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ABSTRACT

An integral balance is developed for steady fluid flows relating dissipation in 
volumes bounded by isosurfaces of a tracer (quasi-conserved quantity) and 
solid boundaries to the covariance of the tracer value and surface fluxes 
across the boundaries. The balance is used to estimate upper bounds for 
vertical eddy diffusion coefficients for temperature and salinity in various 
volumes of the ocean. The vertical temperature diffusivity is calculated to be 

small, O(0.1 × 10−4 m2 s−1), except for the warmest and coldest volumes of 
the ocean. The vertical salinity diffusivity for the volume that makes up most 

of the deep ocean is estimated to be O(1 × 10−4 m2 s−1). Sources of error in 
these calculations are discussed, and the sensitivity to errors in the surface 
flux data is evaluated.

The dissipation integral is also applied to demonstrate some related results 
concerning extrema and homogenization. The Prandtl–Batchelor theorem is a 
special case of one of these results. As a consequence of these results, if 
turbulent transfer is downgradient and there are no internal sources or sinks, a 
necessary (but not sufficient) condition for a climatological tracer distribution 
to be in a steady state is the absence of internal extrema. The climatological 
salinity distribution does not appear to violate this condition.

1. Introduction  

Advection can be eliminated from volume integrals of fluid conservation laws in certain special cases, leading to increased 
understanding of the structure of fluid flows. Schneider (1977) used this approach in a two-dimensional case to make some 
deductions about the distribution of angular momentum in the atmosphere. It was shown there that the advection terms of 
the equation for conservation of angular momentum in a steady, axially symmetric atmospheric flow, integrated over a 
region bounded by a surface of constant angular momentum, is zero. This result was then used to show that, if the fluxes of 
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angular momentum by transient and small-scale motions are downgradient, then there can be no maxima or minima of 
angular momentum in the interior of a steady zonally averaged atmosphere. Maxima and minima can form only adjacent to 
solid boundaries. This result generalized the result of Hide (1969) that westerlies could not form at the equator under similar 
restrictions.

Another example of a useful result that can be obtained by choosing a region in which the volume integrated advective 
tendency disappears arises in steady two-dimensional flows. Because there is no advection across streamlines, the tendency 
due to advection integrated over an area bounded by a streamline is zero. As described by Pedlosky (1996), this result is 
used in two dimensions in the derivation of the Prandtl–Batchelor theorem to infer homogenization of a conserved quantity 
inside a bounding streamline, in the limit of vanishing downgradient diffusion (Batchelor 1956). 

Walin (1982) showed how the vanishing of the advective fluxes of temperature across volumes bounded by surfaces of 
constant temperature and solid boundaries could be used to infer an effective vertical diffusivity at these surfaces. Niiler and 
Stevenson (1982) used similar arguments to infer properties of the ocean circulation from the surface heat flux. These 
studies extended inferences from the vanishing of volume integrated advective fluxes to three dimensions. Zhang and Talley 
(1998) have used the same technique to estimate diapycnal and diathermal diffusivities for various regions of the World 
Ocean. Speer (1997) applied a version of Walin’s technique (also described by Garrett et al. 1995), which allows advective 
fluxes across internal surfaces to be specified, to estimate diapycnal diffusivities for the North Atlantic.

Here the volume integrated approach is extended to higher moments. An integral balance is developed for steady flows 
that relates the dissipation of a tracer (quasi-conserved quantity), integrated over a volume bounded by isosurfaces of the 
tracer and solid boundaries, to the covariance of the tracer and the tracer flux integrated over the surface of the volume. 

Several applications of the dissipation integral are presented. Estimates of the dissipation rates for temperature and salinity 
variance are obtained for different layers of the ocean bounded by isothermal and isohaline surfaces, respectively, using 
surface fluxes and observations of the time mean temperature and salinity. Assuming that the turbulent transfer can be 
represented by vertical eddy diffusion, the dissipation rates and internal tracer structure of the ocean are used to estimate 
upper bounds for the diffusion coefficients. Next, a tracer homogenization result resembling the Prandtl–Batchelor theorem 
is proved when turbulent transfer is assumed to be downgradient for finite amplitude diffusivity and three dimensions. Also, 
results are developed relating extrema of a tracer to internal sources or boundary fluxes. As an application of these results, 
the climatological salinity distribution is examined and found to be consistent with the conditions of steady state, 
downgradient turbulent transfer, and no internal sources or sinks.

2. Derivation of the dissipation integral  

An incompressible fluid will be assumed for simplicity, but analogous relationships can be derived in the compressible 
case.

1) In a steady state, the integrated advection of a conserved quantity T by the time mean motions over a volume 
bounded by a surface of constant time mean T and solid boundaries is zero. In the absence of internal sources and sinks, the 
net turbulent flux across the surface of this volume must then also be zero.

This result was derived and used by Schneider (1977) in the two-dimensional case and Niiler and Stevenson (1982) and 
Walin (1982) in three dimensions. The result follows from the steady-state conservation equation

v · T = Q = − · F + S.(1) 

Equation (1) represents a turbulent flow where ν is the three-dimensional time mean velocity field, T is a time mean scalar 
quantity, and the balance is steady state in the sense that the time means are not changing for sufficiently long averaging 
intervals. Additionally, the source term Q is taken to be composed of the convergence of a flux F of T due, for example, to 
transients and small-scale mixing plus other internal sources and sinks S. The specified sources and sinks will be considered 
in section 2d.

