscillating normal modes. However, the 
structure and frequencies of the inviscid normal modes are useful pieces of information in helping to understand the 
response of the forced, viscous problem. The problem is discussed in detail in PS; here a brief description is given of the 
nature of the modes in the case when the island’s width is not negligible. In particular, it is of interest to examine the 
dependence of the natural frequency of oscillation on the width of the island. To keep the discussion brief I will focus only 
on the gravest full basin mode. The higher modes are qualitatively similar. Of course, the frequencies of the subbasin modes 
are given by the standard formula:

 

where lsb is the zonal extent of the subbasin. For the full basin modes the dispersion relation, instead, follows from (2.19) 

if we set both the friction and the forcing to zero, in which case the dispersion relation is

 

If the island becomes very thin so that terms lx can be neglected even when compared with d, (3.2) becomes equal to the 

dispersion relation in PS. As shown in PS, there is a set of full basin normal modes. The frequency of these modes becomes 
smaller, the smaller the x scale of the normal mode. The gravest normal mode, in the case where lx  0, has a frequency 

very close to the frequency of the normal mode, which would exist in the absence of the meridional barrier. The “higher”  
modes, with larger effective x wavenumber are even closer, numerically, to the barrier-free problem. It is therefore not 
surprising that in the present case the frequency of the basin-scale normal modes is reduced as the barrier island occupies a 
greater fraction of the total basin. Figure 2  shows the result of a calculation of the frequency of the gravest free mode of 
oscillation of the system as the barrier scale, lx, increases. For this calculation the basin is square, that is, xe = 1 while xw = 

0. From (3.2) it is clear that the frequency depends on lx in a more complicated manner than just the ratio lx/Lx but also on 

the positions of the boundaries of the island with respect to the outer boundaries of the basin. The quantitative character of 
the results in Fig. 2  will be altered slightly if the center of the island is moved from the position chosen for that 
calculation in which the midpoint is placed at x = 0.5. It has not been possible to find a simply understood representation of 
the behavior of the frequency on lx, but the general reduction in the frequency is plausibly related to the decrease in the size 

of the fluid-containing region of the basin in a manner qualitatively, but definitely not quantitatively similar to that of (3.1). 
Snapshots of the mode at different points in its cycle are shown in Fig. 3  for the case where lx = 0.223 and ω = 0.079



687. The structure of the gravest mode is closely related to the n = 1 Fourier mode, which is possible in the case of the 
barrier-free basin, although with the barrier all Fourier modes with n odd are required to represent the normal mode. On the 
other hand, the subbasin modes, are restricted to one or the other subbasins, and their gravest modes correspond to the n = 
2 modes in (3.1). The n = 1, 3, 5, · · · modes in (3.1) are not allowed since they will not satisfy the integral condition 
(2.17). It is important to note the importance of the spatial structure of the modes in determining whether or not both 
subbasins are involved in the oscillation. We shall see that exactly this consideration enters the forced, dissipative problem. 

For that problem we expect that the response in the basin across the island from the forcing will depend on both the 
spatial structure of the forcing and, with a dependence to be determined, also on the frequency of the forcing and the level 
of frictional dissipation.

4. Basin response  

a. Forced response in the presence of friction  

We use the solution (2.18) for the island constant I and the solutions given in appendices A and B to discuss the 

response of the basin to a localized forcing placed in the right-hand subbasin. To fix ideas, the forcing is a delta function 
placed at x = z = 0.8 and the distribution in y is either a sharply peaked Gaussian-like distribution (whose Fourier amplitude is 

Wn = 2 sinnπy0e−κn2
, where y0 is the central latitude of the forcing, while κ determines the narrowness of the forcing in y) 

or an antisymmetric forcing of two such Gaussians of opposite sign centered around the midlatitude of the basin for which 

Wn = 2 cos(nπ/2) sinnπΔy0e−κn2
, where Δy0 is the distance of each of the two peaks in the forcing from the midlatitude of 

the basin.

