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ABSTRACT

A homogenization technique is used to study the change in the frequency of 
planetary Rossby waves that results from their interaction with a small-
scale two-dimensional topography. The frequency change is computed 
explicitly for a topography consisting of a random distribution of well-
separated cylindrical seamounts; it corresponds to a phase-speed increase 
(decrease) when the flat-bottom Rossby wave frequency is larger (smaller) 
than a typical topographic frequency. The topography is also shown to lead 
to a finite damping of the Rossby waves, even in the limit of infinitesimally 
small Ekman friction.

1. Introduction  

Recently, the widely studied effect of bottom topography on oceanic Rossby 
waves has received a great deal of attention. This renewed interest follows the 
observation of baroclinic Rossby waves by satellite altimeter, which indicated a 
significant influence of topographic features on wave propagation (Chelton and 
Schlax 1996). In particular, it has been suggested that topographic effects may 
cause the observed enhancement of the phase speed of the waves compared 
with that predicted by the simple, flat-bottom theory [although mean-flow 
effects have a primary importance; see Killworth et al. (1997)]. 

Recent studies have been devoted to slowly varying topography (Killworth and Blundell 1999), ridges (Tailleux and 
McWilliams 2000), as well as to more general situations (Reznik and Tsybaneva 1999; Bobrovich and Tsybanev 1999), and 
focused primarily on one-dimensional topographies. By contrast, two-dimensional topographies are considered in Vanneste 
(2000). This paper investigates (barotropic) quasigeostrophic motion over small-scale, periodic topography: using a multiple-
scale (or homogenization) technique, the large-scale motion is shown to evolve according to an averaged quasigeostrophic 
equation in which the effect of topography is represented by a time-convolution term. Although Vanneste (2000) 
concentrates mainly on the enhancement of dissipation that is caused by the small-scale topography, it is clear from the 
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averaged equation that topography affects wave propagation in a more complex way and, in particular, that it perturbs the 
frequency of planetary Rossby waves. The aim of the present note is to demonstrate this explicitly.

To this end, we investigate the impact of small-scale topography on Rossby wave propagation using a highly idealized 
model in which the topography consists of cylindrical seamounts separated by distances large compared to their radii. 
Admittedly, the model and asymptotic regime considered are not very realistic; however, they allow the rigorous derivation 
of simple analytical results in a problem whose general treatment is fairly difficult. Since the purpose of this note is mainly 
illustrative, further assumptions are made in order to achieve maximum simplicity: the model is barotropic and neglects 
viscous dissipation and large-scale variations of the topography. These assumptions can easily be relaxed; in particular, it 
would be straightforward to examine the effect of baroclinicity by applying our method to a multilayer model.

In the plethoric literature on topographic effects, a variety of asymptotic regimes have been investigated [see Reznik and 
Tsybaneva (1999) for a discussion]. Here, we consider a small-scale topography that is steep, that is, such that the 
associated potential-vorticity gradient is much larger than potential-vorticity gradient associated with the β effect. This 
assumption ensures that the topography has an effect on the large-scale flow of the same order as the β effect and thus 
modifies the Rossby wave dispersion relation at leading order (Vanneste 2000). In contrast, most earlier studies (Thomson 
1975; Prahalad and Sengupta 1986) assume a much shallower topography; this allows standard techniques for the study of 
waves in random media to be employed [see, e.g., Mysak (1978) and references therein] but only leads to small changes in 
the dispersion relation that affect wave propagation only for distances and times much longer than the wavelength and 
period. Notable exceptions are the studies of localization (Sengupta et al. 1992; Klyatskin 1996), as well as the recent papers 
by Reznik and Tsybaneva (1999) and Bobrovich and Tsybanev (1999). However, the high anisotropy of the (one-
dimensional) topography considered in these papers makes their theory and results markedly different from those presented 
here.

