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ABSTRACT

A two-dimensional time-dependent model of a wind-driven coastal polynya is 
presented. The model combines and extends previous one-dimensional time-
dependent and two-dimensional steady-state flux formulations. Given the 
coastline geometry, and the time-varying surface winds and heat fluxes as free 
parameters, the model calculates the growth rate, distribution and motion of 
frazil ice within the polynya, and the mass fluxes of frazil ice and consolidated 
new ice at the polynya edge. The difference between these two mass fluxes 
determines the velocity of the polynya edge at all times and, hence, its evolution. 
Analytical solutions are found for the special case when the coastline is a 
straight line segment of finite length D (an idealization of an island) and the 
forcing fields are spatially uniform and constant in time. Two timescales and 
two spatial scales are shown to be important in characterizing the shape, size, 
and evolution of the polynya: the consolidated new ice and frazil ice timescales, 
tce and tfe, respectively, and the offshore and alongshore adjustment length 

scales, Roe and Rae, respectively. The timescale tce is the time required for the 

polynya to grow ice of thickness equal to the collection thickness of frazil at the 
polynya edge. The timescale tfe is the time it takes frazil to cross the equilibrium 

width of the polynya, which is, in turn, determined by the length scale Roe. In 

combination, tce and tfe control the timescale for the polynya to respond to 

variations in the forcing. The length scale Rae is the distance that the angle 

between the consolidated new ice and frazil ice drifts spans along the 
equilibrium polynya edge. This length scale measures the sensitivity of the 
polynya edge to alongshore variations in the coastline geometry and, in 
particular, to its total extent. It is shown that if Rae is comparable to D, then the 

offshore dimension of the polynya and the timescale for the polynya to reach equilibrium can be very different from 
those obtained from a one-dimensional formulation. The model is applied to the study of seasonal and short-term 
variability of the St. Lawrence Island polynya, in the Bering Sea.

1. Introduction  

A feature of the sea ice cover over shallow coastal areas is the appearance of wind-driven polynyas, regions of partially 
ice-free waters that form between the coastline and the ice pack as a result of the wind-driven offshore advection of ice. As 
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the the pack is pushed away from the coast, an area of open water is left behind in which frazil ice formation occurs. 
Because the coastal shelf is not very deep, the entire water column is usually near the freezing point and no oceanic heat flux 
is supplied from below. Frazil ice growth rates over the polynya region can therefore be very large (up to several meters of 
ice per year; Schumacher et al. 1983). The frazil ice created is also transported downwind and it eventually collects along 
the trailing ice floes at the polynya edge. The size and shape of the polynya are governed by the balance between the export 
of new ice out of the polynya and the production of frazil ice within the polynya. Wind-driven polynyas tend to form 
recurrently in specific locations of the Arctic Ocean, the sub-Arctic seas, and the Southern Ocean. Depending on the 
coastline geometry and the environmental conditions, their widths range from hundred or thousands of meters to a hundred 
kilometers (Smith et al. 1990). 

Wind-driven polynya models developed to date fall into two categories, namely, grid models and flux balance models. Grid 
models employ finite difference formulations of sea ice thermodynamics and dynamics in order to determine the ice growth 
and motion in the area of the polynya (e.g., Lynch et al. 1997; Fichefet and Goosse 1999). On the other hand, flux balance 
models are based on the idea of Lebedev (1968) that the balance between the flux of frazil ice produced in the polynya and 
the wind-driven offshore divergence of ice governs the location of the polynya edge. These kind of models are the subject of 
our present study.

We distinguish two regions in a wind-driven coastal polynya (Fig. 1a ): (i) an inner region of nearly open water where 
frazil ice grows and (ii) an outer region surrounded by first-year ice pack and occupied by a mat of consolidated new ice 
and young ice floes that have formed by accretion of frazil ice arriving from region (i). We will refer to region (i) as the 
“polynya,”  proper, and the boundary between regions (i) and (ii) will be termed the “polynya edge.”  The goal of a flux model 
is to predict the location and temporal evolution of the polynya edge.

Based on the flux balance principle, Pease (1987) introduced a one-dimensional time-dependent model of a wind-driven 
polynya. In this model, all the frazil ice produced within the polynya is assumed to be instantaneously collected at the 
polynya edge. In other words, the net frazil ice production in the polynya is exactly balanced by the net flux of ice out of the 
polynya, namely

 

where F is the frazil ice production rate (volume of ice grown per unit area per unit time), R is the polynya width, and H 
and U are the collection thickness of frazil ice and the consolidated new ice velocity at the polynya edge, respectively. In (1), 
it is assumed that the frazil ice growth rate within the polynya is spatially uniform. Ou (1988) extended the previous model to 
include a finite drift rate for frazil ice. In this case, an equation for dR/dt is derived by exploiting the balance between the 
fluxes of frazil ice and consolidated new ice at the polynya edge:

 

where hR and uR are the frazil ice depth and the frazil ice velocity at the polynya edge, respectively. If the frazil ice 

velocity field is specified, hR can be obtained from the continuity equation for frazil ice depth, h, subject to the boundary 

condition h = 0 at the coast. 

The theory of Pease (1987) provides expressions for the steady-state width and the equilibrium timescale of a polynya 
under constant forcing. The steady-state polynya width is Roe = HU/F. The equilibrium timescale is a small multiple (3 or 4, 

say) of tce = H/F, which is simply the e-folding time implied by (1). This timescale is of the order of several hours to one 

day. Pease tested the model for winter conditions in the Bering Sea and reached two major conclusions: (i) the polynya 
width is only moderately sensitive to wind speed since both ice drift and frazil ice production vary linearly with the wind 
stress magnitude and (ii) the polynya width is very responsive to surface air temperatures. The latter is due to the fact that 
air temperatures strongly affect the frazil ice production but not the ice drift (e.g., colder air leads to larger ice growth and a 
smaller polynya for a given wind). Ou (1988) showed in turn that, when a finite frazil ice drift is taken into account, (i) the 
time required for the polynya to reach equilibrium is shorter than in the formulation of Pease (1987) and that (ii) normally a 
polynya is in approximate equilibrium with synoptic (of the order of days) atmospheric variations and its width is therefore 
reasonably described by the steady-state polynya width. 

The one-dimensional model of Pease (1987) has been applied in a number of studies. Mysak and Huang (1992) used the 
model to simulate the formation and maintenance of the North Water polynya. They coupled the Pease (1987) model to a 
reduced-gravity ocean model, and showed that, in addition to the short-period timescale tce, a second long-period timescale 

(of the order of weeks) exists, associated with the influence of oceanic heat flux on the frazil ice production rate. Markus 
and Burns (1995) discussed satellite-derived estimates of the location and extent of a polynya near Halley Bay, Antarctica, 
and compared them with the theory of Pease (1987). The model exhibited reasonable skill in reproducing the area 
fluctuations of the polynya. Kozo et al. (1990) used a purely advective polynya model in which the polynya size is the 
product of the consolidated ice velocity and the duration of an offshore wind episode. Their analysis suggested that polynya 
size is reasonably well correlated to observed geostrophic winds over the Bering Sea.



A two-dimensional steady-state polynya flux model was discussed by Darby et al. (1994). They assumed that the frazil ice 
moves at a fixed angle to the right of the surface wind and with a speed proportional to the wind speed. This polynya model 
was coupled to a reduced-gravity ocean model and used to determine the area of the North Water polynya. The coupled 
model did not take into account the influence of ocean currents on frazil ice motion. The general theory for a two-
dimensional steady-state polynya flux model was expounded by Darby et al. (1995). The steady-state polynya edge is 
described by the curve C(R) = const, where R is the position of a point of the polynya edge. The polynya edge is 
determined by requiring the normal fluxes of frazil and consolidated new ice across the polynya edge to be in balance:

nC · (HU − hCuC) = 0,(3)
 

where nC is a unit vector perpendicular to the polynya edge, and H, U, hC, and uC are the collection thickness of frazil 

ice, the consolidated new ice velocity, the frazil ice thickness, and the frazil ice velocity at the polynya edge, respectively. As 
in the one-dimensional case, if the frazil ice velocity field is known over the entire domain, hC can be determined by solving 

the continuity equation for frazil ice depth, h, inside the polynya, with h = 0 at the coast. 

In addition to the offshore equilibrium length scale, Roe, the two-dimensional theory introduces an alongshore adjustment 

length scale, Rae, which is proportional to Roe but which also depends on the directions of drift of frazil and consolidated 

new ice relative to each other and to the coastline. Darby et al. (1995) showed that the polynya edge shape is insensitive to 
coastline features with length scales smaller than Rae. In Darby et al. the frazil ice motion was prescribed to be rectilinear. 

Willmott et al. (1997) allowed frazil ice to move along curvilinear trajectories that were determined via the free-drift 
momentum balance approximation.

In this paper, we formulate a two-dimensional time-dependent polynya flux model. The model requires the specification of 
the coastline boundary and of time-varying surface wind, shortwave radiation, air temperature, and relative humidity. The 
model calculates ice production and drift rates, which allow the temporal evolution of the polynya edge to be determined. 
The model is applied to the investigation of the seasonal and short-term variability of the St. Lawrence Island polynya. 