The incompressible fluid satisfies the mass continuity equation

· v = 0,(2) 

and the normal velocity vanishes at a solid boundary B, so

v · n = 0 on B,(3) 

where n is the outward directed unit vector normal to B. Equation (1) is integrated over volume V surrounded by surface 



C. The advection term on the lhs of (1) is rewritten as v · T = · (vT) − T · v, and the second term on the rhs of 
this relation is zero from (2). Denoting the volume integral by angle brackets, ‹v · T›  = ‹ · (vT)›. Applying Gauss’s 

divergence theorem gives ‹v · T›  = C (Tv · n) da. Then, using Gauss’s theorem on the flux divergence term, the 

volume integral of (1) with S = 0 is

 

The surface C is composed of solid surfaces B (at which the normal velocity is zero) and permeable (i.e., internal to the 
fluid) surfaces P so that C = B + P. A schematic of this configuration is shown in Fig. 1a . Integrating (2) over V,

 

since the normal velocity is locally zero on B. If the bounding surface C is now taken to be composed of internal surfaces 
P of constant T = T1 connecting solid boundaries B, then using (3) and (5)

 

Therefore, from (4) and (6),

 

The net advective flux across the boundary is zero because the normal velocities are zero at the solid boundaries B and 
because the net mass flux across the internal, constant T, boundary P is zero. Consequently, the net turbulent flux across 
the boundary C is also zero. The steady-state assumption additionally constrains the global integral of Q to be zero. 

2) Consider a volume V bounded by a surface P of constant T = T1 and solid surface B. The net flux into V across B is 

balanced by an equal net flux out of V across P. 

It follows directly from (7), by splitting the integral into the contributions from the two subsurfaces, that

 

3) The covariance of F with the gradient of T averaged over the same V can be determined from the distribution F and T 
at the solid boundaries.

Since T(v · T) = v · (T2/2) = (vT2/2), multiplying (1) with S = 0 by T and integrating over V gives

−‹T · F›  = 0.(9) 

Integrating (9) by parts,

0 = −‹T · F›  = −‹ · (TF)›  + ‹F · T›. 

Then



 

Finally, using (8), the relationship

 

is obtained. Equation (10) is the simplest form of the integral dissipation balance. It is a local generalization of a result 
found by Stern (1975) for the balance between dissipation (lhs) and production (rhs) of salinity variance over a full ocean 
basin and is used by Joyce (1980) for the balance between dissipation and production of thermal variance over the World 
Ocean.

If V is bounded by two surfaces of constant T, T1 and T2, and solid boundaries (see schematic in Fig. 1b ), then (10) 

may be applied to V1 bounded by T1 and B1, as well as to V2 bounded by T2 and B2 and the results subtracted, giving

 

4) General integral balance for arbitrary functions of T and specified forcing. 

The results above can be generalized to an arbitrary twice differentiable function of T, f(T), and also to include specified 
sources and sinks S. Multiplying (1) by f ′(T) and using f(T) = f ′(T) T, the equation

v · f(T) = −f ′(T) · F + f ′(T)S(12) 

is obtained. The integral of the lhs of (12) over volumes bounded by surfaces of constant T and solid boundaries 
disappears as before. The result analogous to (7) obtained from (1) with nonzero S is

 

while the generalization of (10) is

 

To obtain (10) from (14), f(T) = T2/2 and S = 0 are used.

 

3. Application to ocean diffusivities  

Estimates of the diffusivity of temperature and salinity using the dissipation method, based on (11), are presented in this 
section. The methodology is described in section 3a. Estimates of temperature diffusivity using observational datasets and 
the associated potential errors are discussed in section 3b. Salinity diffusivity estimates made using observations of the 
salinity distribution and surface fluxes from an atmospheric reanalysis are given in section 3c. 

a. Method  



The dissipation integral per unit volume between surfaces T1 and T2, defined as D  −‹F · T›/V, is found from (11) to 

be

 

The surface fluxes as well as the surface and interior distributions of T are needed to evaluate D. Evaluation of the 
quantity DV depends only on surface information. 

An approach similar to that of Stern (1977), Joyce (1980), and Walin (1982) is used to obtain estimates of “average”  
diffusion coefficients in the ocean. In order to apply this approach, it is assumed that turbulent fluxes result from vertical 
diffusion. Here, as in the prior studies, we take

 

where z is the vertical coordinate; κz is the diffusivity, effectively taken as a function of T since that is the dependence 

that will allow κz to be calculated using (17); and k  is the vertical unit vector. There are regions in the ocean where surfaces 

of constant T are nearly vertical, for example in high latitudes. In these regions the fluxes across the surfaces of constant T 
can be expected to be horizontal rather than vertical. The approach we use here, which has been used in prior estimates, 
does not account for this effect. As will be seen below, however, the estimate of κz obtained assuming (16) can be 

interpreted as an upper bound on the vertical diffusivity.

The flux normal to the ocean surface is denoted as −F · n = H so that positive H is directed into the ocean. Taking κz to 

be constant in the integration, an estimate for κz in the volume V bounded by constant T surfaces T1 and T2 is found by 

substitution in (11):

 

The quantity D can be considered to be more fundamental than κz since no assumption concerning the parameterization of 

F is involved in determining D. 

If the diffusive flux is taken to be three-dimensional and downgradient with positive diffusivity in each direction,

 

then (17) gives an estimate for the upper bound of the vertical diffusivity. The estimate made for three-dimensional 



diffusion using (11) and (18) is

 

The additional contribution to the vertical diffusivity from inclusion of the horizontal diffusion [shown in the square 
brackets in Eq. (17a)] is negative since the horizontal diffusivities are both positive, and the estimate from (17) is larger than 
the value that would be obtained if the horizontal diffusive fluxes were included.

