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ABSTRACT

The statistics of a pair of Lagrangian particles offer, in principle, a possibility 
to estimate the structure functions of velocity, then the spatial 
autocorrelations, and finally the spatial spectra. On the basis of this strategy, 
the authors have developed an approach to estimate spatial spectra of 
mesoscale horizontal turbulence in the ocean using data of satellite-tracked 
drifters. The approach was applied to the data of 19 drifters deployed in the 
California Current System in 1993. It was found that the shape of both those 
spectra and this spectra calculated using drifterborne longitudinal and 
transverse correlations estimated by other authors are qualitatively in good 
accordance with theoretical predictions for 2D isotropic nondivergent 
turbulent flow. To relate obtained spectra to some physical parameters, 
kinematic stochastic models were developed that consisted of a population of 
randomly spaced, 2D axisymmetric eddies of a given shape. Numerical 
experiments with different eddy shapes showed that the model spectra obey a 
self-similarity; that is, at a given eddy shape they depend on the variance of 
stochastic process and a length scale of the eddy only. A model with the 
exponential eddy shape was found to fit drifterborne spectra better than other 
models. The best agreement between the drifterborne and model spectra was 
achieved when the radius of an exponentially shaped model eddy was taken 
equal to the internal Rossby radius.

1. Introduction  

During the last two decades, satellite-tracked drifters have become a powerful 
tool for observing the general ocean circulation and mesoscale motions at coherent structures like fronts, eddies, and jetlike 
currents. In particular, the basic transport processes in a flow are most explicitly described in the Lagrangian reference 
frame so that drifting buoy observations (which are quasi-Lagrangian) are well suited for describing the effects of eddy 
variability on mean transport (Davis 1991). These processes are most frequently summarized in terms of an eddy diffusivity, 
which is a parameterization of the effects of small-scale, unresolved motions on the large-scale, resolved flow. 

Applications of satellite-tracked drifter data to study transport processes are based on both one-particle statistics (Davis 
1987, 1991; Figueroa and Olson 1989; Grifa et al. 1995; Krauss and Boning 1987; Rossby et al. 1983; Swenson and Niiler 
1996) and particle-pair statistics (Davis 1985; Poulain and Niiler 1989). There is at least one issue in which the two-particle 
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statistics, that is, considering relative velocities and displacements of a pair of drifters, seems very attractive and promising. 
Namely, the particle pair approach offers a possibility to examine statistically the spatial structure of mesoscale ocean eddies, 
that is, the horizontal turbulence (Middleton and Garrett 1986). This paper is an attempt to determine spectra of horizontal 
turbulence in the ocean applying the particle pair approach to available satellite-tracked drifter data. 

2. Dataset  

We obtained the data for this study from a global dataset of ocean surface currents and temperature collected for the 
WOCE/TOGA Surface Velocity Program (Hansen and Poulain 1996). In accordance with the procedure to be applied, we 
were looking for an experiment in which as many as possible drifting buoys were deployed simultaneously at about the same 
position. We selected an experiment in which 19 drifters were deployed in the California Current System on 19 September 
1993, at about 37.5°N, 125°W. The drifters were drogued to 15-m depth. All buoy transmitters were programmed to 
transmit continuously for an initial 90-day period so that there were several observations within a day. In our analysis, we 
used the data obtained during this 90-day period only. The data consist of arrays of latitude and longitude at 6-h intervals 
obtained by means of a procedure of objective interpolation (like kriging) described by Hansen and Poulain (1996). 

Figure 1  is a summary plot of the 19 free-drifting buoy tracks used for the analysis. The tracks present a rather 
confusing picture. As can be seen “by eye,”  the drifters were generally involved in some rotational, eddylike motions with a 
typical diameter of 100–200 km. It is worth noting that the drifter tracks cover two separate regions (see a dashed line in 
Fig. 1 ) connected by a short section near 35.5°N, 127°W, where all tracks nearly overlay. To treat this sort of 
inhomogeneity we performed the calculations in the whole area as well as in two separate regions.

3. Method and data processing  

Suppose that we are able to observe a sufficiently large number of independent pairs of Lagrangian particles, provided that 
the particle separation covers a sufficiently wide range of length scales. In this case, we select all pairs with a given value of 
the separation, r (i.e., the distance between particles in a pair) and decompose particle velocity vectors v1 and v2 into 

longitudinal and transverse components, 1L, 2L and 1N, 2N, respectively (i.e., calculate projections of the velocity 

vectors on a separation vector r = r2 − r1 of each pair and the respective right-orthogonal vector). Here r1 and r2 are the 

radius vectors of the particles in a pair; indices 1 and 2 refer to the first and second particle, respectively. Then, calculating 
the mean square of differences 2L −  1L and 2N −  1N, we get estimates of longitudinal and transverse structure 

functions

 

where ‹ · · · ›r denotes the ensemble averaging over pairs with a given value of the separation r. Of course, doing this, 

we suggest that the 2D velocity field is a stationary homogeneous isotropic random field.