The paper is organized as follows. Section 2 provides a formulation of the polynya model and outlines the numerical 
method for determining the solution. Section 3 presents analytical and numerical polynya solutions in the presence of 
idealized coastlines. Section 4 discusses the application of the model to the simulation of the St. Lawrence Island polynya. 
Section 5 closes the paper with a summary and some concluding remarks. 

2. Description of the model  

Figure 1b  shows a schematic diagram of the polynya model. For a wind blowing offshore, frazil ice is formed in the 
polynya region (i) and is transported toward the consolidated new ice region (ii), where it collects alongside the ice floes. 
The polynya edge is represented by the curve C(R, t) = const, where R is the position vector of a point of the polynya 
edge. (A list of the most relevant variables used in the paper can be found in the appendix.) The evolution of the polynya 
edge can be determined if the thickness, h, and velocity, u, of frazil ice, the frazil ice collection thickness at the polynya 
edge, H, and the velocity of the consolidated new ice, U, are known. In general, all the above quantities are functions of both 
space and time. Note that h and H are not in situ ice thicknesses; that is, they do not denote the actual ice thickness at a 
given point, rather they represent the volume of ice per unit area in a vicinity of that point. For instance, inside the polynya, a 
significant amount of frazil ice is kept in suspension within the water column (Omstedt and Svensson 1984) and the surface 
ice is very often collected in Langmuir wind rows. Within this context, the concept of an in situ frazil ice thickness is not 
suitable. Likewise, the downwind consolidated new ice region is normally perforated with numerous holes and, therefore, H 
is more appropriately viewed as an area-averaged thickness (Pease 1987). 

Using a generalization of (2), the evolution equation for the polynya edge is

 

where  is the two-dimensional gradient operator and hC and uC are the frazil ice thickness and velocity at the polynya 

edge, respectively. Equation (4) can be solved using the method of characteristics (e.g., Haberman 1998). The characteristic 
curves of (4) satisfy

 

Since the polynya edge is not a material surface, only the component of dR/dt perpendicular to the polynya edge is 
physically relevant. Denoting by nC a unit vector perpendicular to C(R, t) and pointing toward the consolidated new ice 

region, we see that, when the polynya reaches equilibrium, nC · dR/dt = 0, which is equivalent to (3). Note also that 

whether ice convergence or ice divergence occurs at the polynya edge depends on whether nC · (uC − U) is greater or 

smaller than zero, respectively. In the latter case, hC = 0 and, from (5), dR/dt = U. 



The evolution of h, u, H, and U is determined as follows. The distribution of frazil ice within the polynya can be obtained 
from the following system of equations:

 

In (6), r is the position vector along a frazil ice trajectory and F is the frazil ice production rate. If the spatial and temporal 
distributions of u are known, the characteristics of the frazil ice depth equation coincide with the frazil ice trajectories. Frazil 
ice trajectories can in principle emanate not only from the coast, but also from regions of the polynya edge where ice 
divergence occurs, and this is shown schematically in Fig. 1b . In all cases, for t > t0, where t0 is the initial time, the 

boundary condition for h at points where a frazil ice trajectory emanates is h = 0. 

Since the extent of synoptic atmospheric systems is much larger than typical polynya length scales, we assume that the 
atmospheric forcing is uniform over the polynya and, consequently, that freezing rates are also uniform. Following Pease 
(1987), the frazil ice production is determined as

−ρiLiF = (1 − α)Qs + σeaT4
a − σesT

4
w + ρaChCpUa(Ta − Tw) + ρaCeLeUa(qa − qs),(7)

 

where α is the water surface albedo, Qs is the downwelling shortwave radiation, σ (=5.67 × 10−8 W m−2 K−4) is the 

Stefan–Boltzmann constant, ea is the air emissivity, Ta is the air temperature, es (=0.97) is the surface emissivity, Tw 

(=−1.8°C) is the water temperature, ρa (=1.3 kg m−3) is the air density, Ch (=1.75 × 10−3) is the sensible heat transfer 

coefficient, Cp (=1004 J K−1 kg−1) is the specific heat for air, Ua is the wind speed, Ce (=1.75 × 10−3) is the latent heat 

transfer coefficient, Le is the latent heat of vaporization (=2.5 × 106 J kg−1), qa is the mixing ratio at Ta, qs is the saturated 

mixing ratio at Tw, ρi (=950 kg m−3) is the ice density, and Li (=3.34 × 105 J kg−1) is the ice latent heat of fusion. The 

above parameter values have been taken from Fichefet and Morales Maqueda (1997), except that for ρi, which comes from 

Pease (1987). Both the short and longwave radiations absorbed at the surface strongly depend on cloud coverage, type and 
optical thickness, and α, Qs, and ea are therefore functions of these cloud variables. However, Pease neglects altogether the 

shortwave radiation contribution, on the basis that it is very small from October throughout February, and ignores cloud 
effects on downwelling longwave radiation by adopting a constant atmospheric emissivity ea = 0.95. This author also 

neglects surface latent heat fluxes.

The frazil ice drift field can exhibit complex spatial patterns, even when a spatially uniform wind forcing is imposed. For 

winds of 3 m s−1 or faster, frazil ice has been observed to drift along wind rows associated with Langmuir circulations 
(Martin and Kauffman 1981). These wind rows are oriented at an angle, θ, of 13° or less to the right of the wind (in the 
Northern Hemisphere) and their spacing oscillates between 2 and 200 m (Leibovich 1983). Since the persistence time of the 
wind rows (of the order of 1 h) is normally shorter than the residence time of frazil ice within a mature polynya, it is 
reasonable to assume that the existence of Langmuir circulation structures does not lead to any net horizontal convergence 
or divergence of frazil ice within the polynya. According to Leibovich (1983), typical windward Langmuir currents have 
speeds that are a few percent of the wind speed. Correspondingly, we prescribe

u = L[cos(θ)Ua − sin(θ)k  × Ua],(8)
 

where L (=0.06) is a constant of proportionality, θ (=0°) is a turning angle positive to the right of the wind (in the 

Northern Hemisphere), k  is an upward unit vector, and Ua is the surface wind velocity. 

The physical processes governing the collection of frazil ice at the polynya edge are not well understood, although the 
frazil ice collection thickness is expected to depend on wind speed and fetch (Bauer and Martin 1983; see section 5). 
Following Pease (1987), we use a constant value for H (=0.1 m), which, if thermodynamic growth of consolidated new ice 
is neglected, represents the area-averaged thickness of ice in region (ii). 

Finally, the drift of consolidated new ice is parameterized by Zubov’s law (Wadhams 1986):

U = Z[cos( )Ua − sin( )k  × Ua],(9)
 

where Z (=0.03) is a constant of proportionality and  (=28°) is a turning angle positive to the right of the wind (in the 

Northern Hemisphere). Note that, since, in the Arctic, the observed surface geostrophic wind velocity makes an angle of 
23°–33° to the right of a Ua (Overland and Colony 1994), the consolidated ice drift will be approximately aligned with the 

geostrophic wind (which is another way of stating Zubov’s law). 

In order to solve (5) and (6), it is necessary to specify the location of the polynya edge, C(R, t) = const for t  t0. In 

addition, knowledge of H(R, t), U(R, t), u(r, t), and F(r, t) is required for all t, both t  t0 and t > t0. This is because we 



do not make any particular assumption regarding the initial state of the polynya. Since the thickness of frazil ice at the 
polynya edge depends on the history of the ice as it drifts offshore, we need, in general, to be able to compute the frazil ice 
trajectories for all times. Of course, this will not be necessary in the special, but very important, case when the polynya was 
closed for t  t0. For arbitrary coastline geometry and forcing fields, the polynya equations have to be solved numerically. 

This is done in the following manner. Suppose that the solution algorithm has determined the location of the polynya edge at 
times t0, t1 = t0 + Δt, · · · , tN− 1 = t0 + (N − 1)Δt, where Δt is the time step. To advance the solution from tN−1 to tN = t0 

+ NΔt, a series of M points, R1
N−1, · · · , RM

N−1, along the polynya edge at time tN−1 is selected. Consider the point 

Rk
N−1 (1  k  M). If ice divergence occurs at Rk

N−1 (i.e., frazil ice is leaving the polynya edge), then hk
N−1 = 0, and 

[dR/dt]k
N−1 = Uk

N−1, where hk
N−1 and Uk

N−1 are, respectively, the frazil ice depth and the consolidated new ice velocity at 

Rk
N−1 at time tN−1. If ice convergence occurs at Rk

N−1 (i.e., frazil ice is arriving at the polynya edge), then hk
N−1 has to be 

calculated in order to determine [dR/dt]k
N−1. To find hk

N−1, the first of (6) is integrated backward in time until, at a time tint 

 tN−1, the frazil ice trajectory first intersects a boundary point, P, from which frazil ice emerges. Note that P can be 

located either on the coastline or on a sector of the polynya edge where ice divergence occurs. In the latter case, owing to 
the fact that, in general, tint will not coincide with any of the times t0, . . . , tN−1, the location of the polynya edge at tint, 

and hence P, will have to be determined by interpolation of the known polynya edge solutions at the consecutive times tj and 

tj+1, where tj  tint  tj+1. Since the trajectory followed by frazil ice from P at time tint to Rk
N−1 at time tN−1 is known 

(i.e., we assume that u does not depend on h), the second of (6) can be integrated forward in time, with initial condition hP,

tint) = 0, to obtain hk
N−1. Thus, [dR/dt]k

N−1 can now be calculated from (5), and the polynya edge solution advanced 

from Rk
N−1 to Rk

N. 