The estimate (17) provides only a bulk average value of the vertical diffusivity. There is no information on its distribution 
within a layer. It is likely that larger diffusivities are appropriate for some parts of the layer, such as close to the surface or 
near topographic features, and smaller diffusivities for other parts, but these considerations are beyond the scope of this 
study.

Equations (15) and (17) are used to diagnose D and κz for temperature and salinity in the ocean. Compressibility effects 

are neglected in taking temperature to be a conservative tracer. Annual mean tracer fields and surface fluxes are used, 
ignoring the correlation between the transient components of F and T in the surface integrals of (15) and (17). 

The computational procedure, which determines the values of D and κz between T1 and T2 and the volumes to which 

these values apply, begins by determining an “outer”  volume, the volume enclosed by the surfaces T = T2 and B2 shown 

schematically in Fig. 1b . An outer volume is defined to be composed of volume elements with T > T2 that are touching 

each other along sides, edges, or corners. There can be more that one physically distinct outer volume found, with the 
number depending on the structure of T and the value of T2. The outer surface B2 is given by those areas where the outer 

volume reaches the surface of the ocean. Then an “inner”  volume is defined to be all volume elements in the outer volume 
that have T > T1, and the inner surface B1 is taken as those points of the inner volume that occur at the ocean surface. The 

volume integrals for the determination of V in (15) and the denominator of the rhs of (17) are carried out over the volume 
elements that are in the outer volume, but not the inner volume (crosshatched area in Fig. 1b ). The surface integrals are 
carried out over the outer and inner surfaces. The computations are performed for each physically distinct outer volume that 
is identified. The above procedure is appropriate only for T1 > T2, with outer volumes surrounding surface maxima of T. 

Consequently, the whole procedure is repeated, but for outer and inner volumes surrounding surface T minima, T2 > T1. 

There is a situation introduced by the finite vertical resolution of the data that is given special treatment. When vertical 
shears, |dT/dz|, are large enough, a vertical column that goes through the outer volume can have no volume elements that are 
not in the inner volume, and therefore these columns will not contribute to the volume integrals. It is important to represent 
the contribution of these columns in the volume integral in the denominator of the rhs of (17) because the contribution 

behaves like (dT/dz)2dz, which in the continuous case increases as the magnitude of the vertical derivative increases and in 
the case of a discontinuity becomes infinite. When this unresolved high shear situation is encountered, the thickness Δz of 
the partial volume element that contributes to the integral is estimated by Δz = |(T2 − T1)/(dT/dz)|, and the contribution to the 

volume integral is taken to be proportional to |(dT/dz)(T2 − T1)|. 

The dissipation method is closely related to the flux method, based on (8), described by Walin (1982) and Niiler and 
Stevenson (1982), and also employed by Zhang and Talley (1998). However, because (17) provides an upper bound estimate 
for the vertical diffusivity, the diffusivity method provides additional information.

For verification purposes, the method was applied to output from a multicentury integration with a low-resolution, non-
flux-corrected, coupled atmosphere–ocean GCM. Although the model is drifting away from the observed climate, 
temperature and salinity diffusivities were found to be larger than, but in some volumes close to, the background diffusivities 

of 0.1 × 10−4 m2 s−1. 

b. Temperature  



1) DIFFUSIVITY ESTIMATE 

Dissipation and diffusivity of temperature were calculated using observed ocean temperatures from Levitus (1982) and 
annual-mean net surface heat fluxes from Oberhuber (1988). Heat fluxes for the Arctic and south of 65°S are not included 
in this dataset and were set to zero for the computations. Missing data elsewhere in the Southern Hemisphere were filled in 

by linear interpolation. The global mean heat flux of 3.22 W m−2, found by averaging over the World Ocean between 65°S 
and 60°N, was removed uniformly over this region since the method assumes zero global mean surface flux. A temperature 
increment of |T2 − T1| = 1°C was used. Results using surfaces of constant potential temperature to define the various 

volumes were indistinguishable from those using temperature.

The temperature diffusivity is shown in Fig. 2a . There are four physically distinct maximum surface temperature 
volumes (completely surrounded by cooler water and boundaries): the western Pacific warm pool for T > 29°C, the Indian 
Ocean for T > 28°C, the eastern Pacific for T > 28°C, and the tropical Atlantic for T > 28°C. Points with the same symbol 
will be referred to as “branches.”  Starting from the high temperature end and proceeding toward lower temperatures along 
the western Pacific branch, deeper and more extensive volumes of the ocean are involved. The Indian and western Pacific 
branches merge via the Indonesian throughflow for T between 27° and 28°C. The eastern Pacific warm pool branch merges 
with the rest of the Pacific between 26° and 27°C. Along the curve that starts in the tropical Atlantic, the volumes grow to 
encompass the whole deep Atlantic basin as temperature decreases. The Atlantic and Pacific volumes merge into a single 
near-global volume between 19° and 20°C. The surface heat flux data used in the diffusivity calculation involves physically 
distinct surface regions for temperatures greater than those where the branches merge. Therefore, errors in the forcing data 
for the separate temperature maximum branches do not affect the diffusivity estimates in the other branches except at lower 
temperatures after the branches merge.

There are three physically distinct minimum surface temperature volumes (completely surrounded by warmer water and 
boundaries), all originating from surface waters between −2° and −1°C. These are found in the Southern Ocean, Weddell 
Sea, and Arctic Ocean. Diffusivities are not shown for the Arctic and Weddell Sea branches since the Oberhuber 
climatology does not give data for those regions. However, due to the geometry of the computational procedure, errors in 
the surface flux data in the surface temperature maximum branches do not affect the results in the surface minimum 
branches and vice versa. Then, two volumes may be in close physical contact, but independent in the sense of the heat flux 
data used in the diffusivity calculation. The deep ocean between 1° and 2°C and the Antarctic water between 0° and 1°C are 
independent in this sense.