For the first forcing, if y0 is at the midpoint of the basin, we would expect only solutions symmetric about the midlatitude 

to be excited. In view of our earlier discussions this would imply that the response will be of the full basin type. The 
subbasin modes require some component of the forcing to be asymmetric and would be absent if y0 were ½. On the other 

hand, if the forcing were strictly antisymmetric, we would not expect the full basin modes to be excited and would 
anticipate that the variability would be restricted to the basin in which the forcing directly acts.

To discuss the response as a function of frequency for the several different forcings we examine both I as a function of 

ω0 and the amplitude at selected points in each of the two subbasins. For example, Fig. 4a  shows the response for the 

amplitude at a point (x = 0.6, y = 0.1667) in the right-hand subbasin as well as the island constant for purely symmetric 
forcing, that is, for y0 = 0.5. In this case the friction is very small. The bottom friction coefficient r = 0.002 and δ = 0.002 

while d = 0.1. Thus the lateral boundary layers occupy only a small portion of the gap (about 4%). Strong peaks in the 
response curves are seen at the normal mode frequencies for the full basin modes. In Fig. 4a  the solid curve shows the 
amplitude response at the observation position while the dashed curve shows the response for the island constant. Note that 
for these modes the two curves peak at the same frequencies so that the local point response and the more global measure, 
given by I, correspond. Figure 4b  shows the response at a similarly, arbitrarily selected position in the left-hand basin, 

and we see that the response there peaks at the same frequencies. The strong response corresponds, at this low level of 
dissipation, with the full basin normal mode. Indeed, the contour plot of the response at the forcing frequency ω0 = 0.104 is 

shown in Fig. 4c . The resemblance to the normal mode shown in Fig. 3  is clear. 

On the other hand, if the forcing is antisymmetric, the response curves are quite different. Figure 5  shows a response 
curve in such a case. The response in the right-hand basin, the subbasin where the forcing takes place, now resonates at 
only the subbasin normal mode frequencies; in this case the gravest subbasin mode has a frequency of about 0.0605. Note 
that I is zero in this case. There is no communication between the subbasins, no fluid flux through the gaps in the island, 

and the response is limited to the right-hand basin almost entirely as shown in Fig. 5b , where the response is shown at 
the resonance frequency. This is a good example of how the basic structure of the normal modes helps determine the degree 
to which different forcings in one subbasin will excite a substantial response in the other subbasin. There must be substantial 
projection of the forcing on the full-basin normal mode structure for the disturbance to enter the other subbasin. 

If the forcing is a mixture of symmetric and antisymmetric parts, the response will contain both features. Figure 6a  
shows the response curves for the same parameter settings as in Figs. 4  and 5 . The forcing is now the single-peaked 
Gaussian placed at y0 = 0.75 so that it is asymmetric with both a symmetric and antisymmetric part. In Fig. 6a  the 

response curve for the right-hand basin shows major peaks at the gravest full basin mode at ω = 0.104, at which point the 
island constant also peaks, and a second major peak at the subbasin mode frequency where ω = 0.0605. At this peak of the 



curve the response of the island constant has a minimum, reflecting the limitation of the response of this mode to the right-
hand basin as was shown in Fig. 5b . At the particular location tested for response in the right-hand basin there is a hint, 
in the amplitude response, of another peak at the frequency of the second full basin mode at frequency ω = 0.07. Note that 

I has a clear peak at that frequency although the amplitude response is masked by the finite width of the larger peak at the 

subbasin mode. In Fig. 6b  the response in the left-hand basin is illustrated. Here there are only peaks at the full basin 
modes. The subbasin mode does not provoke an oscillation in the left-hand basin and so there is no peak at ω = 0.0605. In 
the left-hand basin the dominate peaks are the first and second full basin modes, and the amplitude response as a function of 
forcing frequency peaks in parallel with the peaks of the island constant.