3. Polynya solutions for uniform forcing and idealized coastlines  

To facilitate understanding of the time-dependent behavior of a two-dimensional wind-driven coastal polynya, we present 
a number of analytical and numerical polynya solutions for simple coastline geometries. In all cases, the atmospheric forcing 
fields (i.e., the air temperature and wind velocity), and hence F, u, and U, are assumed to be spatially uniform. We use a 
Cartesian coordinate frame, S, in which the coordinates of a point on the polynya edge will be denoted by (X, Y) and those 
of a point along a frazil ice trajectory by (x, y). With respect to S, the consolidated new ice velocity is (U, V) and the frazil 
ice velocity is (u, ). Equations (5) and (6) then become

 

a. Infinite straight coastline: Polynya response to an impulsive change in the forcing  

Consider an infinite straight coastline, which coincides with the y axis, and with the polynya occupying the region x  0. 
Given a point, P, with coordinates (xP, yP), the set of points (xP, y) will be said to be located to the “west”  (“east”) of P if y 

− yP < 0 (y − yP > 0). Similarly, the points (x, yP) will be said to be located to the “north”  (“south”) of P if x − xP < 0 (x − 

xP > 0). Assume that for t < t0 a polynya exists in equilibrium with an atmospheric forcing, with U = U0, u = u0, and F = 

F0. The polynya edge at t = t0 is given by the infinite straight line [X]t=t0
 = X0 = (U0H)/F0. At t = t0, the distribution of h 

within the polynya is given by h(x, t0) = [(hC0 − hB0)/X0] x + hB0, where hC0 = (F0/u0) X0 and hB0 = 0 are the initial 

thicknesses of frazil ice at the polynya edge and at the coast, respectively. In section 3c, an example arises in which 0  
hB0  hC0 occurs during the evolution of a two-dimensional polynya, which is the reason for allowing h(x, t0) to depend 

on hB0. 

Assume that at t = t0 the atmospheric forcing changes impulsively and that, for t  t0, the consolidated new ice velocity, 

frazil ice velocity, and frazil ice production acquire new values U, u and F, respectively. In essence, this problem is one-
dimensional in the x direction and has been solved by Ou (1988). Nevertheless, we will revisit this problem because the 
methodology used to solve it is the same as that employed in the case of a finite-length straight coastline. Unfortunately, the 
location of the polynya edge cannot, in general, be expressed as an explicit function of t. However, since H, U, u, and F are 
constant for t  t0, the only time-dependent variable controlling the polynya edge evolution is hC. We will therefore first 

solve (10) and (11) for hC as an implicit function of t. In so doing, we will be able to define as well a timescale for the 

polynya to reach the new equilibrium state. Subsequently, hC will be introduced back into (10) in order to determine the 

location of the polynya edge as an explicit function of hC. The characteristic length scales of the steady-state polynya will 



also be derived. Finally, we will discuss some salient features of the polynya solutions thus obtained.

1) EVOLUTION OF HC AND DETERMINATION OF THE POLYNYA EQUILIBRIUM TIMESCALE
 

Take a point (X, Y) of the polynya edge at time t  t0. The thickness of frazil ice arriving at the polynya edge point at 

time t is given by

 
(Click the equation graphic to enlarge/reduce size)

where tc is such that [X − u(t − t0)]t=tc
 = 0. In words, tc is the time after which all frazil ice particles arriving at the polynya 

edge have been exposed only to the new forcing (Ou 1988).

It is expedient to define the new variable p = 1 − hC/H. Physically, the frazil ice cannot be thicker than its collection 

thickness and, therefore, 0  p  1. This inequality imposes a restriction on the possible values of hB0, which we will not 

consider here. This restriction is overcome by using a parameterization for H along the lines of the one outlined in section 5. 
By eliminating X between (10) and (12), an evolution equation for p is formed whose solution is given by

 

where p0 = [p]t=t0
, Z = u(hC0 − hB0)/(FX0), pe = 1 − U/u, and pc = [p]t=tc

.
 

The value of tc can be obtained as follows. From (12a) we find that, when t  tc, with t < tc, then p  p′c = 1 − hB0/H 

− F/H(tc − t0) (note that p′c = pc if and only if hB0 = 0). By taking the limit t  tc in (13a), and setting p = p′c in the 

resulting equation, we obtain an expression for tc, namely

 

A timescale for the polynya to reach its new equilibrium can be found from (13b) by determining the time, t = t   tc, at 

which the value of p is p  = [p]t=t , where pe − p  = (pe − pc), and 0 <   1. We find that

 

If the polynya was closed at t = t0, then pc = 1 and the definition of p  is equivalent to Roe − X  = Roe, where Roe = 

HU/F is the steady-state polynya width and X  = [X]t=t . In this case, t  is the time required for the polynya to open to a 

width (1 −  )Roe. 

In practice, if hB0 = 0, the equilibrium adjustment timescale in (15) can be approximated by F/H(t  − t0)  1 − [1 − ln(

−1)]pe. We observe that this approximation is independent of the initial state of the polynya. It is also interesting to note that 

the approximation can be expressed in terms of the two timescales tce = Roe/U = H/F and tfe = Roe/u in the following way:

 



t  − t0  tfe + ln( −1)(tce − tfe).(16)

The timescale tfe is simply the time required for frazil ice to traverse the width of the equilibrium polynya, Roe. The 

timescale tce = H/F is the time required for the polynya to grow frazil ice up to a thickness H. If we choose  = 0.01, (16) 

leads to the following bounds for the adjustment timescale: H/F  t  − t0  4.6H/F. The lower bound is the finite 

adjustment timescale in the limit pe  0, or equivalently tfe  tce (in fact, the only case when the adjustment timescale is 

finite corresponds to this limit), while the upper bound corresponds to the limit pe  1 (i.e., U  0 or u  ∞). 

2) EVOLUTION OF THE POLYNYA EDGE AND DETERMINATION OF THE POLYNYA CHARACTERISTIC 
LENGTH SCALES 

We now derive expressions for X and Y in terms of p. Changing independent variable in (10) from t to p gives differential 
equations for X and Y, which are separable in p. The solutions are

 

where Y0 = [Y]t=t0
, Yc = [Y]t=tc

, and qe = 1 − V/ . Equations (13), (14), and (17) uniquely determine the polynya width, 

X, as a function of t. An initial polynya edge point (X0, Y0) will transform into a point (X, Y) at time t according to (13), 

(14), (17), and (18). The path followed by such point during its evolution is termed a characteristic. Figure 2  depicts the 
polynya edge evolution to equilibrium for a case in which the polynya was initially closed (p0 = pc = 1). The ice speeds are 

|U| = 0.6 m s−1 and |u| = 2|U|. The frazil ice production is F = 0.27 m day−1. 

Let us now consider the steady-state polynya solution in order to determine its characteristic length scales. From (10) and 
(11), the steady-state polynya width, Roe, is given by

Roe = HU/F.(19)
 

In addition to Roe, an alongshore adjustment length scale, Rae, can also be defined. To understand how Rae arises, 

suppose that in the interval I = {y : y1 < y < y2} the infinite-length coastline exhibits small departures from the straight line 

boundary x = 0. Specifically, let the coastline be given by x = c(y), where c is such that c = 0 outside I and |c|  Roe. We 

assume that |dc/dy|  1, in order to guarantee that frazil ice trajectories starting at a given point of the land boundary will 
not subsequently intercept the coastline again. The coordinates of any point Q on the steady-state polynya edge can be 
written as (X = Xe + X′, Y), where Xe = Roe and X′ (|X′|   Roe) is a perturbation induced by the coastline irregularities. It 

can be shown that a frazil ice trajectory arriving at the equilibrium point Q emanates from a coastal point P whose x 

coordinate is x′P  c(Y −  /uRoe), to first order in the perturbation. The thickness of frazil ice arriving at Q is then hC = hCe 

+ h′C, where hCe = HU/u = (F/u) Roe and h′C = (F/u)(X′ − x′P), where X′ − x′P is the “excess offshore distance”  traveled by 

frazil ice due to the perturbation in the coastal outline. We next observe that, dividing the first of (10) by the second of (10), 
we obtain an expression for the slope of the steady-state polynya edge, dX/dY, as a function of hC [to convince oneself that 

this is indeed the equation for the steady-state polynya edge, one has simply to set C/ t = 0 in (4)]. An equation for the 
polynya edge perturbation readily follows and is given by



 

to first order in the perturbation. In (20), the denominator

 

is an alongshore adjustment length scale. There is a useful geometrical interpretation of the length scale Rae, as illustrated 

in Fig. 2 . Consider a consolidated new ice trajectory and a frazil ice trajectory both emanating from the same point on the 
coastline [e.g., the point (0, y1) in Fig. 2 ]. The length of the line segment defined by the two points where these two 

trajectories intercept X = Roe is given by |Rae|. 