The diffusivities along the surface maximum branches generally decrease with decreasing temperature and are less than 

0.1 × 10−4 m2 s−1 for T < 20°C in the western Pacific branch. Atlantic and Pacific values are very similar in similar 
temperature ranges except for smaller diffusivities in the warmest Atlantic water. This correspondence, using forcing and 
structure data from nonoverlapping surface areas and volumes, could indicate that these values are physically meaningful. 
On the other hand, negative values are found for the deep water (1°C < T < 4°C), which could be an indication of errors in 
the forcing data. The diffusivities for the warm pool maxima, at the far right of each surface maximum branch, represent 
geographically localized areas and associated volumes close to the surface. These values exhibit wide variation, with the 

largest value of more than 4 × 10−4 m2 s−1 in the western Pacific warm pool, an intermediate value in the Indian Ocean, and 

values near 0.3 × 10−4 m2 s−1 in the eastern Pacific warm pool and tropical Atlantic. This large variation could be due to 
actual differences in the physical process that control the mixing or could represent errors in the forcing data.

The dissipation from (15) is shown in Fig. 3 . The dissipation tends to be largest in the 24°–26°C volumes and to 
decrease for both warmer and cooler temperatures. The peak in dissipation for the 24°–26°C temperature range is possibly 
associated with the large positive contribution from the heat fluxes in the eastern equatorial Atlantic and Pacific. One would 
expect the dissipation to increase with temperature since the surface to volume ratio decreases with increasing temperature, 
producing a stronger local mechanical forcing from the atmospheric winds per unit volume as temperature increases. The 
decrease in dissipation for temperatures in the 26°–30°C range may be due to weaker surface mechanical forcing, as 

expressed by the smaller friction velocity [(τ/ρ)1/2, not shown], over the warmest ocean waters than over water near 25°C. 
The mean temperature dissipation for the entire volume of the ocean, obtained from (10) with the integral taken globally and 

divided by total volume, is 3.3 × 10−9 °C2 s−1. The volume associated with each of the diffusivities is also shown in Fig. 3 
 for reference. The eastern Pacific volumes are small compared to the others, with fluxes over only a small local surface 

contributing to the dissipation integral. This small size makes the eastern Pacific results less certain.

2) ERROR ESTIMATE 

An error estimate was made by calculating the diffusivity with the adjusted net heat flux from da Silva et al. (1995). This 
second diffusivity estimate is shown in Fig. 2b . The heat flux climatology is defined at all ocean surface points in this 

data. The global mean of −2.0 W m−2 was removed. Above 10°C, both forcing datasets give similar results, with the values 



obtained from the da Silva heat flux about 80%–90% of the values found with the Oberhuber heat flux. In contrast to results 
shown in Fig. 2a , the diffusivities from the da Silva forcing are positive at all temperatures on the western Pacific branch 

and become relatively large (0.2 × 10−4 m2 s−1 between 2° and 3°C; 0.56 × 10−4 m2 s−1 between 1° and 2°C) for the deep 
waters on this branch. The diffusivities for the Southern Ocean and Weddell Sea volumes, however, turn out to be negative 

using the da Silva heat flux, and those found in the Arctic, while positive, are large (2–7 × 10−4 m2 s−1). 

The procedure of removing the global mean uniformly from the heat flux data is obviously very crude. It is likely that 
errors are large in some regions and small in others. As pointed out above, the diffusivities from volumes on different 
branches are independent of the forcing data on other branches. Changing the forcing data in one of these independent 
volumes does not affect the values found for the diffusivities in the other volumes. For example, changing the heat flux in 
the Arctic region will not affect the diffusivities along the western Pacific or tropical Atlantic branches. If the global mean is 
not removed from the forcing data, the resulting diffusivities will be more realistic for the regions with smaller heat flux 
errors and more unrealistic for the regions with larger errors. Then, calculating the diffusivities using the heat flux data 
without removing the global mean gives another estimate of the sensitivity of the results to errors in the heat flux data. 

Using the Oberhuber heat flux without removing the global mean gives diffusivities 10%–20% larger at warm 
temperatures than for the Oberhuber heat flux with the global mean removed. Minimum values on the western Pacific 

branch are 0.14 × 10−4 m2 s−1 in the 16°–20°C classes when the global mean is not removed, about a factor of 2 increase 
in this temperature range. The diffusivities are most sensitive for water colder then 4°C along the western Pacific branch, 

with large values found when the global mean in not removed (1.0, 1.9, and 3.9 × 10−4 m2 s−1 for the 3°–4°, 2°–3°, and 
1°–2° temperature ranges, respectively). On the other hand, the western Pacific branch diffusivities calculated using the da 
Silva heat flux without removing the global mean are slightly reduced at the warmest temperatures relative to those found 
with the global mean removed and are reduced proportionately more at cooler temperatures, becoming small but negative for 

T < 14°C and <−1 × 10−4 m2 s−1 for T < 3°C. The Antarctic, Weddell, and Arctic branches (latter two not shown) are not 
sensitive to the removal of the global mean with the da Silva heat flux.

It is important to note, however, that the sum of the component heat fluxes of da Silva et al. (1995) gives an 

approximately 30 W m−2 global-mean net heat flux into the ocean that is removed uniformly for dynamical consistency in 
their net heat flux estimate. This large global mean value is presumably in error and is due to much larger regional errors. 
The effect of the correction by da Silva et al. (1995) is to reduce the diffusivities by about a factor of 2 for T > 25°C and to 
produce increasingly larger reductions for the colder waters.