The plan of this note is as follows. In section 2, the dispersion relation for large-scale Rossby waves in the presence of 

topography is derived using a homogenization approach.1 The particular case of well-separated cylindrical seamounts is 
examined in section 3 where a dispersion relation valid for random distributions of seamounts is obtained perturbatively. The 
cases of seamounts with fixed height and with normally distributed heights is analyzed in detail in section 4. A similar 
qualitative conclusion is drawn in both cases: in addition to enhancing the dissipation of the Rossby waves, the topography 
induces a change in their frequency. In absolute value this change is a decrease (increase) when the flat-bottom, Rossby 
wave frequency is smaller (larger) than a suitably defined topographic frequency. Some remarks conclude the note in 
section 5. 

2. Homogenization and dispersion relation  

Under the quasigeostrophic scaling, the barotropic wave dynamics is governed by the linearized potential vorticity equation

 

in which  is the streamfunction, λ the inverse of the radius of deformation, H the ocean’s average depth, h the height of 
the bottom topography, and r the Ekman friction coefficient. In this equation, x1 and x2 are the usual zonal and meridional 

coordinates; the Jacobian ( , h) describing the topographic effect is conveniently written using the permutation symbol ij 

and an implicit summation.

The essential assumption we make is that the topography varies on a scale much smaller than the typical scale of the 
waves; formally we write

h = h( −1x) = h( ),   1,

 

where  = −1x is a fast spatial variable. The topography is taken as a periodic or random function of  with zero average: 
‹h›  = 0, for some suitable spatial and ensemble average ‹ · ›. We also suppose that h has no large-scale variation, although 
this restriction is easily relaxed.

We seek a solution of (2.1) in the form of a normal mode,

 = Re[ (x, )e−iωt],

 



where ω is the frequency. Following the homogenization procedure (Bensoussan et al. 1989), we perform the substitution 

xi
  −1

i
 + xi

 in (2.1) and expand  according to

 = (0) + (1) + 2 (2) + · · · .

 

This leads to a sequence of differential equations for the i. The first one, obtained at O( −2), is given by

 

where u = −iω + r and 2  = 
i i

. A solution is simply (0) = (0)(x); that is, the leading-order streamfunction is 

independent of the fast spatial variable. At order O( −1), one finds

 

Since this equation is linear and xi

(0) is independent of , its solution can be written

(1) = wi( ) xi

(0) + (x)(2.2)

 

for some undetermined (and irrelevant) function (x) and for wi, i = 1, 2, satisfying

 

and ‹wi›  = 0. At order O(1) a solvability condition must be imposed for the determination of (2); using (2.2), this 

condition is written as a function of (0) only as

 

This equation is the eigenvalue problem from which the frequency ω of the Rossby waves can be determined. It does not 

depend explicitly on the spatial coordinates, so that in an infinite domain solutions of the form (0)  exp(ik · x), for some 
wavevector k  = (k1, k2), can be introduced. This leads to the dispersion relation

 

where k = |k | and

 



is a symmetric 2 × 2 tensor. The first three terms of (2.4) are usual, but the fourth term is new. It results from the 
interaction between small-scale topography and large-scale flow and depends on ω through sij(ω). In principle, wi is first 

derived by solving (2.3), then sij(ω) is computed from (2.5) and substituted into (2.4) to provide an implicit equation for the 

frequency ω. 

In general (2.3) needs to be solved numerically and the dependence of wi on ω cannot be expressed in closed form; thus, 

the solution of (2.4) for ω must rely on an extensive iterative procedure that requires the solution of the partial differential 
equation (2.3) at each iteration. Analytical progress can nevertheless be made by considering topographies consisting of 
well-separated, isolated features. 

3. Random array of cylindrical seamounts  

Difficulties in solving (2.3) for wi arise because the coefficients in this equation depend on space through h. The problem 

is significantly simplified for a piecewise topography: in this case, wi is harmonic (i.e., 2 wi = 0) everywhere except on the 

boundaries of the topography where it satisfies a jump condition. However, even in the simplest settings, for example, a 
topography consisting of a periodic array of seamounts, it is not possible to derive exact analytical expressions for wi. [The 

amount of calculation involved is best illustrated by considering that involved in well-studied analogous problems, namely the 
determination of an effective conductivity in a periodic medium with cylindrical or spherical inclusions (e.g., Perrins et al. 
1979; Sang and Acrivos 1983), or the study of potential flows past an array of cylinders or spheres (Hasimoto 1959).] 