Given that the angle between U and u is positive (i.e., U is located to the right of u), the steady-state polynya edge solution 

east of the semi-infinite straight line l2 = {(x, y) : x − u(y − y2) = 0, x  0} will be the same as in the case of a perfectly 

straight coastline, namely, X = Roe. Equation (20) can then be integrated westward from the point (X0 = Roe, Y0 = y2 + 

/uRoe), where X′ = 0, thereby showing that

 

It is clear from (22) that Rae fulfills a twofold role. On the one hand, it controls the amplitude, |X′|, of the polynya edge 

response to a perturbation in the coastline shape [in the integrand of (22), the coastline perturbation c(y) is scaled by a factor 
1/Rae]. On the other hand, Rae also provides an e-folding length scale for the westward decay of X′ (due to the presence of 

the exponential outside the integral). In Fig. 2 , for example, the perturbation will decay by e−1 over a distance |Rae| 

westward of the line l1. Modifications in the coastline with offshore and alongshore length scales smaller than Rae will barely 

affect the polynya edge shape.

3) DISCUSSION OF POLYNYA SOLUTIONS 

The time-dependent polynya behavior crucially depends on the orientations of both the consolidated new ice and frazil ice 
velocities. This is illustrated in Figs. 3  and 4 , which show results from two series of polynya experiments. In each 
experiment, for t < t0 = 0 the polynya is in a steady state in which the ice drift is characterized by the velocities U0 (|U0| = 

0.6) and u0 (|u0| = 2|U0|). The frazil ice production rate is F = 0.27 m day−1. An impulsive change in wind direction occurs 

at t = t0 and the consolidated new ice and frazil ice velocities become U1 and u1, respectively. The wind speed and air 

temperature remain constant and, therefore, |U1| = |U0| and |u1| = |u0|. When the polynya attains its new equilibrium state 

[within 1% of pe − pc; see (15)], the forcing reverts to the “old”  wind regime for t < t0, the consolidated new ice and frazil 

ice velocities becoming U2 = U0 and u2 = u0, respectively. 

Figure 3  shows the polynya width as a function of time when the angle between the consolidated new ice and frazil 
ice drifts, , is 0°. The evolution of the polynya width in time is shown for five different orientations of U0 and u0, with U1 

and u1 held constant. In all cases, the polynya edge takes 24 h to advance to its new steady state after the first impulsive 

change in wind direction. The retreat phase after the second change in wind direction also lasts for 24 h. This 24-h 
timescale agrees well with the one obtained from (15) or (16) with  = 0.01 and pe = 0.5. Since the behavior of the polynya 

depends only on the magnitude of the offshore components of the consolidated new ice and frazil ice velocities, the 
evolution of the polynya edge is identical when U0/u0 make an angle ±β with the normal to the coastline, provided |U0| and 

|u0| are constant (cf. Figs. 3b and 3e , and Figs. 3c and 3d ). However, this symmetry is broken if  is nonzero. For 

example, in Fig. 4 ,  = +28° and, when the polynya evolves to an equilibrium state in which U1 is normal to the 

coastline, pe = 1 − 1/cos(28°)  0.43, and t   23 h. The time required for the polynya to return to its initial state varies 

according to the direction of U0 (=U2), from 41 h when U0 is parallel to the coast (pe = 1) to 9 h when U0 forms an 

angle, β, with the normal to the coastline of +39° (pe = 0). For β > +39°, U > u, and the steady-state polynya width is 

unbounded because no equilibrium of ice fluxes at the polynya edge is possible.



The transient behavior of the polynya can be such that the polynya opening (closing) is preceded by a partial closing 
(opening). This can be understood as follows. If the polynya is in equilibrium for t < t0, the flux balance at the polynya edge 

is M = HU0 − hC0u0 = 0, where hC0 = [hC]t=t0
. If the offshore components of the ice drift regime change impulsively to U 

and u, the flux balance at t = t0 is M = Hu(U/u − U0/u0). Whether the polynya width increases or decreases during the 

transient adjustment depends on whether the sign of U/u − U0/u0 = p0 − pe is positive or negative, respectively. 

b. Finite-length straight coastline: Polynya response to an impulsive change in the forcing  

Consider the case when the coast is a finite-length straight-line segment coinciding with the y axis and with end points (0,
0) and (0, D). A coastline of this type can be viewed as an idealization of a long and narrow island. Let us assume that the 

polynya forms to the south of the island, occupying a finite-area region of the half-plane 0  x. We will first study the case 
when the polynya opens to equilibrium from an initial state in which the polynya was closed. A complete analytical solution 
will be obtained for this case. Subsequently, we will examine the response of a steady-state polynya of nonzero area to an 
impulsive change in the forcing. This more general problem introduces novel polynya features, which are worthwhile 
discussing. The polynya equations for this case can also be solved analytically. However, the complete construction of the 
analytical solution becomes intractable, and therefore a numerical procedure is adopted for solving this problem.

1) RESPONSE OF A POLYNYA INITIALLY CLOSED AND DETERMINATION OF THE POLYNYA EQUILIBRIUM 
TIMESCALES 

Let us suppose that for t < t0 the entire oceanic domain is covered by motionless first-year ice. At t = t0, a steady wind is 

applied and a polynya opens to the south of the coastline. We assume that, when the first-year ice is free to move, its 
velocity is the same as that of the consolidated new ice exported from inside the polynya [see (9)] and that it is stationary 
when its advance is hindered by the coastline. That is, we assume an idealized ice rheology in which the ice resists 
convergence with arbitrarily large compressive strength and opposes no resistance to divergence or shearing. In this 
approach, a region of motionless first-year ice exists north of the island bounded by the coastline to the south and by the 

semi-infinite lines L− = {(X, Y) : VX − UY = 0, X < 0} to the west and M− = {(X, Y) : VX − U(Y − D) = 0, X < 0} to the 
east (Fig. 5 ). Elsewhere, the ice cover moves in free drift. The boundaries between the motionless and the moving first-

year ice (i.e., L− and M−) can be considered as coastline extensions along which the polynya width is zero. 

According to (10), a polynya edge characteristic originating at t = t0 from a point (X0, V/UX0) on L− will advance with 

velocity U until it reaches the origin at a time t = tL. For t  tL the characteristics will then follow the straight line path 

coinciding with the semi-infinite line L+ = {(X, Y) : VX − UY = 0, X  0}, which bounds the polynya to the west. Note 

that frazil ice trajectories will emanate from L+. Similarly, a characteristic originating at t = t0 from (X0, D + V/UX0) on M− 

will advance with velocity U until it reaches the point (0, D) at a time t = tM. For t  tM the characteristic will be affected 

by a nonzero flux of frazil ice coming from the island coastline. This characteristic will subsequently follow a progression 
similar to that of any other characteristic originating on the coastline.

To determine the evolution of characteristics originating on the coastline, we note that the frazil ice trajectory emanating 

from the origin (i.e., the semi-infinite line l+ = {(x, y) : x − uy = 0, x  0}), divides the polynya domain into two regions, 
A to the east and B to the west (Fig. 5 ), in each of which the polynya solution can be easily derived. In region A, the 
advance of a polynya edge characteristic starting from (X0 = 0, 0 < Y0 < D) at t = t0 is given by (17) and (18), together with 

(13) and (14), with hC0 = hB0 = 0 (i.e., p0 = pc = 1). The characteristic will propagate westward until, at a time t = tl, it 

intersects l+ at the point (Xl, Yl). At t = tl, the characteristic enters region B in which the frazil ice flux emanates from the 

boundary L+. In this region, a rotated reference frame, Sr, can be defined such that the negative yr axis coincides with the 

line L+, the transformation equations from Sr to S being

 

In Sr, the consolidated new ice velocity components are Ur = 0 and Vr = −|U|. The evolution of a characteristic that has 

entered region B will again be given in the rotated system Sr by (13), (14), (17), and (18) after substitution of t0, X0, Y0, and 

hC0 by tl, Xrl, Yrl, and hCl, respectively, where (Xrl = urXl/u, Yrl = rYl/ ) are the coordinates of the intersection point of the 

characteristic with l+ in Sr, and hCl = FXrl/ur.
 



In summary, the evolution of the polynya edge characteristics is described by

 

in the case of a characteristic originating from L−. When the characteristic originates from the coastline (X0 = 0, 0 < Y0 < 

D), its evolution equations are

 

where

 

In (25) and (26), Roe and Rae are as given by (19) and (21), respectively, and tce = Roe/U, tfe = Roe/u. Finally, when the 

characteristic starts from M− it obeys



 

where

 

The shape of the equilibrium polynya edge is given by (24b), (27d) (in region A), and (27f) (in region B). Figure 5  
illustrates the polynya spinup to steady state in the presence of coastlines 20 and 40 km long. The consolidated and frazil ice 

speeds are |U| = 0.6 m s−1 and |u| = 2|U|, respectively, the angle between the normal to the coastline and U is β = +13°, and 

F = 0.27 m day−1. For both islands, the length scales Re
o and Re

a are 19 and 12 km, respectively. Note how the size of 

the island affects the polynya shape. When the coastline length is several times larger than Re
a, the steady-state polynya 

width is close to the asymptotic value Re
o. When the coastline length is comparable to or smaller than Re

a, the polynya can 

open up to only a fraction of Re
o. 