The greatest sensitivity to errors in the heat flux data is found for the deep water between 1° and 4°C. We cannot 

determine with any confidence whether the value of the diffusivity appropriate for this region is closer to 0 or to 1 × 10−4 

m2 s−1. Other results, including small diffusivity between 5° and 25°C seem less sensitive. The values for the warmest 
waters are the least sensitive, but the adjustments made by da Silva et al. (1995) to the heat flux in these regions for 
dynamical consistency are larger than the sum of the component fluxes, and as noted above the uncertainty in the 
diffusivities in these regions is at least a factor of 2.

3) COMPARISON WITH RESULTS FROM OTHER INVESTIGATIONS 

The Indian Ocean T > 28°C value of 1.3–1.5 (×10−4 m−2 s−1), depending on the forcing dataset and whether or not the 

global mean is removed, is somewhat smaller than the value of 2.2 m−2 s−1 found by Zhang and Talley (1998) for the 
diathermal diffusivity of the 28°C surface in the Indian Ocean using the da Silva et al. (1995) heat flux and the flux method. 
Although the diapycnal diffusivity calculated by Zhang and Talley (1998) involves different volumes of the ocean than the 
diathermal diffusivity calculated here, the values for roughly comparable volumes seem to be smaller here (e.g., values a 
factor of 2–3 smaller here in the tropical eastern Pacific surface water, the low-latitude Pacific/Indian and the low-latitude 
Atlantic). Speer (1997) estimated the minimum diapycnal diffusivity for North Atlantic water near 20°C to be larger than 1 × 

10−4 m2 s−1. This is more than eight times the value we obtain as a maximum for the diathermal diffusivity of all water 
between 20° and 21°C in the Atlantic. The dissipation integral approach, using surface fluxes and a presumed steady-state 
three-dimensional tracer distribution, seems to produce results closer to the smaller values obtained from direct 
microstructure measurements in the ocean interior (Ledwell et al. 1993; Toole et al. 1994; Kunze and Sanford 1996) than 
from the flux method.

The diffusivity shown in Fig. 2  in the upper ocean is similar to that chosen by Bryan and Lewis (1979) for their ocean 

model. They used a value of 0.3 × 10−4 m2 s−1 in the upper ocean based on tritium estimates of Rooth and Östlund (1972). 

The range of potential deep ocean values found here is large. The value of 1.3 × 10−4 m2 s−1 chosen by Bryan and Lewis 
(1979) based on the estimates of Munk (1966) lies within this range. 



c. Salinity  

Salinity dissipation and diffusivity are evaluated using observed ocean salinity (Levitus 1982) and salinity fluxes 
(proportional to evaporation minus precipitation, or E − P), constructed from latent heat fluxes and precipitation rates from 
the NCEP (National Centers for Environmental Prediction) reanalysis (Kalnay et al. 1996) climatology. The NCEP reanalysis 
was used for this calculation because the data produced from direct observations provide insufficient coverage over the 
Southern Hemisphere oceans to apply the formulas globally. The surface forcing does not include runoff.

The salinity diffusivity results are shown in Fig. 4a , and the associated volumes are shown in Fig. 4b . The 
diffusivities were calculated for salinity intervals of 1 ppt. The global mean salinity flux corresponding to a net excess of 

evaporation over precipitation of 0.4 mm day−1 was removed uniformly. In contrast to the temperature diffusivity 
calculations, the salinity diffusivity results were not sensitive to this procedure. The number of separate branches is larger 
than the number of branches in Fig. 2  because there are more disconnected surface maxima and minima for salinity than 
was the case for temperature. Values for very small volumes are not shown in Fig. 4 . 

As in the temperature diffusivity calculations, the volumes are divided into two classes: those associated with surface 
salinity maxima and those associated with surface minima. The surface maximum branches begin at the far right of the Fig. 
4a  with salty regions in the South Atlantic, North Atlantic, Arabian Sea, South Pacific, and North Pacific. These 
branches are all related to each other, combining as indicated, and eventually all merge into a single volume that makes up the 
bulk of the deep World Ocean (North Atlantic branch at 34–35 psu). Only the North Atlantic branch diffusivities are affected 
by errors in the forcing for the other branches.

All of the other volumes are associated with surface salinity minima (i.e., points at the left end of the branches). 
Interconnections between the low salinity branches are not strong. With the exception of the Antarctic and western 
Pacific/Indonesia branches, the low-salinity branches begin in regions of large river runoff that are not correctly represented 
in the forcing data. However, errors in the forcing for the low salinity branches do not affect the results in the high salinity 
branches. In particular, the neglect of river runoff leads to errors in the salinity flux forcing only in the low salinity branches, 
due to the association of low surface salinity and high river runoff, and does not affect the results in the high salinity 
branches. It may have been more realistic to distribute the global mean salinity flux imbalance over the surface areas of the 
minimum volumes rather than uniformly over the whole ocean surface.