Let us examine now how the response changes as we increase the friction in the gaps. Figure 7a  shows the response 
curve if the lateral friction is increased by a factor of 100. This increases the boundary layer scale in the gap by a factor of 
10 so that now the frictional boundary layers cover approximately 40% of the width of each of the two gaps (δ = 0.02). 
Note that now the peak at the full basin mode is reduced over what was seen in Fig. 6a . The amplitude response is 
reduced by a factor of about ½, while the island constant is reduced by a similar factor. The standout peak is now the 
subbasin mode; however, it is interesting to see how robust the response at the full-basin mode frequency remains, even 
with such a large increase in the lateral mixing in the gap. Of course, the response in the left-hand basin is entirely dominated 
by the full basin mode, as is shown in Fig. 7b . All three peaks shown correspond to full basin normal modes. This is 
evident from the fact that each amplitude peak corresponds to a peak in the island constant I and, of course, although the 

local amplitudes vary at the peaks from one subbasin to the other, the magnitude of the peaks for the island constant, being 
basin rather than local quantities, are the same in both figures. Indeed, the correspondence between the peaks of amplitude 
and of I is a rapid way of distinguishing the full basin modes. 

For much larger values of δ the resonance at the full basin modes is no longer apparent. Figure 8a  shows the response 
curve when δ = 0.05 so that frictional effects will strongly affect the flow over the entire width of the gap. In this case a 
clear peak at the full basin mode is absent. There is a strong peak at the subbasin frequency (which we recognize because 

I takes a dip there). There is another small peak at the full basin mode at ω = 0.070, corresponding to the second normal 

mode in longitude. This peak shows up more clearly in the island constant than in the amplitude. The response at a point in 
the left-hand basin is shown in Fig. 8b . Here, of course, the large peak associated with the subbasin normal mode is 
absent and the response is dominated by the full-basin normal mode frequency at ω = 0.070, whose island constant is 
greater than that of the gravest full basin mode. Figure 8c  shows snapshots of the streamline contours for these values 
of the frictional parameters for a forcing frequency ω0 = 0.07 corresponding to the full basin mode with the largest island 

constant with this forcing. We see strong variability in both subbasins, as we would expect from Figs. 8a and 8b . Figure 
8d  shows contours of streamfunction at the same phase of oscillation as in 8c  at the forcing frequency ω0 = 0.104, 

the frequency of the gravest normal mode of full basin type. As we saw, at this value of the dissipation, there is no peak in 
the response at the normal mode frequency. In the vicinity of the gravest normal mode frequency the response is essentially 
flat with frequency. Yet, when we examine the solution in Fig. 8d , there is a substantial signal in the left-hand basin. The 
forced variability squeezes through the gap, even in the absence of a resonance, and excites the entire basin. In this sense, 
the normal mode of full basin type can be seen to underlie the response of the forced, dissipative system even when the 
dissipation in the gaps is large enough to vitiate normal mode resonance. The response at those frequencies still resembles 
the normal modes. To emphasize the continuing importance of the normal modes, Fig. 8e  shows the streamlines for the 
forced response at ω0 = 0.0605, near the resonance with the subbasin mode of the right-hand basin. The response is limited 

almost entirely to the right-hand basin so that once again the nature of the response in this case is explicable in terms of the 
underlying set of inviscid normal modes.

If the friction in the gap is increased still further, we reach a point where the gaps are essentially blocked by frictional 
forces. The island constant becomes very small, indicating very little communication between the two basins. For example, 
when δ = 0.5 and d = 0.1, friction completely dominates in the gaps and the response is shown in Fig. 9  at a forcing 
frequency ω0 = 0.08, which corresponds to the peak in the island constant, I. Now there is scarcely any transmission of 

disturbance energy into the left-hand basin. 

If the effect of friction is increased everywhere in the basin by increasing the level of the bottom friction, the amplitude of 
the response will of course be reduced in the linear model. At the same time the sharpness of the resonance peaks of the 
response curves will also be reduced. Figure 10  shows the response curve for the island constant and the amplitude at 
the same point in the right-hand basin (x = 0.61, y = 0.1667) as well as the island constant for r = 0.01 and δ = 0.01. We see 
that, as anticipated, both the amplitude and the sharpness of the peaks in both curves are reduced. At this value of bottom 
friction the Stommel boundary layer for the steady problem would occupy a little over 2% of the basin width. Even at this 
value, which might be considered a more realistic setting than the earlier cases with smaller r, the qualitative nature of the 
response curve is maintained and the streamfunction pattern, although not show here, is qualitatively similar to those 
displayed for smaller values of bottom friction.