Using the structure functions, we can calculate longitudinal and transverse autocorrelation functions

 

where ′2 = (‹ ′2
L›  + ‹ ′2

N›)/2; ‹ ′2
L›  and ‹ ′2

N›  are variances of the longitudinal and transverse velocity components, 

respectively; and ‹ · · · ›  is the ensemble averaging over all particle pairs in the area under consideration. Note that in the 

case of isotropy ‹ ′2
L›  = ‹ ′2

N›  so that comparing empirical values of ‹ ′2
L›  and ‹ ′2

N›  we can judge how far from 

isotropy the velocity field is. Finally, the longitudinal and transverse one-dimensional two-sided spectra are calculated by 
taking the one-dimensional Foulrier transform of the autocorrelation functions BLL(r) and BNN(r)

 

where k1 is the cyclic wavenumber.
 

Strictly speaking, in addition to stationarity, homogeneity and isotropy of the velocity field, the above approach assumes a 
homogeneous distribution of drifters in the area under consideration. In reality, estimates of the structure functions may be 
biased due to preferred positions of the Lagrangian particles [so-called array bias in the Davis (1991) terminology]. For 
example, being deployed simultaneously in a small area of about 20 km × 20 km, a cluster of 19 drifters that we use for 



analysis was expanding with time due to turbulent diffusion. Therefore, estimating the mean values of longitudinal velocity 
and that of transverse velocity for the first and second particle separately and taking respective differences

 

we will usually get a positive value for Δ L(r) due to turbulent diffusion. It is also possible that we will get a nonzero 

value for Δ N, which implies that the drifters being located in a limited area are involved in a large-scale cyclonic 

(anticyclonic) rotation provided that Δ N > 0 (Δ N < 0). Nonzero values of Δ L and Δ N should be considered as array 

biases because they are expected to vanish when drifters are homogeneously distributed everywhere in a homogeneous 
isotropic velocity field.

To eliminate (or at least reduce) the effect of array biases on estimates of the structure functions, we use modified 
formulas instead of (1):

 

Similarly, the longitudinal and transverse variances in (2) are estimated as

 

where

 

Here n(r) is the number of particle pairs with separation r, and N is the total number of pairs. 

Using data of 19 drifters (Fig. 1 ), we produced 60 estimates of structure functions at r = 10, 20, 30, · · · , 600 km, 
or at ri = 10i km, i = 1, 2, · · · , 60, so that intervals of r to provide averaging were defined as ri − 5 km < r < ri + 5 km. 

Then, these estimates were smoothed by a plain three-point filter i = 0.5Di + 0.25(Di−1 + Di+1) so that actually we obtain 

30 independent estimates of the structure functions at space lags 20i km, i = 1, 2, · · · , 30. 

The data we analyze were taken from the California Current region in which the flow is far from homogeneity and 
stationarity. In principle, this may distort considerably results of the calculations. To address the distorting effect of 
inhomogeneity and nonstationarity we have carried out the calculations in two different regions, separated by a dashed line in 
Fig. 1 , as well as in the whole area. 

Estimates of DLL(r), DNN(r), Δ L(r), ‹ ′2
L›r/‹

′2
N›r, and n(r) are presented in Fig. 2 . In the whole area and the 

northern region, DLL(r) grows with r more or less monotonically, approaching respective value of ′2 (horizontal lines in 

Fig. 2 ) at r  400 km: DNN(r) grows faster than DLL(r) at small lags so that it exceeds ′2 at r  100 and then 

decreases slowly, approaching ′2 from above at r  400 km. Such a behavior of structure functions is typical for turbulent 
flows (Tennekes and Lumley 1972; Monin and Yaglom 1975). At larger lags r > 400 km both DLL(r) and DNN(r) decrease 

with r, and we do not see any physical reason for it except for inhomogeneity of the velocity field at large scales and the 

lack of data. Note that the behavior of Δ L(r) and ‹ ′2
L›r/‹

′2
N›r are quite expected and reasonable: Δ L(r) > 0 (expansion 

of the drifter cluster due to turbulent diffusion), while estimates of ‹ ′2
L›r/‹

′2
N›r in general are not far from unity so that 

the mean ratio ‹ ′2
L›/‹ ′2

N›  is 1.15 in the whole area and 1.19 in the northern region. 

In the southern region, the behavior of structure function at r < 250 km in general is similar to that of the whole area and 
the northern region at r < 400 km. However, at r > 250 km DLL(r) exhibits unexpected sudden growth, which is 

accompanied with sudden increase of |Δ L(r)| and, therefore, may be interpreted as a result of inhomoheneity of the flow. 

Note that in this case ‹ ′2
L›/‹ ′2

N›  = 1.47 so that the isotropy assumption is questionable here. 

Because any dependable information about the behavior of structure functions at large space lags is not available, we will 



take constant values for DLL(r) and DNN(r) at r > 400 km (the whole area and the northern region) and r > 250 km (the 

southern region). These asymptotic values are shown in Fig. 2  by horizontal lines. Note that in the case of the southern 
region, the asymptotic value is just the mean value of both DLL(r) and DNN(r) in a range 190 km < r < 250 km and does not 

coincide with calculated velocity variance (in contrast to the whole area and northern region cases).