The diffusivities along the surface maximum branches shown in Fig. 4  range from 0.4 to 1.7 (×10−4 m−2 s−1). 
Magnitudes appear to be larger than those for temperature diffusivity in roughly corresponding volumes. The diffusivity for 

the deep ocean with salinity 34–35 psu is 0.78 × 10−4 m2 s−1 when the global mean forcing is removed and 1.1 × 10−4 m2 

s−1 when the global mean forcing is not removed, both of which are close to Munk’s (1966) value for the deep ocean. This 
result depends primarily on precipitation and evaporation generated from 6-h simulations made with an atmospheric GCM 
initialized with observations of pressure, temperature, humidity, and wind. Spinup of the hydrological cycle is known to be a 
severe problems in this type of simulation; therefore, there is significant uncertainty in the details of the forcing for the 
salinity diffusivities. This uncertainty is mitigated, however, by the lack of sensitivity of the diffusivity estimate and the 
independence of the deep ocean estimate from errors due to the neglect of runoff. Also, the precipitation and evaporation 
fields appear to be reasonably realistic when compared to independent climatologies or to proxy data such as the observed 
climatological cloud distribution. As a result, the estimate of the deep ocean salinity diffusivity is probably much less 
uncertain than the estimate of the deep ocean temperature diffusivity. A conservative estimate of the range in which the 

actual value of the salinity diffusivity probably falls in the deep ocean volume is then between 0.4 × 10−4 and 1.6 × 10−4 m2 

s−1. 

Diffusivities along the surface salinity minimum branches are small, especially in those volumes where runoff should be 
important. Inclusion of runoff would raise these values, but we have not made quantitative estimates of this effect.

Parameterizations of vertical diffusion of salt and heat for ocean GCMs, such as those included in the GFDL MOM model 
(Pacanowski 1996), use the same depth-dependent vertical diffusivity for both temperature and salinity. It has been shown 
by de Szoeke (1998) that equality of the turbulent diffusivities of temperature and salinity would follow from the assumption 
of the principle of non-negative dissipation of composite tracer variances, as applied to density. Given the uncertainties in the 
forcing data and the sensitivity of the temperature diffusivity estimates for the deep ocean to errors in the heat flux forcing, 
our estimates are not inconsistent with taking the same diffusivity for both tracers.

4. Results concerning extrema and homogenization  

Some results are developed concerning extrema in and homogenization of the distribution of a tracer T, assuming a steady 
state and downgradient turbulent diffusion. The Prandtl–Batchelor Theorem is a special case of the first of these results. 



First consider the situation when there are no internal source or sinks of T. 

1) Homogenization: If there is a volume V bounded by a surface of constant T = T1 and insulating solid boundaries, then 

T  T1 everywhere inside V. 

It follows directly from (10), or equivalently (14) with f(T) = T2/2 and S = 0, that, if there is a volume V completely 
enclosed by a surface of constant T = T1, then

‹F · T›  = 0.(19) 

The diffusive flux is assumed to be uniformly down gradient with respect to T so that (18) holds with the κ positive 
functions of position. Then

 

in V. But (19) can only be satisfied if T = 0 everywhere in V. Then T is a constant in V and therefore equal to T1. If V is 

bounded by a surface of T = T1 and insulating solid boundaries, then (19) still follows from (10) because F = 0 at the 

boundary, and homogenization follows as before.

The Prandtl–Batchelor theorem is a special case of this result. Consider a two-dimensional flow with closed streamlines. 
If diffusion is sufficiently weak, T = T1 along a streamline. Then T is homogeneous in the region bounded by the streamline, 

proving the Prandtl–Batchelor theorem. The reason that the Prandtl–Batchelor theorem requires weak diffusion can be seen 
as follows. There is no advective flux across a streamline, so (7) applies inside a closed streamline C, and consequently there 
is no net diffusive flux across C. However, if diffusion is non-negligible, T need not be constant on C, and (10) does not 
hold. The major formal difference between the Prandtl–Batchelor theorem and the configuration considered here is that the 
Prandtl–Batchelor theorem is applied to closed streamlines as opposed to constant T surfaces. In practice, the Prandtl–
Batchelor theorem is a prognostic relationship since any bounded steady two-dimensional flow has closed streamlines. On 
the other hand, the results developed here are diagnostic since it is not necessary a priori that the T distribution contains the 
structure considered.

If there is a region enclosed by a surface of constant T = T1 and T is observed to vary in this region, then it may be 

inferred either that the flow is not in a steady state, that there are sources/sinks of T in the region, or that the diffusive flux is 
not monotonic in the gradient of T. 

2) Extrema: There can be no extrema of T in the interior or at an insulating solid boundary. 

If there is an extremum in the interior, then this extremum can be enclosed by a surface of constant T = T1. However, 

then T is homogeneous inside T1, as proven above, which contradicts the assertion that there is an extremum. If the 

extremum is assumed to occur at an insulating solid boundary, then it can be enclosed by a surface of constant T = T1 and 

the boundary, also contradicting the homogenization result.

3) Existence of sources: If there is an extremum of T in the interior, there must be a collocated source S, S > 0 for a 
maximum or S < 0 for a minimum. If there is a volume V of homogeneous T then S  0 in V. 

With the steady state and downgradient conditions satisfied, the assumption of nonzero S must be violated for an 
extremum to exist. If there is an interior extremum, it can be enclosed by a surface of constant T = T1. Then it follows from 

(14) with f  = T2/2, (13), and (20) that ‹(T − T1)S›  > 0. The T1 surface may be taken to enclose an arbitrarily small volume 

containing the extremum. Then a maximum (T > T1) can only occur where there is a source, S > 0, and a minimum, T < T1, 

can only occur where there is a sink, S < 0. A region of homogenous T must have S identically zero, and T cannot be 
homogenous where S is nonzero, since both advective and diffusive flux divergences vanish locally in a region of 
homogenous T, leaving nothing to balance S in (1). 

4) Extrema at a boundary: If there is an extremum of T on the boundary, there must be a collocated outward normal 
boundary flux F, F < 0 for a maximum or F > 0 for a minimum. If there is a volume V of homogeneous T adjacent to a 



boundary then F  0 where V meets that boundary. 