As the island width increases, that is, as lx = x2 − x1 is increased, the friction in the gap has a longer distance over which 

to operate. As we would expect, one effect of this is to reduce the efficiency of communication between the two basins by 
reducing the value of I. Figure 11  shows the reduction of I as a function of lx. The gap length varies over an order 

of magnitude, but the island constant I is only slightly reduced over this interval even though both the bottom friction and 

the lateral friction are substantial in this case (r = 0.01, δ = 0.01). In order to choke off the gaps and eliminate the interbasin 
communication a very strong momentum dissipation is required as seen above.

b. Response in the absence of a western reflecting boundary  

We have emphasized the role of inviscid normal modes in understanding the nature of the forced response of closed 
basins to localized forcings and the ability of large-scale variability to squeeze through narrow gaps in an otherwise 
impenetrable barrier to provoke strong variability in adjacent subbasins. In this section the response of a fluid is studied 
when the possibility of full basin resonance is completely removed. This can be done by eliminating the reflection of energy 
from the western boundary of the basin. We can think of this as either a semiinfinite basin in the zonal direction in which the 
barrier in our basin is so far removed from the western boundary that reflected energy cannot return to the barrier before it 
is dissipated or, more simply, that the western boundary layer region is a zone of complete absorption of energy. This can 
easily be done analytically by replacing the boundary condition of zero streamfunction at x = xw with a radiation condition 

there. Thus, west of the island barrier we insist that Rossby wave energy is propagating only westward. The details are 
described in appendix C.

We note from the form of Eq. (C.4) that a full basin, inviscid normal mode is no longer possible. There are no solutions of 
(C.4) for real frequency in the absence of forcing and dissipation for which I is different from zero. 

Figure 12  shows the response for I as a function of frequency. In the absence of full-basin normal modes, the 

response curve is relatively flat. Only the phase of the island constant changes significantly as a function of frequency as 
shown by the relative size of the real and imaginary parts of I shown in the figure. In the absence of the peaks the 

magnitude of the flux through the gaps as given by the island constant is reduced; still its magnitude is O(1). Figure 13  
shows snapshots of the forced oscillation, and we see that a substantial amount of the total variability is still able to penetrate 
the small gaps and excite the fluid to the west of the barrier. Clarke (1991) considered a related problem, that of the 
transmission of Kelvin and Rossby waves in the equatorial waveguide in the presence of blocking island barriers. Although 
he did not formulate his problem using the constraint (2.17), he reached similar conclusions about the ability of westward 
propagating waves to penetrate island barriers and, although his analysis relied strongly on certain properties of equatorial 
waves, there is fundamental agreement of this analysis with his conclusions.

5. Discussion and conclusions  

We have examined here a simple model for the transmission of Rossby wave energy from one subbasin to an adjacent 
subbasin when the two subbasins are separated by a barrier that nearly extends the meridional length of the total basin. The 
two subbasins are allowed to communicate only through very narrow gaps in which lateral mixing of momentum works to 
impede the propagation of energy. In addition, a background bottom friction mechanism acts everywhere in the basin to 
dissipate the energy introduced by the localized forcing. The model is presented as an idealized representation of the 
response of either the wind-driven circulation in the presence of large island barriers or the response of the deep abyssal 
circulation in the presence of midocean ridges. Although the simple model presented here has a prescribed forcing, the 
original motivation for the study came from the results of a numerical experiment of M. Spall (see PS for a discussion) in 
which the forcing is due to a localized, relatively small scale instability.