Let us now determine the time taken for the polynya to reach equilibrium. We define the equilibrium timescale t  to be the 

time when the area of the polynya, A, reaches the value Ae(1 −  ), where 0 <   1 and Ae = [A]t=∞ = DRoe. In the steady 

state, the areas occupied by the polynya in regions A and B are AAe = Ae − RaeRoe[1 − exp(−D/Rae)] and ABe = RaeRoe[1 − 

exp(−D/Rae)], respectively. We wish to establish approximations for t  in the two limits: AAe/Ae  1 (i.e., D/Rae  1) and 

ABe/Ae  1 (i.e., D/Rae  1). The timescale t  can in both cases be determined rigorously by considering the time 

evolution of A as described by (24) and (27). Nevertheless, we can estimate t  by using the following intuitive line of 

argument. If AAe/Ae  1, then the polynya behavior will approximate that of a polynya in the presence of an infinite straight 

coast coinciding with the line x = 0. From (16), the timescale for equilibrium is then

 

If, on the other hand, ABe/Ae  1, the asymptotic polynya behavior will be similar to that of a polynya in the presence of 

an infinite straight coastline coinciding with the line L+. In this limit, t  will again obey (16), but replacing tfe (=Roe/u) by 0 

(since, along L+, the asymptotic polynya width is 0), namely

 

We have empirically observed that for an island of arbitrary length, t  − t0 is, in fact, well approximated by an area-

weighted average of (30) and (31) (Fig. 6 ). The previous analysis demonstrates that the timescale for the opening of a 
wind-driven polynya adjacent to an island depends crucially on the relative magnitude of D and the alongshore adjustment 
length scale Rae. Taking  = 0.01, and in the limit U  u, the time interval t  − t0 can be as much as 4.6 times longer for a 

small island (D/Rae  1) than for a large one (D/Rae  1). 

2) RESPONSE OF A POLYNYA FROM AN ARBITRARY INITIAL STEADY STATE 

We will now analyze the case when a steady-state polynya of nonzero initial area responds to an impulsive change in the 
atmospheric forcing. Rather than presenting in full detail the analytical solution of this problem, we will simply outline the 
way in which it can be obtained.

We consider an initial steady-state polynya for which the consolidated new ice velocity, frazil ice velocity, and frazil ice 
production rate are U0, u0, and F0, respectively. At time t = t0, these quantities change impulsively to U, u, and F, 

respectively. At this stage, it is useful to define a reference frame, Ss, which, at time t = t0, coincides with the stationary 

frame S and which moves with velocity U with respect to S (i.e., the ice pack is stationary in Ss). Vector fields in Ss will be 

denoted by the subscript “s.”  With respect to frame Ss, the polynya edge velocity and the frazil ice velocity are parallel to 



each other. Indeed, we see from (10) that the polynya edge evolves in Ss according to

 

As a consequence, when U and u are spatially uniform and temporally constant, the equations governing the polynya edge 
become one-dimensional in Ss. A characteristic starting on a point Q of the polynya edge at t = t0 will evolve along a straight 

line parallel to us = u − U. The trajectories of frazil arriving at Q will also be parallel to us. These trajectories may emanate 

from either the coastline, which recedes with velocity −U in Ss, or from a point, P, of frazil ice divergence on the polynya 

edge. From (32), P is stationary in Ss since at this point hC = 0 for t > t0. Note, however, that the initial frazil ice thickness 

at P is, in general, different from zero because P might have been a point of frazil ice convergence for t < t0 (this is why we 

considered the general case hB0  0 in section 3a). If the initial distribution of frazil ice thickness is given, the polynya edge 

characteristics in Ss can be calculated following an approach similar to the one described in section 3a. The two major 

differences between this problem and the one discussed in section 3a are that 1) frazil ice can originate from moving 
boundaries (the land boundary) and 2) the initial distribution of frazil ice thickness will be, in general, piecewise linear rather 
than simply linear. However, these features can be introduced into the procedure presented in section 3a. The derivation of 
the polynya solution is then straightforward, albeit cumbersome. Instead, we will present numerical solutions of the problem. 

In section 3a(3), we have shown that, in the presence of an infinite straight coastline, the behavior of the polynya strongly 
depends on the angle, , between the consolidated new ice and frazil ice velocities. Clearly, this result also holds for the 
case of a polynya adjacent to an island. However, in this case the response of a steady-state polynya is additionally affected 
by the angle, , formed by the consolidated new ice velocity for t < t0 and the relative velocity of frazil ice with respect to 

consolidated new ice for t  t0. Specifically, if  > 0, all points of the polynya edge that are points of ice convergence 

(divergence) for t < t0 [i.e., the points on the eastern (western) boundary of the steady-state polynya] remain points of ice 

convergence (divergence) for t > t0. In contrast, if  < 0, there are regions of the polynya edge that are regions of ice 

convergence (divergence) for t < t0, but which become regions of ice divergence (convergence) for t  t0. In this latter 

case, the polynya generates leadlike structures that eventually detach from the main body of the polynya and follow an 
independent evolution. We will not discuss here the development of these structures. Nevertheless, one of them appears in 
the second case study presented in section 4b. 

Figure 7  exemplifies the case when  > 0. The experimental configuration is identical to that in Fig. 4e  except that 
the coastline is a finite line segment 80 km long. For t < t0 = 0 the polynya is in a steady state and the ice drift is 

characterized by the velocities U0 (|U0| = 0.6) and u0 (|u0| = 2|U0|). The frazil ice production rate is F = 0.27 m day−1. In 

Fig. 7a , the dashed line represents the location of the polynya edge in quasi-equilibrium with the “old”  forcing at t < t0. In 

practice, this initial state was achieved by integrating the polynya equations over one day. At t = t0 = 0 the wind changes 

direction and the ice velocities become U1 (|U1| = |U0|) and u1 (|u1| = |u0|). The polynya equations are then integrated for 

one more day. The angle between U0 and u1 − U1 is   +10°. The polynya adapts to the new forcing in two phases. The 

first phase lasts for 1 h, during which the polynya edge retreats toward the coast (dash–dotted line). As explained in 
section 3a(3), this initial retreat results from the negative imbalance established initially between the consolidated new ice and 
frazil ice fluxes at the polynya edge. In the second phase, the flux imbalance changes sign and the polynya edge moves away 
from the coast (solid line) approaching its new equilibrium.

At time t = 24 h, the polynya has virtually reached a new steady state, as shown by the dashed line in Fig. 7b . The 
forcing then impulsively reverts to that applied for t < t0 so that the ice drift regime is given by U2 (=U0) and u2 (=u0). The 

angle between U1 and u2 − U2 is   +90°. The polynya edge now gradually returns to its initial state at t = t0, and, as in 

Fig. 7a , it does so in two phases: a rapid initial expansion that lasts for about 2 h (dashed–dotted line) followed by a 
comparatively slow contraction (solid line).

4. Application to the St. Lawrence Island polynya  

The St. Lawrence Island polynya (SLIP) is a winter polynya that forms adjacent to the southern coast of St. Lawrence 
Island (Fig. 8 ). The SLIP is primarily driven by the prevailing northerly winds in the region (Pease 1987; Walter 1989; 
Kozo et al. 1990; Stringer and Groves 1991; Liu et al. 1997), although the weak shelf currents may also exert some control 
over the polynya (Lynch et al. 1997). Cavalieri and Martin (1994) distinguish two subregions in the SLIP, namely St. 
Lawrence east and St. Lawrence west, which are approximately separated by the 171°W meridian.

Brine rejection from the SLIP is a component of the regional salt budget and can affect the circulation in the vicinity of the 
polynya. Schumacher et al. (1983) have observed that, south of St. Lawrence Island, rapid U-turns of the current, from 
eastward to westward flow, can result from changes in the baroclinic structure of the water column during polynya opening 
events. It has also been suggested that, since the oceanographic circulation over the northern Bering Sea is dominated by a 



northward flow, salty water created in the SLIP and other polynyas in the Bering Sea can contribute to the maintenance of 
the Arctic halocline (Aagaard et al. 1981). 

Two assumptions made in our polynya model, namely that ice growth rates are almost exclusively determined by the 
surface energy budget, with no major contribution from oceanic heat sources, and that consolidated new ice motion is well 
described by a free-drift balance, are approximately satisfied in the SLIP. First, the depth of the shelf surrounding St. 
Lawrence Island is less than 30–40 m and, therefore, the winter water column will be well mixed. As a result, ice growth 
rates will be mainly controlled by surface cooling. Second, under the predominant northerly winds, internal stresses within 
the ice pack are likely to be small because the ice velocity field will be divergent. Consequently, the ice will move nearly in 
free drift. A third assumption made in the model, namely the spatial uniformity of the atmospheric forcing over the entire 
area of the polynya is less certain (see section 4b). 