Here, since our objective is mainly to gain qualitative insight into the Rossby wave frequency change due to topography, 
we concentrate on an asymptotic limit that allows the derivation of simple analytical results. The limit we consider is that of 
well-separated seamounts; more precisely, we study cylindrical seamounts with radius a whose centers are separated by a 
distance d and we assume that a/d  1. In this limit, studied by Maxwell for the conductivity problem, the interaction 
between seamounts is neglected so that (2.3) is solved (analytically) for an isolated seamount in an infinite domain. 
Interestingly, the limit allows a simple treatment of the random case in which the radius of the seamounts a, their height Ht, 

and the position of their centers are distributed randomly.

The height field associated with an isolated cylindrical seamount centered at the origin is given in polar coordinates (ρ, θ) 
by

h = Ht[1 −  (ρ − a)],(3.1)
 

where ( · ) is the Heavisde function. (Of course, Ht can be negative in which case the topographic feature is a valley 

rather than a mountain—the analysis below encompasses this case, although for simplicity we systematically refer to the 
topographic features as seamounts). Introducing this expression into the first component of (2.3) and using polar 
coordinates leads to the following equations for w1:

 

where [ · ]+
−

 denotes the jump across ρ = a. The second component of (2.3) leads to similar equations for w2; however, 

w2 is most easily derived directly from w1 by rotating θ by π/2. A continuous solution of (3.2) is given by

 

where A and B are two arbitrary constants. Imposing the jump condition (3.3) provides



 

where ωt = fHt/(2H) is the frequency of the first free topographic mode supported by an isolated cylindrical seamount 

(Jansons and Johnson 1988). On the boundary of the topography ρ = a we therefore have

 

We now compute the tensor sij(ω) defined by (2.5), which appears in the dispersion relation (2.4). In the random context, 

the average is both a spatial and ensemble average. Assuming that the distribution of seamounts is homogeneous, for any 
field g the average is written as

 

where n is the density of seamounts, that is, the number of seamounts per unit area, and P(a, Ht) is the probability 

density function for the seamount radius and height. The field g in the right-hand side is that associated with a single 
seamount centered at the origin.

Using this average, along with (3.1) and (3.4), we find from (2.5),

 

As is to be expected from the isotropy of the problem, sij(ω) is proportional to the identity tensor δij. Since ωt does not 

depend on a, the expression for sij(ω) simplifies according to

 

where

 

In the above expression, C is a normalization constant, interpreted as the average area of the seamounts; α = nC is the area 
fraction occupied by the seamounts; and Q(Ht) is a probability density function such that Q(Ht) dHt is the probability for the 

elevation of an arbitrary point of the ocean floor to be between Ht and Ht + dHt. 

The assumption of well-separated seamounts adopted here implies that α  1 and that sij(ω) is valid to order O(α) only. 

Correction terms of order O(α2) appear if the interactions between seamounts are accounted for (cf. Jeffrey 1973). The 
dispersion relation (2.4) is therefore



 

It can be solved consistently by a regular perturbation expansion: introducing

ω = ω(0) + αω(1) + O(α2)

 

leads at leading order to

 

where ωr = Re(ω(0)) is the familiar (flat-bottom) Rossby wave frequency, and at order O(α) to

 

where δ = λ2r/(k2 + λ2) > 0. The real part of ω(1) represents the Rossby wave frequency shift induced by the small-scale 

topography, whereas the imaginary part of of ω(1) represents an additional damping. In the next section, we study these 
quantities for specific distributions of the seamount heights Q(Ht). 