The results of the present study expand on the results of PS by considering the response of a forced, viscous fluid in the 
presence of a barrier island of nonzero width. The results described in section 4 show that even in the presence of 
substantial lateral friction acting in the gaps, the full basin will respond to localized forcing in one of the subbasins by 
responding globally. The nature of the response is both frequency and spatial-structure sensitive. When the forcing 
frequency corresponds to one of the subbasin normal modes, the response is largely limited to the basin in which the forcing 
occurs. When the frequency approaches a normal mode frequency of the total basin, the flux through the island/ridge gaps 
becomes large and the full basin responds strongly to the forcing. Increasing the level of the friction reduces the amplitude 
of the response and smears out the sharpness of the amplification as a function of frequency, but the overall qualitative 
behavior remains the same even for substantial friction in the gaps. The degree of penetration of disturbance energy from 
one subbasin to its neighbor is comprehensible in terms of the underlying inviscid normal mode structures.

When full basin resonance is eliminated by disallowing reflection from the basin’s western boundary, the transmission of 
energy across the gap still qualitatively follows the pattern established by the normal mode resonance.



Underlying the question of the involvement of the adjacent basin to localized forcing is the application of the circulation 
integral constraint (2.17) around the island segment. This is a robust constraint, valid regardless of the level of nonlinearity. 
The requirement that modes containing tangential flow of largely a single sign along the island/ridge segment involve both 
subbasins is a direct consequence of the constraint. It is therefore to be expected that although the details of the response 
may alter as more realistic features of the model are added, the question of transmission of energy must ultimately deal with 
the physical consequences of the basic circulation constraint.

In this paper I have considered a ridge or island barrier with only two gaps at the extremes. As shown in PS, if new gaps 
are opened in the ridge, new full basin modes are allowed. It is anticipated then that, in the present model, the addition of 
further gaps in the island will allow more energy of higher meridional wavenumber to leak through the basin and involve the 
total basin in a coherent oscillation.

It will be interesting to examine the effects of nonlinearity, stratification, and more complex basinwide topography on the 
question of energy transmission. As discussed above, since the underlying constraint remains unchanged, an evolutionary 
alteration of the results can be expected.

Finally, I know of no direct field observations that speak to the issues raised here. It would be of interest to examine long-
term records of variability in contiguous deep basins to search for coherence. At the same time, plans are afoot to examine 
the basic fluid mechanics of the process in the context of laboratory experiments.
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APPENDIX A  

6. Solution of (2.9)  

The solution of (2.9) is found separately in the three regions xw  x  x1, x2  x  z, and z  x  xe. On xw and xe 

the streamfunction must be zero. On the longitudes x1 and x2 the streamfunction must be given by (2.15), where g(y) or its 

Fourier transform is given below by Eq. (B.3). At x = z the streamfunction must be continuous and, using (2.9) and (2.10), 
it follows that

 

where z+ and z
−

 are the positions infinitesimally to the right and left of the point x = z.
 

Under these conditions the solution to (2.9) is easily found to be in z  x  xe:



 

while in x2  x  z:

 

and in xw  x  x1:

 

The coefficients are found by employing the boundary conditions described above and are

 

while

A+
n = A−n + Bn cotan(z − x2),(A.7)

 

and where

 

where the function g(y) is given in appendix B. 

APPENDIX B  

7. Solution in the Gaps  

The coefficients in the solution (2.13) are determined by the boundary conditions (2.14). It follows that



 

where

 

The key parameter here is ρ, which measures the characteristic y scale due to lateral friction, (2A/ω)1/2, against the gap 
width. This parameter is zero for an inviscid fluid and becomes order one as the lateral friction fills the gap. When this 
parameter is large, the geostrophic balance in the gap is affected by friction in the momentum equation. As we shall see, the 
effect of lateral friction becomes significant before this point is reached.

In the gap to the north, that is, in 1 − d  y  1, the same solution applies with y replaced by 1 − y. 

Along both x = x1 and x = x2 the streamfunction is given by  = I for d  y  1 − d. In the gaps the solution is given 

by (2.13), also proportional to I. This determines the function g(y). The Fourier sine transform of g(y) is then easily 

determined as

 

where

μn = 1 − (−1)n.