With the steady state and downgradient conditions satisfied, the assumption of nonzero F must be violated for an 
extremum to exist at the boundary. The extremum, can be enclosed by a surface of constant T = T1. Then it follows from 

(10) and (20) that B  (T − T1)(F · n) da < 0. The T1 surface may be taken to enclose an arbitrarily small volume 

containing the extremum. Then a maximum (T > T1) can only occur where the flux is inward, F · n < 0, and a minimum (T 

< T1) can only occur where the flux is outward F · n > 0. A region of homogenous T must have F · n identically zero if it 

is adjacent to the boundary, since diffusive fluxes vanish locally in a region of homogenous T, and normal advective fluxes 
are zero at the boundary, leaving nothing to locally balance a nonzero flux across the boundary.

5) The maximum and minimum values of T found in the interior also are found on the noninsulating boundary. All values 
of T found in the interior occur on the noninsulating boundary if that boundary forms a single connected surface. 

Suppose a homogenous volume with T = T1 is found in the interior and that this volume is “isolated”  (i.e., has an extreme 

value) in the sense that T < T1 in the surrounding volume. Then, as in 2) the homogeneous volume can be enclosed by a 

surface of constant T2 with T2 < T1 everywhere on the surface. But then T is homogeneous everywhere inside the enclosing 

volume with T = T2  T1, which is a contradiction. The analogous argument applies to a homogeneous volume surrounded 

by a volume T > T1, as well as when the homogeneous volume is adjacent to insulating boundaries. Then the homogeneous 

volume cannot be isolated in the interior or adjacent to insulating boundaries, and T = T1 somewhere on any enclosing 

surface. Taking the enclosing surface to be the physical boundaries of the fluid, the result that both the lowest and the 
highest interior values must occur at a boundary follows. This boundary must be noninsulating by the result of 4). If the 
noninsulating boundary forms a single connected surface, then all values of T found in the interior also occur on this surface 
by continuity.

If there are multiple disconnected noninsulating boundaries, then there can be nonextreme values of T found in the interior 
that do not occur on a noninsulating boundary. A simple example of this case is steady one-dimensional diffusion with 
different values of T specified at top and bottom boundaries. 

5. A weak inference about ocean structure  

Due to the long timescale for adjustment of the deep ocean (thousands of years) and the much shorter period of intensive 
observation of the deep ocean (tens of years), there is no guarantee that the deep ocean climatology obtained from the 
observations is in a steady state rather than a “rapidly”  changing (relative to the ocean’s adjustment time) transient state. 
However, it is usually assumed in climate modeling and in interpretation of paleoclimate data that today’s ocean is in an 
equilibrium steady state. Consequently, the deep oceans of coupled climate models are typically spun up for tens of 
thousands of simulated years in order to approach an equilibrium (e.g., Manabe et al. 1990; Bryan 1998). The results 
developed in section 4 can be applied to tracers in the ocean to determine whether their climatological distributions are 
broadly consistent with a steady state and downgradient turbulent diffusion. The appropriate averaging time for the 
climatology would be several decades, which is long compared to the internal dynamical timescales, such as those of waves 
and eddies, but short compared to the ocean adjustment time.

The climatological salinity from Levitus (1982) was searched for extrema. Since sources and sinks of salinity are thought 
to be negligible below the surface, then, if a subsurface extremum or isolated homogeneous volume is found or if the 
extreme values found in the interior are not found at the boundary, one of the assumptions of the extremum results of 
section 4, either steady-state or downgradient diffusion, must be violated. Similarly, if boundary extrema are not locally 
anticorrelated with outward boundary fluxes, then one of those assumptions must be violated. If interior extrema are not 
found and boundary extrema are appropriately correlated with boundary fluxes, then this is evidence that the ocean is 
consistent with a steady state and turbulent salinity transfer down the mean salinity gradient. The test was not carried out for 
temperature, since the dynamical constraint of gravitational stability will prevent the occurrence of interior density extrema 
even in a transient circulation, and density and temperature variations are closely related. Of course, salinity has a significant 
role in the density stratification, so salinity is not an ideal tracer for this test either.

Below the surface, the only pronounced salinity extremum is a maximum at about 770 m in the Atlantic along the coast of 
Spain, which is known to be due to the Mediterranean outflow (the Mediterranean is not connected to the Atlantic in our 
interpolation of the data). Other than that, only very weak extrema were found below the surface in regions that were close 
to connecting to surface values. At the surface, there are several pronounced maxima in the subtropics of each hemisphere, 
which all coincide with positive surface salinity flux in the reanalysis E − P data. There are also surface minima located in 
regions of negative E − P, including the tropical rain belt and the high latitudes of both hemispheres. Many surface minima 



are located near the coasts, where they are also associated with river outflow. Then there are no prominent interior extrema, 
and the maxima or minima at the boundaries are associated with positive or negative boundary salinity fluxes, respectively. 
We conclude that the climatological salinity distribution of the oceans is consistent with being in a steady-state balance 
between advection by the time mean flow and downgradient turbulent diffusion, with sources and sinks at the upper 
boundary and a deep boundary source in the Mediterranean outflow.

These extremum tests are necessary conditions for the structure to be in a steady state. They are, however, not sufficient. 
In other words, it is possible to generate cases with downgradient diffusion in which there are no internal extrema, and the 
boundary flux/tracer distribution correlation is negative, but in which the tracer distribution is not in a steady state. For 
example, any state is valid for the tracer and surface flux distributions as an initial condition for an ocean GCM, and the 
general initial condition that satisfies the extremum test will be transient.