4. Rossby wave frequency change  

a. Single-height seamounts  

Consider first an ensemble of seamounts with the same height Ht (but possibly various radii) so that (3.6) becomes

 

We are most interested in the limit of weak dissipation δ  1, in which case ω(1) is real. The relative change in the 
Rossby wave frequency is (α times)

 

From this expression, we conclude that, in absolute value, the topography leads to an increase (decrease) in the Rossby 
wave frequency if the flat-bottom frequency ωr is larger (smaller) than the topographic frequency ωt. Note that the change 

does not depend on the sign of ωt so that the sign of Ht is irrelevant. 

Equation (4.1) becomes invalid for |ωr|  |ωt| as a result of a resonance between Rossby and topographic waves. A 

nonzero damping δ  0 smoothes this resonance; it can easily be shown that the transition between the increase and 

decrease of the Rossby wave frequency then occurs for |ωr| = (ω2
t − δ

2)½. For nonzero but small δ [O(α1/2) or smaller], 

the expansion in powers of α for the computation of wi breaks down near resonance: this indicates that the interactions 

between the various seamounts become crucial when the Rossby and topographic waves are resonant. However, resonance 
appears in rather contrived situations and is absent when a distribution of seamount heights is considered.

Figures 1  and 2  illustrate the discussion above: they displays ωr and Re(ω(1)) as functions of the wavenumber k1. 

Without loss of generality, we have taken λ = β = 1 (corresponding to a choice of space and time units); we have also 
chosen k2 = 1. Figure 1  is obtained for a height of the topography such that ωt = 0.25. The results demonstrate the 



change in the sign of Re(ω(1)) that occurs for |ωr|  |ωt| = 0.25. They also show the resonance phenomenon that appears in 

the absence of Ekman friction, that is, for r = 0, and its smoothing for r  0, here for r = 0.15. Figure 2  is obtained for 

ωt = 0.5: this is greater than the maximum Rossby wave frequency, so there is no sign change for Re(ω(1)), which is 

always positive (corresponding to a slow down of the Rossby waves), and there is no resonance phenomenon. Note that the 

imaginary part of ω(1) (not shown) is always negative, as is expected for an additional damping. This can be established 
directly from (3.6) or more generally from (2.4)–(2.5) for arbitrary topographies (Vanneste 2000). 

b. Random height seamounts  

When the seamount heights are distributed according to a smooth probability density function Q(Ht), there is no isolated 

resonance, and the frequency change ω(1) is well defined even in the limit of vanishing Ekman damping r  0+. We focus 

on this case and obtain an expression for ω(1) by letting δ  0+ in (3.6).2 It is given by

 

where  denotes the Cauchy principal value. It is concluded from this expression that Im(ω(1)) < 0; that is, the small-
scale topography introduces a finite damping of the Rossby waves even though the Ekman friction for the large-scale flow is 
infinitesimal.

To illustrate formula (4.2), we consider a zero-mean Gaussian distribution for the seamount height; that is,

 

where σ > 0 is the root-mean-square of the height. Substituting this expression in (4.2), we find after some manipulations

 

where ω
σ
 = (2)½σf/(2H) > 0 is the frequency of topographic waves supported by seamounts with height (2)½σ and 

where the function I is defined as

 

The second expression for I(x) follows from the first one through a series of manipulations. It is useful for numerical 
purposes since the integral it contains is regular, and it can be used to write I(x) in terms of an error function with imaginary 



argument. A numerical calculation shows that I(x) has a unique zero at x0 = 0.924 · · · , with I(x) > 0 for x < x0 and I(x) < 

0 for x > x0. Therefore, in absolute value, the small-scale topography decreases (increases) the Rossby wave frequency if 

|ωr| < x0ωσ(|ωr| > x0ωσ). This conclusion is analogous to that reached for a single-height topography, but now the 

topographic frequency with which ωr should be compared is x0ωσ. An important point here is that, for the Gaussian 

distribution, x0 is an order-one quantity so that x0ωσ can genuinely be interpreted as a typical topographic frequency. 