We will use the polynya theory described above to achieve the following two goals: First, to derive climatological 
estimates of monthly polynya extents and opening timescales. Second, to assess the model skill in portraying the short-term 
polynya response to atmospheric variability. To this effect, we will investigate three polynya opening events reported in the 
literature.

a. Determination of monthly polynya characteristics  

To define realistic values for the long-term surface wind and frazil ice production over the SLIP, we have used the 
monthly mean climatology of surface air temperatures, dewpoints, and geostrophic winds of Crutcher and Meserve (1970) 
and the monthly mean climatology of cloudiness of Berliand and Strokina (1980). Using the parameterization (7) (see 
Fichefet and Morales Maqueda 1997), bulk surface heat fluxes were computed at the geographical location closest to the 
SLIP in the data. The parameterization of the shortwave radiation absorbed at the surface was that of Shine and Crane 
(1984). This parameterization discriminates between clear sky and overcast conditions. Climatological values for the cloud 
optical thickness were taken from Chou et al. (1981). The open water albedo formulations were those of Briegleb and 
Ramanathan (1982) and Kondratyev (1969) for clear sky and cloud-covered conditions, respectively. Finally, the 
atmospheric longwave radiation absorbed at the surface was formulated according to Marshunova (1966). This 
parameterization describes the effective atmospheric emissivity, ea, as a linear function of cloudiness and a nonlinear 

function of surface water vapor pressure. Following Overland and Colony (1994), the surface wind, Ua, was computed 

from the geostrophic wind, Ug, by reducing |Ug| by factor of 0.8 and assuming that the angle between Ua and Ug is +32° 

(i.e., Ug is located to the right of Ua). The climatological Ua turns out to be a persistent northeasterly wind throughout winter 

and spring, with month to month variations in wind direction of at most ±6°. The frazil ice and consolidated new ice 
velocities were obtained from the surface wind by using (8) and (9). In all simulations the frazil ice collection thickness was 
H = 0.1 m. 

For each month during which the estimated frazil ice production rate, F, was positive, the polynya model was integrated 
to equilibrium, starting at time t = t0 = 0, from a state in which no polynya existed. Table 1  shows the simulated 

equilibrium areal coverage of the SLIP, Ae, together with the observed median polynya areas, Aobs, and their 90% 

confidence intervals estimated by Stringer and Groves (1991). As indicated by these observational confidence intervals, the 
natural variability of the monthly polynya area can be quite large. Nevertheless, the equilibrium extent of the modeled SLIP 
agrees reasonably well with the values of the observed monthly areal range, except for May, when the observed polynya is 
much larger than the modeled one, and December, a month for which no data are provided. Cavalieri and Martin (1994) 
presented satellite-derived estimates of the annual-mean open water area south of St. Lawrence Island that hover above 5000 

km2, which is larger than the 3550 km2 average that can be obtained from Table 1 . However, Cavalieri and Martin 
include all open water sources, such as open water holes in the consolidated new ice region (Pease 1987) and leads 
downwind of the polynya, in their calculations, which may explain the discrepancy.

Applying the flux balance principle, the equilibrium polynya area is given by

 

where Def is the “effective”  cross-sectional length of the island (i.e., the maximum separation between coastline points in 

a direction perpendicular to the consolidated new ice motion; Fig. 9a ). Clearly, for fixed |U|, F, and H, the equilibrium 
area of the polynya will change, if the wind direction changes, because the effective cross section will be modified. In the 
case of St. Lawrence Island, Def can be as large as 150 km, when U is directed to the south or south-southwest, and as 

small as 60 km if U is directed to the east-southeast. However, because variations in the direction of the climatological 
winds are small, the range of values of Def in our simulations is less than 10 km, with Def being on average 116 km. 

From inspection of Table 1 , it is apparent that Ae is better correlated with air temperatures than with wind velocity. 

Colder (warmer) weather produces smaller (larger) polynyas, whereas stronger (weaker) winds do not lead to a significant 
increase (decrease) in polynya size. This is in agreement with results presented by Pease (1987) and, as pointed out by this 
author, is due to the fact that decreasing (increasing) air temperatures increase (decrease) F, but not |U|, while increasing 
(decreasing) wind speeds increase (decrease) both F and |U|. Table 1  also shows the minimum and maximum values of 



the equilibrium timescale, t  given by (30) and (31) (  = 0.01), respectively. These timescales correspond to the case of an 

idealized island whose coastline is a line segment of length Def oriented perpendicularly to U. The simulated equilibrium 

timescales fall within the interval (tmin , tmax ). The simulated time for reaching equilibrium becomes closer to the lower 

(upper) bound of t  as the alongshore adjustment length scale, Rae (also derived for the idealized island), decreases 

(increases) relative to Def, in agreement with the analysis presented in section 3b(1). 

Figures 9a–d  display the simulated SLIP in February, April, the first half of May, and December, respectively, at the 
moment when its extent attains a value of 99% of the equilibrium area. During the winter months, the SLIP almost splits into 
two individual sub-polynyas, which are approximately separated by the 171° meridian (line Y = 0 in the maps). As mentioned 
above, this is an observed feature of the SLIP. The existence of a SLIP-east and a SLIP-west in our model is the result of 
the polynya edge response to the island geometry. Because the offshore dimension of the polynya is of the order of 20 km or 
less, the polynya edge closely follows the coastline, and therefore, its width virtually shrinks to zero when the coastal 
boundary is aligned with U. However, we note that the simulated polynyas are markedly slanted to the west when compared 
with most observed ones. The reason for this is that, while the synoptic winds that drive polynya events are normally from 
the N or NNE [see Figs. 7 and 11 of Pease (1987) and Fig. 3 of Lynch et al. (1997)], the Crutcher and Meserve (1970) 
climatological winds tend to be northeasterly oriented. In April and May, a single polynya exists, which is considerably wider 
than the winter ones. As the distance between the polynya edge and the coast increases, so too does the alongshore 
adjustment length scale. Consequently, the polynya edge does not reproduce the fine structure of the coastline geometry. As 
pointed out by Kozo et al. (1990), the polynya edge adopts the shape of an airport windsock (Figs. 9b and 9c ), tracking 
the predominant direction of the geostrophic wind. However, these spring polynyas expand so far to the south that the 
hypothesis of uniform wind and air temperature over the polynya area is invalid. The consolidated new ice will find higher air 
temperatures as it advances southward. This, combined with increased absorption of solar radiation, will lead to ice melting 
in the consolidated new ice region, even if frazil ice is still produced farther north. In addition, at this time of the year, the 
equilibrium timescale is significantly longer than a typical synoptic period of, say, 5 days. As a consequence, the real polynya 
will normally fail to reach equilibrium, which is in fact what has been observed (Kozo et al. 1990). This can explain the large 
discrepancy between our polynya area estimate for early May and that of Stringer and Groves (1991).

Figure 10  presents a plot of the polynya area versus time during a polynya opening event for each of the months under 
study. Since, for the duration of a polynya event, the frazil ice production, F, is assumed to be spatially uniform and 

constant in time, the net annual ice production, P (in m3 of ice), is simply given by the integral of F times the area of the 
polynya over one year. Here, we are neglecting the fact that ice production will also be taking place in the consolidated new 
ice region. If we assume, as Schumacher et al. (1983) do, that the SLIP is open for about one-third of the time during 
periods when it can exist, and that a typical polynya event lasts for five days, then there will be a polynya opening twice per 
month from December to April and just one opening in May. Under these assumptions, the net volume of ice produced per 

month can be computed. The ice production amounts to 5–5.5 km3 month−1 from December to February and decays to 0.4 

km3 of ice in May, with a net annual ice production of 22 km3. This figure falls short from the estimate of 27–32 km3 of 
ice per year cited by Cavalieri and Martin (1994). However, if heat fluxes over open water in the consolidated new ice region 
are assumed to be commensurate with those over the polynya and if the concentration of consolidated new ice oscillates 
between 70% and 50%, values of P comparable to those presented by Cavalieri and Martin (1994) can be retrieved. 

b. Simulation of three SLIP opening events during February  

Pease (1987) investigated two polynya openings that took place in February 1982 and February 1983. In 1982, the 
polynya started opening around 13 February, and observations over the polynya were carried out on 15 February. In 1983, 
the polynya opened from about 16 February, and measurements were made on 18 February. In both cases, atmospheric 
conditions were fairly constant during the opening process. Since the observations were in both cases performed about two 
days after the SLIP started to form, the polynya had probably reached equilibrium at that time.

In our simulation of these two polynya events, the net surface heat flux was derived as in Pease (1987). In particular, 

surface latent heat fluxes were neglected and upwelling longwave radiation was taken as 301 W m−2. Table 2  lists the 
forcing parameters, together with the equilibrium timescales, alongshore length scales, and equilibrium polynya areas. In 
both years, measured wind speeds were larger and air temperatures colder than the climatological values. Therefore, frazil 
ice production rates were higher than those quoted in Table 1 . In spite of this, the simulated polynya areas in these two 
cases turn out to be larger than the area of the February polynya derived from the climatological forcing. The increase in Ae 

found here is due to the larger effective cross-sectional length of the island, which results from the fact that the wind 
directions in the two case studies are significantly different from the climatological one. In February 1982, the wind was 
from the NNW and, in February 1983, it was from the NNE (Figs. 11a and 11b ). In contrast, the climatological wind is 
from the NE, and since St. Lawrence Island offers a larger effective cross-sectional length to more northerly oriented 
winds, the value of Def is 30–40 km larger in these experiments than in that of section 4a. The opening timescales ( 1 

day) and offshore widths ( 10–20 km) of the simulated SLIP agree well with the estimates derived by Pease (1987) from 
NOAA Advanced Very High Resolution Radiometer images and aircraft observations, and the shape of the polynya edge and 
of the consolidated new ice–first-year ice regions shown in Fig. 11  are in qualitative agreement with contemporaneous 
satellite observations [see Fig. 3 of Walter (1989)]. In Fig. 11a , the relative velocity u − U is such that, when the polynya 
begins to expand, some sections of the polynya edge turn out to be regions of frazil ice divergence. As explained in section 
3b(2), temporary leads form in the presence of these features. The location of the coastal regions that induce lead formation 
at the polynya edge are indicated by the thick arrows. However, the leads have closed well before day 2 of the integration. 