6. Summary  

A relationship between volume integrated dissipation rate and the covariance between the turbulent tracer fluxes and tracer 
distribution along the boundaries was derived for volumes bounded by surfaces of constant tracer concentration. Assuming 
that the turbulent fluxes are represented by downgradient k theory gives an estimate of the upper bound for bulk vertical 
diffusivities in these volumes. The method does not provide any information on the distribution of the diffusivity within the 
volumes or on the processes responsible for the dissipation. The dissipation rates are more fundamental than the diffusivities 
in that they do not depend on assumptions about the spatial distribution of the diffusion coefficients.

Dissipation and diffusivity were estimated for temperature in the ocean, using the three-dimensional climatological 
temperature distribution and the net surface heat flux as input data. The dissipation per unit volume was found to be 
maximum between 24° and 26°C in both the Atlantic and Pacific/Indian Oceans. The diffusivity was found to be O(0.1 × 

10−4 m−2 s−1) for temperatures between 5° and 20°C, with larger values at warmer temperatures. In a test using two 
different heat flux analyses, the diffusivity above 5°C did not show large sensitivity to potential errors in the forcing data. 
However, the diffusivities at all temperatures were sensitive to adjustments of the magnitude required to remove the global 

mean (30 W m−2) from one of the heat flux datasets. Similar values of diffusivity were diagnosed for the Atlantic and 
Pacific/Indian Oceans between 19° and 27°C using independent data. This coincidence lends some confidence to these 
estimates. At colder temperatures, which include the bulk of the deep ocean, the estimated diffusivity was highly sensitive to 
small changes in the forcing data.

Estimates were also made for upper bounds for salinity diffusivity as a function of salinity. Evaporation minus 
precipitation from an atmospheric reanalysis was used for salinity flux forcing since areal coverage of observed data is 
insufficient. The contribution from runoff was not adequately addressed in these estimates. The salinity diffusivity for the 

deep ocean was found to be O(1.0 × 10−4 m−2 s−1). However, this estimate was not affected by the runoff problem and 
also appeared not to be highly sensitive to errors in the forcing. Therefore, this estimate is probably reasonably realistic. 

Assuming a steady state and downgradient diffusion, some results were developed concerning extrema in and 
homogenization of the distribution of a tracer T:

1. With no internal sources or sinks, there can be no extrema of T in the interior or at insulating boundaries. If a 
volume is bounded by a surface of constant T, then T must be homogenous everywhere inside that surface. 

2. If there is an interior extremum, then there must be a collocated source of the appropriate sign. Similarly, a 
boundary extremum must be collocated with a surface flux of the appropriate sign. If there is a homogenous region, 
there can be no source or sink in that region. A boundary adjacent to a homogenized volume must be insulating.

3. The extreme interior values of T will also be found at the noninsulating boundary, and all interior values of T will be 
found at the noninsulating boundary if this forms a single connected surface.

The Prandtl–Batchelor theorem can be obtained from (1) for two dimensions and in the limit of small diffusivity. 

The annual average salinity distribution of Levitus (1982) was examined for extrema. No significant (given the problems 
of spatial and temporal sampling) extrema were found in the interior. A subsurface maximum was found in the Atlantic near 
Spain associated with the Mediterranean outflow (in the interpolated salinity data the Mediterranean is not connected to the 
rest of the World Ocean). Also several extrema were found at the surface, with maxima or minima associated with surface 
salinity fluxes into or out of the ocean, respectively. The salinity distribution is then consistent with the assumptions a 
steady-state ocean in which turbulent transfer is downgradient with respect to the time mean salinity. However, it is also 
possible to construct transient salinity distributions that have no internal extrema, with downgradient turbulent transfer and 
no internal sources, so the lack of internal extrema is not sufficient to infer a steady state.
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Figures  
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Fig. 1. Schematic views of the regions discussed in the text. The steady flow is represented by the elliptical contours with 
arrows. The physical boundaries of the fluid are given by the bounding rectangles, with insulating boundaries surrounded by 
diagonal cross-hatching. The volume integrated over in Eq. (4) is shown by the horizontally cross-hatched region in (a), enclosed 
by the indicated parts of the solid boundary B and the surface P of constant T = T1. The surface flux F out of that region across 

noninsulating solid boundaries is also indicated. The horizontally cross-hatched region in (b) represents the volume integrated 
over in Eq. (11). The surfaces B1 and B2 indicate the areas over which the surface flux contributions are calculated. 
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Fig. 2. Vertical temperature diffusivity κz as a function of temperature found from (17) for 1°C intervals using Levitus (1982) 

temperature. The net surface heat flux is from (a) Oberhuber (1988) and (b) da Silva et al. (1995). The branches are labeled 
according to the location of extreme SST values, maxima for western Pacific, Indian, eastern Pacific, and tropical Atlantic Oceans, 
and minimum for the Southern Oceans. The lines connecting the data points represent some of the data dependencies of the 
layers with respect to the diffusivity calculation.
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Fig. 3. (a) Plot of D as a function of temperature as defined by (15) for the same volumes and surface flux as in Fig. 2  and (b) 
volumes as a function of temperature corresponding to the results in Figs. 2  and 3a . The Arctic and Weddell Sea volumes, 
for which there is no surface forcing data, are also shown.
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Fig. 4. (a) Vertical salinity diffusivity as a function of salinity found from (17) for 1-ppt intervals using NCEP reanalysis 
climatological precipitation minus evaporation and Levitus (1982) salinity. (b) Volume as a function of salinity corresponding to 
the results in Fig. 4a . The points and curves are labeled according to the location of surface extreme values. 
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