Figures 3  and 4  show the real and imaginary parts of ω(1) calculated from (4.3) for λ = β = k2 = 1. In Fig. 3  

the topography is such that ω
σ
 = 0.25; it follows that the transition in the sign of the (real) frequency change occurs for ωr 

= 0.2355. The damping introduced by the topography is seen to be significant since |Im(ω(1))| > |Re(ω(1))| except for large 

values of k1. Note that the frequency shift Re(ω(1)) decreases rather slowly for large k1 (it is then proportional to 1/ωr). In 

Fig. 4 , ω
σ
 = 0.5; since |ωr| < x0|ω

σ
| for all k1, the frequency shift is always positive, corresponding to a slowdown of 

the Rossby wave.

5. Concluding remarks  

In this note, a homogenization technique is used to derive the dispersion relation for large-scale Rossby waves in the 
presence of a steep small-scale topography. The frequency change induced by topography is computed explicitly for 
sparsely distributed cylindrical seamounts. The assumption α  1 of a low density of seamounts allows the derivation of an 
analytical expression for the frequency change; it also implies that this change is small [O(α)]. It should be emphasized, 
however, that the homogenization procedure, and in particular the dispersion relation (2.4), can be employed for dense 
topographies, although in this case numerical computations similar to those used in different contexts (e.g., Sang and 
Acrivos 1983) will be necessary to evaluate sij(ω) from (2.5) and to compute the frequency. Importantly, a dense 

topography will lead to a frequency change of the same order as the flat-bottom Rossby wave frequency itself. 

Our approach relies on a spatial averaging procedure and thus centers on large-scale waves. Consequently, the 
topographic waves, whose (small) scale is fixed by that of the topography, do not appear explicitly in the dispersion relation 
(2.4)—only the coupling between topography, β effect and Ekman friction has an impact on the large scales. It is therefore 
not surprising that, even for dense topography, the large-scale restoring mechanism provided by the β effect (or equivalently 

by a large-scale topography) is required for the existence of waves.3 This contrasts our study with the work of Jansons and 
Johnson (1988) who focused on small-scale topographic modes supported by arrays of seamounts. 

The main qualitative result of our work concerns the sign of the Rossby wave frequency shift. A general rule appears to 
be that topography “pushes away”  the Rossby wave frequency from a typical topographic frequency; that is, the difference 
between the Rossby wave frequency and the topographic wave frequency increases as a consequence of the interaction 
between the two types of waves. This result, which is consistent with the general picture of linear wave interaction in stable 
systems (Craik 1985), is likely to hold in more general situations, for example, for baroclinic flows. Of course, the question 
of what the relevant topographic frequency is precisely for realistic topographies remains open. However, in realistic 
situations, it is likely that this topographic frequency is larger than the Rossby wave frequency and one may expect small-
scale topography to cause a slowdown of the waves’  phase speed, which should be contrasted with the phase speed 
increase observed by Chelton and Schlax (1996). 

Another result of this work is the finiteness of the damping induced by topography in the presence of infinitesimal Ekman 
friction. This phenomenon, which is associated with the possible resonance between topographic and Rossby waves, is 
analogous to the finite damping that appears for infinitesimally damped harmonic oscillators forced by a continuous 
spectrum of frequencies (Landau and Lifschitz 1976, sec. 26): topographic waves play the role of oscillators, while a 
Rossby wave provides the external forcing. The analogy has a twist, however, since in the Rossby wave case the forcing 
has a single frequency whereas the continuous frequency spectrum is associated with the oscillators because of the 
continuous distribution of seamount heights.

REFERENCES  

Bensoussan, A., J. L. Lions, and G. C. Papanicolaou, 1989: Asymptotic Analysis of Periodic Structures. Kluwer, 700 pp.. 

Bobrovich, A. V., and T. B. Tsybanev, 1999: Planetary waves in a stratified ocean of variable depth. Part 2: Continuously stratified ocean. 
J. Fluid Mech., 388, 147–169.. 