A second case study is provided by an opening event in February 1992, which has been investigated by Liu et al. (1997). 
By using wavelet analysis techniques, these authors tracked the evolution of the polynya and of the consolidated new ice 
region from 21 to 27 February. This event has also been studied by Lynch et al. (1997) with an atmosphere–sea ice coupled 
model. National Centers for Environmental Prediction and European Center for Medium-Range Weather Forecasts analysis 
for that period show that the geostrophic wind was from the NNE. In accordance with the assumption adopted in this study 
that both the pack ice and the consolidated new ice move at an angle of 28° to the right of the surface wind (Overland and 
Colony 1994), we would have expected the ice drift to be approximately aligned with the geostrophic wind. This is not the 
case. In the leftmost panel of Fig. 12 , we can see the trajectory of an ice floe that remained close to the consolidated 
new ice region during the entire period of observation. The trajectory is directed toward the south or south-southwest and 
the boundary between the first-year ice and the consolidated new ice regions is oriented in the north–south direction. We 
conclude therefore that, during this particular opening event, the ice drifted approximately in the direction of the surface 
wind. This behavior is at odds with the results of Kozo et al. (1990), who showed a good correlation between geostrophic 
wind direction and polynya orientation during mid–late March 1988. The origin of this discrepancy could be related to 
differences in the oceanic circulation during during the two periods. Lynch et al. (1997) showed that, despite the weakness 
of the oceanic circulation south of the St. Lawrence Island, the introduction of ocean currents in their simulations tended to 
increase the southward component of the ice drift during February 1992. A second possible reason for the discrepancy is 
that the ice internal stresses are more likely to play an important role in the ice drift in February, when the pack is compact, 
than in mid–late March, when the ice concentration has decreased and the ice will then tend to move in a regime closer to 
free drift.

In our simulation of this SLIP event we have assumed that both frazil ice and consolidated new ice motions are aligned 
with the surface wind, and we have deduced the wind direction from the motion of the ice floe displayed in Fig. 12 . That 
U and u are parallel does not mean that the model becomes one-dimensional. Frazil ice and consolidated new ice drifts will 
still change direction in response to variations in the wind and, therefore, will not, in general, be described by rectilinear 
trajectories (Fig. 13c ). The surface wind speed and air temperatures are the same as in Liu et al. (1997). Table 3  lists 
the forcing parameters and the simulated polynya characteristics at 2400 UTC 21, 24, and 27 February 1992. Surface heat 

fluxes were computed as in Pease (1987). The values of tmin , tmax , Def, Roe, and Ae are the values that would be obtained 

if the polynya equations were integrated to equilibrium under a constant atmospheric forcing, equal to that stated for the 
corresponding day. Since the polynya is not in equilibrium, the actual polynya offshore length scale, Ro, and area, A, can be 

significantly different from Roe and Ae. It is assumed that the polynya started opening at 0000 UTC 21 February. Increasing 

wind speeds lead to an increase in the ice export off the polynya over the first six days of integration. At the same time, the 
frazil ice production steadily decreases because of a warming of the weather. The polynya size, therefore, increases until it 

attains a maximum area of 3900 km2 at about 2400 UTC 26 February. On 27 February, air temperatures dropped by 
around 6° C and the polynya edge receded toward the coast.

Figures 13a–d  show the modeled polynya for the same dates as in Fig. 12  and Table 3 . The model successfully 
tracks the evolution of the boundary between the consolidated new ice and the first-year ice, but the active polynya region 
extends all along the coast of the island, whereas the observations suggest that this region was confined to the west of the 
171° meridian (line Y = 0 in the maps). Liu et al. (1997) attribute the absence of Langmuir streak formation on the eastern 
part of the island to irregularities of the wind patterns on that side of the coast. Walter (1989) also found that, on 18 
February 1983, frazil ice rows were located only west of 171.58°, with gray or gray/white young ice located to the east. 
This author shows that the topography of the island impacts on the atmospheric boundary layer over the SLIP, decreasing 
the wind speed and increasing the air temperature over the western part of the island. In order to model these effects, the 
hypothesis of uniform forcing fields should be abandoned. Finally, notice that Figs. 13c and 13d  show that a narrow 
lead, 15 km long and 1 km in width, has formed on the eastern boundary of the polynya as a result of the wind veering 
on 27 February [see section 3b(2)]. The lead closes in 9 h. 

5. Summary and concluding remarks  

We have presented a theory for the evolution of a two-dimensional wind-driven polynya. The theory is based on the ice 
flux balance principle of Lebedev (1968) and Pease (1987) in which the polynya evolution is governed by the balance 
between frazil ice and consolidated new ice fluxes at the polynya edge. To introduce time-dependence, the one-dimensional 
model of Ou (1988), which incorporates the effect of finite frazil ice drift, has been extended to two dimensions. 

We have applied the model to the study of idealized polynyas in the presence of infinite- and finite-length straight 
coastlines under uniform time-varying atmospheric forcing. Four parameters have been found to play an important role in 
controlling the polynya behavior. The first two parameters are the consolidated new ice and the frazil ice timescales, tce and 

tfe, respectively. The timescale tce determines the time that the polynya would take to grow frazil ice of thickness equal to 

the collection thickness. The timescale tfe is the time required for frazil ice to cross the steady-state polynya width. The 

timescale for the polynya to reach the steady state increases (decreases) with increasing tce (tfe). The other two parameters 

are the asymptotic polynya width, Roe, and the alongshore adjustment length scale, Rae: Roe is the steady-state polynya 

width, and Rae provides an estimate of the minimum length that a coastline feature, such as an embayment or a cape, must 

have in order that its shape is reproduced by the polynya edge. Polynya timescales and length scales are closely related. For 
example, the time taken for a polynya to open to a near-steady state on the lee side of an island will increase if Rae is large 

compared with the effective cross-sectional length of the island. 

The response of the modeled polynya to impulsive changes in wind direction presents two interesting and novel features. 



First, when frazil ice and consolidated new ice are allowed to drift in different directions (as will, in general, be the case), 
short-period swings in the location of the polynya edge can take place. This is due to the fact that frazil ice and consolidated 
new ice drifts are assumed to respond instantaneously to changes in wind direction (in reality, the ice motion may lag the 
wind by one hour or so; see Ou 1988), whereas it takes a finite amount of time for the frazil ice thickness at the polynya 
edge to adapt to the new forcing. Thus, an instantaneous flux imbalance can be created at the polynya edge, which will 
result in an initial shoreward (seaward) motion of the polynya boundary, even when the equilibrium polynya width is larger 
(smaller) than the initial one. A second feature, is that narrow subpolynyas, or leads, can be generated if the change in wind 
direction is such that sections of the original polynya edge become regions of frazil ice divergence. The possible creation of 
leadlike structures of this kind in real polynyas deserves to be investigated.

The model has been applied to the investigation of seasonal and mesoscale variability in the St. Lawrence Island polynya. 
The model captures some of the observed characteristics of this polynya. For example, the presence of two almost 
independent polynyas during winter is reproduced by the model, and has been shown to result from changes in the 
orientation of the coastline relative to the prevailing southwestward ice transport. It is nevertheless likely that east–west 
contrasts in the wind and air temperature fields also play a role in the existence of the double-polynya system. It has also 
been demonstrated that the equilibrium area of the polynya depends not only on the wind speed and air temperature but also 
on the effective cross-sectional length of the island for a given direction of the consolidated new ice drift.

The model neglects a number of physical processes that are important in simulating the polynya behavior. We have 
assumed that the atmospheric forcing is spatially uniform. This is not the case for polynyas with large alongshore 
dimensions, such as the SLIP, because orographic features can modify the wind and air temperature fields over the polynya 
(Walter 1989). Also, for springtime polynyas, which extend far offshore, spatial variations in the surface heat budget will 
occur over the region, thereby creating nonuniform forcing. We have also neglected polynya–ocean interactions. We have 
assumed that the oceanic sensible heat flux into the polynya is negligible. This is obviously not acceptable if the polynya 
forms in a region of oceanic upwelling (Darby et al. 1994; Fichefet and Goosse 1999), or when a polynya extends beyond 
the continental shelf region. The effects of ocean currents on the ice drift have also been neglected. Ocean currents can 
introduce distortions in the simulated area and shape of the polynya (Lynch et al. 1997). In addition, baroclinic ocean 
currents can be enhanced by brine rejection during polynya opening events (Schumacher et al. 1983). Another simplification 
is that the frazil ice collection thickness is prescribed. This is an important shortcoming because, as a result, the effective ice 
export of the polynya is externally assigned, rather than determined by the model. To address this problem, parameterizations 
of H along the lines of those described by Martin and Kauffman (1981) and Bauer and Martin (1983) could be used. 
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APPENDIX  

6. Key to Most Relevant Variables and Subscripts  

a. Variables:  