 

In the limit ρ  0, gn reduces to the simple formula found in PS in which it was assumed that the behavior of  was 

linear in the gap. Here, that behavior is derived exploiting the finite length of the channel and its narrowness as well as the 
uniform boundary conditions along the channel.

APPENDIX C  

8. Solution for Open Western Boundary  

When the western boundary at x = xw is rendered open, the solution of (A.1) in the western subbasin becomes

 

where now



 

It is easy to check that the effect of bottom friction, which renders ω complex, produces an exponential decay of the 
solution westward from the barrier. Or, equivalently, for very small bottom friction the choice of sign in (C.2b) is equivalent 
to choosing the long Rossby wave whose zonal energy flux is westward. Again, using the results of appendix B, the 
coefficient An can be determined by matching the streamfunction to its value at the longitude of the barrier; hence,

An = Ign,(C.3)
 

where gn is given by (B.3). Application of the integral constraint (2.17) again yields an expression for the island constant, 

I; thus, instead of (2.19) we now obtain

 

which completes the solution.

Figures  
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Fig. 1. A schematic of the oceanic basin with the island barrier. The barrier has the longitudinal extent x2 − x1 while the two 

gaps at the extreme edges of the island barrier have each width d. The basin has a meridional extent L. Shown in the figure are the 
coordinates of the features of the basin when scaled with the length L. A localized forcing is placed at x = z with meridional 
structure described in the text.
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Fig. 2. The normal mode frequency of oscillation of the gravest Rossby normal mode as a function of island width.
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Fig. 3. The gravest basin-scale normal mode for the case x1 = 0.40, x2 = 0.623. In this calculation d = 0.1. The normal mode 

frequency (scaled by βL) is 0.079 687. 
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Fig. 4. The response of the fluid to symmetric forcing in the right-hand basin. The amplitude is measured at the point x = 0.61, y 
= 0.1167. The forcing is at x = 0.8. The frictional parameters are r = 0.002, δ = 0.002; x1 = 0.39, x2 = 0.42. (a) The solid curve shows 

the amplitude of the response at the measuring point described while the dashed curve shows the modulus of the island constant 

I. Note the coincidence of the peaks of the two curves. (b) As in (a) however measured in the left-hand subbasin at x = 0.195, y 

= 0.5. (c) Contour plots of the forced response at four phases of the oscillation cycle at frequency ω = 0.104. 
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Fig. 5. For the same parameters as in Fig. 4  except that the forcing is antisymmetric around the midlatitude of the basin. (a) 
Amplitude in right-hand subbasin and the island constant. (b) Contour plot of the streamfunction at four phases of the 
oscillation.
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Fig. 6. As in Fig. 4  except that the forcing contains both symmetric and antisymmetric parts. (a) Response of amplitude in 
the right-hand subbasin and island constant. (b) Response in the left-hand subbasin. 
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Fig. 7. As in Fig. 6  except the lateral friction has been increased so that now δ = 0.02. 
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Fig. 8. As in Fig. 6  except the lateral friction is here such that δ = 0.05. (a) Response in right-hand subbasin of amplitude at 
observation point and island constant. (b) Response in left-hand basin. (c) Contours of streamfunction for ω = 0.07. (d) Contours 
of streamfunction for ω = 0.104. (e) Contours of streamfunction for ω = 0.0605. 
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Fig. 8. (Continued) 
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Fig. 9. As in Fig. 7  but now δ = 0.5. 
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Fig. 10. The response curve in the right-hand basin for an increase in bottom friction. Here r = 0.01, δ = 0.01. 
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Fig. 11. The island constant I as a function of island width for the frictional parameters of Fig. 10 .
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Fig. 12. The response curve for the island constant for the frictional parameters of Fig. 10  when the western boundary of 
the basin is nonreflecting.
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Fig. 13. The contours of the forced oscillation for the case shown in Fig. 12 . 
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