Chelton, D. B., and M. G. Schlax, 1996: Global observation of oceanic Rossby waves. Science, 272, 234–238.. 

Craik, A. D. D., 1985: Wave Interactions and Fluid Flows. Cambridge University Press, 322 pp.. 

Hasimoto, H., 1959: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array 
of spheres. J. Fluid Mech., 5, 317–328.. 

Jansons, K. M., and E. R. Johnson, 1988: Topographic Rossby waves above a random array of seamountains. J. Fluid Mech., 191, 373–
388..

Jeffrey, D. J., 1973: Conduction through a random suspension of spheres. Proc. Roy. Soc. London, 335A, 355–367.. 

Killworth, P. D., and J. R. Blundell, 1999: The effect of bottom topography on the speed of long extratropical planetary waves. J. Phys. 
Oceanogr, 29, 2689–2710.. 

— —, D. B. Chelton, and R. A. De Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. 
Oceanogr., 27, 1946–1966.. Find this article online 

Klyatskin, V. I., 1996: Localization of Rossby waves over a random cylindrical topography of the ocean bottom. Izv. Atmos. Ocean. 
Phys., 32, 757–765.. 

Landau, L. D., and E. M. Lifschitz, 1976: Mechanics. 3d ed. Pergamon, 224 pp.. 

Mysak, L. A., 1978: Wave propagation in random media, with oceanic applications. Rev. Geophys. Space Phys., 16, 233–261.. 

Perrins, W. T., D. R. McKenzie, and R. C. McPhedran, 1979: Transport properties of regular arrays of cylinders. Proc. Roy. Soc. London, 
369A, 207–225.. 

Prahalad, Y. S., and D. Sengupta, 1986: Barotropic planetary waves on a random bottom. Wave Motion, 8, 407–414.. 

Reznik, G. M., and T. B. Tsybaneva, 1999: Planetary waves in a stratified ocean of variable depth. Part 1: Two-layer model. J. Fluid 
Mech., 388, 115–145.. 

Sang, A. S., and A. Acrivos, 1983: The effective conductivity of a periodic array of spheres. Proc. Roy. Soc. London, 386A, 263–275.. 

Sengupta, D., L. I. Piterbarg, and G. M. Reznik, 1992: Localization of topographic Rossby waves over random relief. Dyn. Atmos. Oceans, 
17, 1–21.. 

Tailleux, R., and J. C. McWilliams, 2000: Acceleration, creation, and depletion of wind-driven, baroclinic Rossby waves over an ocean 
ridge. J. Phys. Oceanogr., in press.. 

Thomson, R. E., 1975: The propagation of planetary waves over random topography. J. Fluid Mech., 70, 267–285.. 

Vanneste, J., 2000: Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech., 407, 105–122.. 

Figures  

 
Click on thumbnail for full-sized image. 

Fig. 1. Leading-order Rossby wave frequency ωr (dotted curve) and frequency shift Re(ω(1)) (solid curves) as functions of k1 

for λ = β = k2 = 1 and ωt = 0.25. The Ekman friction coefficient is r = 0 (a) and 0.15 (b). 
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Fig. 2. Same as Fig. 1  but with ωt = 0.5. The Ekman friction coefficient is r = 0 (a) and 0.5 (b).
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Fig. 3. Leading-order Rossby wave frequency ωr (dotted curve), frequency shift Re(ω(1)) (solid curve a) and damping rate Im

(ω(1)) (solid curve b) as functions of k1 for λ = β = k2 = 1. The seamount heights are distributed according to a zero-mean 

Gaussian distribution with ω
σ
 = 0.25, and the limit of vanishingly small Ekman friction is considered. 
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Fig. 4. Same as Fig. 3  but with ω
σ
 = 0.5.

 

 

 

1 The dispersion relation could also be deduced from the more general result of Vanneste (2000).

 

2 The limiting process implicitly assumes that α   δ   1.
 

3 This appears clearly from the dispersion relation (2.4): if β is set to zero, then the solutions will have Re(ω) = 0 since sij(ω) becomes real.
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