A  Area of the polynya [section 3b(1)] 

Def  Effective cross-sectional length of the island (section 4a)

 

F  Frazil ice production rate 



H  Frazil ice collection thickness at the polynya edge 

h  Frazil ice thickness 

hB  Frazil ice thickness at the origin of a frazil ice trajectory

 

hC  Frazil ice thickness at the polynya edge

 

nC  Horizontal unit vector perpendicular to the polynya edge

 

p = 1 − hC/H  Normalized collection-minus-frazil ice thickness [section 3a(1)]

 

qa  Air specific humidity

 

qe = 1 − V/  Notation [section 3a(2)]

 

qs  Surface specific humidity

 

R (X, Y)  Position vector of a point on the polynya edge 

r (x, y)  Position vector along a frazil ice trajectory 

Rae  Alongshore adjustment length scale (21)

 

Roe  Offshore adjustment length scale (19)

 

Ta  Air temperature

 

Tw  Water temperature

 

t  Time 

tc  Critical time for response to an impulsive change in the forcing (14)

 

tce = Roe/U  Consolidated new ice adjustment timescale [section 3a(1)]

 

tfe = Roe/u  Frazil ice adjustment timescale [section 3a(1)]

 

t  Equilibrium timescale (15)

 

U (U, V)  Consolidated new ice velocity at the polynya edge 

Ua  Wind speed

 

u (u, )  Frazil ice velocity 

uC (uC, C)  Frazil ice velocity at the polynya edge

 

 Consolidated new ice turning angle (section 2) 

θ  Frazil ice turning angle (section 2) 

 Angle between U and uC [section 3a(3)]

 

 Angle between U for t < t0 and u − U for t  t0 [section 3b(2)]

 



b. Subscripts:  

0  Initial value at time t = t0

 

c  Value at time t = tc

 

e  Value at steady state 

L  Value on the line L± [section 3b(1)]

 

l  Value on the line l+ [section 3b(1)]

 

M  Value on the line M± [section 3b(1)]

 

r  Value in the rotated reference frame Sr [section 3b(1)]

 

s  Value in the reference frame Ss that moves with the ice pack [section 3b(1)]

 

 Value at time t = t

 

Tables  

Table 1. Simulated area of the SLIP using climatological forcing: Ua and a are surface wind speed and direction (from N), 

respectively;Ta is surface air temperature; F is frazil ice production rate; T  is the polynya equilibrium timescale (  = 0.01); tmin  

and tmax  are given in (30) and (31), respectively; tsim  is the t  simulated by the model; Def is the effective cross-sectional 

length of the island (section 4a); Roe and Rae are the offshore and alongshore adjustment length scales (19 and 21), respectively; 

and Ae is the predicted equilibrium polynya area (33) and Aobs is the observed median value (after Stringer and Groves 1991). 

 
Click on thumbnail for full-sized image. 

Table 2. Simulated area of the SLIP in February 1982/1983; Ua and a are surface wind speed and direction (from N), 

respectively. Ta is surface air temperature. F is frazil ice production rate. t  is the polynya equilibrium timescale (  = 0.01); tmin  

and tmax  are given in (30) and (31), respectively; tsim  is the t  simulated by the model. Def is the effective cross-sectional 

length of the island (section 4a). Roe and Rae are the offshore and alongshore adjustment length scales (19 and 21), respectively. 

Ae is the predicted equilibrium polynya area (33). 
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Table 3. Simulated area of the SLIP in February 1992: Ua and a are surface wind speed and direction (from N), respectively. Ta 

is surface air temperature. F is frazil ice production rate. t  is the polynya equilibrium timescale (  = 0.01); tmin  and tmax  are 

given in (30) and (31), respectively. Def is the effective cross-sectional length of the island (section 4a). Roe and Ro are the 

offshore adjustment length scale (19) and the simulated offshore length scale, respectively. Ae and A are the predicted equilibrium 

polynya area (33) and the simulated polynya area, respectively.
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Figures  
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Fig. 1. Diagrams illustrating the polynya model in the one-dimensional (a) and two-dimensional cases (b). The frazil ice growth 
rate is F in the area of nearly open water adjacent to the coast, the polynya (i), and is transported with velocity u toward the 
polynya edge. The thickness of frazil ice is denoted by h. Frazil ice arriving at the polynya edge, C(R, t) = constant, piles up to a 
thickness H and moves into the consolidated new ice region (ii) with velocity U. In (b), the dotted lines represent frazil ice 
trajectories.
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Fig. 2. Infinite straight coastline. At t = t0 = 0 the polynya was closed. For t0  t the ice drift regime becomes that depicted by 

the thick (U) and thin (u) vectors. The dashed lines are the polynya edge characteristics. At t = t  = 20.2 h (  = 0.01), the polynya 

has virtually reached its steady state. The solid lines show the location of the polynya edge at t = t /4, t = t /2, and t = ∞. The 

length scales Roe ( 19 km) and Rae ( 12 km) are also shown. 
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Fig. 3. Infinite straight coastline. Evolution of the polynya width (X) vs time (t) when  = 0°. In (a), for t < t0 = 0 the ice drift is 

as represented by the thick (U0) and thin (u0) leftmost arrows (in arbitrary units). The angle between the normal to the coastline 

and U0 is β = −90°. At t = t0, the ice drift regime changes to U1 and u1, with U1 perpendicular to the coast. When the polynya 

reaches equilibrium, the ice drift becomes U2 = U0 and u2 = u0. The long-dashed, solid, and short-dashed lines depict the 

evolution of X for each drift regime. The circles indicate the location of the polynya edge at t = tc. Plots (b), (c), (d), and (e) are as 

(a), except β = −39°, −13°, +13°, and +39°, respectively. 

 
Click on thumbnail for full-sized image. 

Fig. 4. As in Fig. 3  except  = +28°. 
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Fig. 5. Finite-length straight coastline. At t = t0 = 0 the polynya was closed. For t0  t the ice drift becomes that depicted by 

the thick (U) and thin (u) arrows. Solutions are shown for coastlines 20 (left) and 40 (right) km long. The dashed lines are the 
polynya edge characteristics given by (25) and (26). In both polynyas, Roe  19 km and Rae  12 km. For the left (right) polynya, 

t  (  = 0.01) is 30.2 h (25.4 h). The solid lines show the polynya edge at t = t /4, t = t /2, and t = ∞. 
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Fig. 6. Contours of (t  − t0)/tce (  = 0.01) as a function of D/Rae and tfe/tce (=U/u) using the empirical formula t  − t0 = AAe/Ae

[tfe + ln( −1)(tce − tfe)] + ABe/Ae[ln( −1)tce]. 
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Fig. 7. Finite-length straight coastline. In (a), for t < t0 = 0 the ice drift is as represented by the thick (U0) and thin (u0) arrows 

on the left. At t = t0 = 0, the ice drift regime changes to that represented by the thick (U1) and thin (u1) arrows on the right. In (b), 

at t = 24 h the ice drift is impulsively reverted to the “old”  regime (U2 = U0, u2 = u0). The dashed, dash–dotted, and solid lines in 

panel a (panel b) correspond to the location of the polynya edge at t = 0, 1, and 12 h (t = 24, 26, and 36 h), respectively. 
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Fig. 8. Geographical location of St. Lawrence Island.
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Fig. 9. Simulated SLIP (hatched area) at a time, t (counted from the moment the polynya started to open), when the polynya has 
reached 99% of its steady-state area in Feb (a), Apr (b), May (c), and Dec (d). Also shown is the consolidated new ice region 
(nonhatched area). Within the polynya, the dashed lines are frazil ice trajectories drawn about 10 km apart. The thick (thin) vector 
represents the consolidated new ice (frazil ice) velocity. The small blank areas adjacent to the coast correspond to landfast ice. 
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Fig. 10. Area of the SLIP vs time during an opening event under climatological forcing typical of Jan (J), Feb (F), Mar (Mr), Apr 
(A), May (My), and Dec (D).
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Fig. 11. As in Fig. 10  except for short timescale atmospheric conditions on 13–15 Feb 1982 (a) and on 16–18 Feb 1983 (b). 
The state of the polynya is shown two days after it started to open. (a) The thick arrows indicate the location of coastal regions 
that induce lead formation at the polynya edge.
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Fig. 12. Diagram of the observed evolution of the SLIP from 21 to 27 Feb 1992. The solid lines depict the boundary between the 
first-year ice and the consolidated new ice regions. The closed contours on the leftmost panel correspond to the successive 
positions of a particular ice floe. In the three panels on the right, the active polynya region is area I, the consolidated new ice 
regions is area II, and the first-year pack is area III. Redrawn from Liu et al. (1997). 
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Fig. 13. As in Fig. 10 , except for short timescale atmospheric conditions on 21–27 Feb 1992. The polynya started opening at 
0000 UTC on 21 Feb (t = t0 = 0 d, 0 h). The area within the rectangle approximately coincides with the Synthetic Aperture Radar 

(SAR) imagery domain shown in Fig. 13 . Changes in wind direction and speed occurred at t = 3 d, 0 h and at t = 6 d, 0 h. Frazil 
ice trajectories in (c) are not straight lines because the frazil ice arriving at the polynya edge has crossed the polynya under two 
different wind regimes, namely before and after t = 6 d, 0 h. 
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