Figure 3  presents estimates of correlation functions BLL(r) and BNN(r) calculated using the structure functions taken 

from Fig. 2 . To make the analysis procedure more convincing we added to our data the longitudinal and transverse 
autocorrelations obtained by Poulain and Niiler (1989) using data of two clusters of drifters released in the California Current 
System in 1985 and 1986 approximately at 32° and 36°N, as well as those of two clusters of drifters deployed in the North 
Atlantic (Krauss et al. 1990). Despite the fact that estimates of BLL(r) and BNN(r) by Poulain and Niiler (1989) and Krauss et 

al. (1990) were obtained using an approach somewhat different from ours [following Middleton and Garrett (1986), the 
authors did not calculate the structure function to arrive at the Eilerian autocorrelation] the results are quite comparable. 

To calculate power spectra, we added zeros to the autocorrelations shown in Fig. 3  at large lags as far as r = 600 km 
(to increase resolution in wavenumbers) and then made “standard”  Fourier transform with the Hanning lag weighting 
function (Bendat and Piersol 1971). The spectra are presented in Fig 5 . 

4. Interpretation of empirical estimates of spatial correlations and spectra  

a. General description  

All empirical BLL(r) curves as well as BNN(r) curves have generally the same shape: Here BLL(r) decreases monotonically 

vanishing at large r; BNN(r) decreases faster than BLL(r) at small r, becomes negative at an intermediate range of r, and then 

approaches zero from below at large r. Such behavior of BLL(r) and BNN(r) curves is typical for turbulent flows (e.g., 

Tennekess and Lamley 1972) and can be explained using next the two expressions. First, in the case of isotropy, the 
correlation tensor Bjk(r) has the form (Monin and Yaglom 1975)

 

where δjk = 1 at j = k and δjk = 0 at j  k. Second, in terms of the correlation tensor, the zero divergence condition has 

the form

 

where repeated indices imply the summation. In view of (7), condition (8) can be rewritten as

 

in the 3D case (Monin and Yaglom 1975) and

 

in the 2D case (Middleton and Garrett 1986). Integrating (9) and (10) yields

 

Note that the 2D field of ocean currents, strictly speaking, is not a zero-divergence field because ux + y = −wz  0. 

Therefore, using (10′) to explain the shape of drifterborne spatial correlations and spectra, we should keep in mind that this 
is an approximation only.



In view of (9′) and (10′), the transverse autocorrelation has to be negative in some range of r, which is clearly seen in Fig. 
3 . Moreover, expressions (9′) and (10′) together with the empirical BLL(r) in Fig. 3  do explain the shape of F1(k1) 

and F2(k1) spectra. Indeed, if BLL(r) is positive at any r (this suggestion is approximately valid in all cases presented in Fig. 

3 ), the longitudinal spectrum F1(k1) will have the maximum at the origin (k1 = 0), which results directly from the 

definition (3) and is in accordance with empirical spectra in Fig. 4 . From (10′) and (3) we may conclude that F2 = 0 at 

k1 = 0 in 2D isotropic case so that F2(k1) must have the maximum at some k1 > 0, which is in good accordance with all 

empirical spectra in Fig. 4 . Note that in the 3D case we would get F2(0) = F1(0)/2 > 0, which results directly from (9′) 

and (3). Finally, since F1(k1) and F2(k1) are even functions with no discontinuity in their derivatives at k1 = 0, F1(k1) and 

F2(k1) curve parabolically down and up, respectively, away from k1 = 0. 

Therefore, we may conclude that the shape of the empirical spatial correlations BLL(r) and BNN(r) and power spectra F1
(k1) and F2(k1) corresponds well with the above theoretical predictions. 

b. A stochastic model of drifterborn spatial correlations and spectra  

In section 4a we explained the shape of empirical spatial spectra and correlations on the basis of isotropic turbulence 
theory. However, it does not help us to relate the obtained longitudinal and transverse spectra to some physical parameters. 
To do this, we develop a simple kinematic stochastic model of two-dimensional eddies. 

To avoid confusion, it seems reasonable to discuss the difference between this consideration and the well-known spectral 
models of 2D turbulence by Kraichnan (1967) and Charney (1971). Suppose that some process (say, baroclinic instability) is 
responsible for generation of quasi-two-dimensional mesoscale eddies with typical length scale λ. Theories by Kraichnan 
(1967) and Charney (1971) are designed to describe special structure of the eddies in some equilibrium range of 
wavenumbers k1  1/λ (or even k1  1/λ), which is established (if any) due to nonlinear interaction between eddies (so-

called cascade process). In contrast, we are trying to describe the spectral structure of eddies only at length scales of their 
origin, that is, at k1  1/λ, no matter whether any cascade process does exist. 

Let us suppose that the xy plane is filled with randomly spaced two-dimensional axisymmetric eddies. The velocity field of 
each eddy is described by formulas

 

where ur, u  are the radial and azimuthal velocity; ω is the angular velocity of eddy rotation; t  0 is the “age”  of the 

eddy (the time passed from its origin); T  is the “lifetime”  of the eddy, R is the radius of the eddy, x0, y0 are the coordinates 

of the eddy center, and f( ) is a function describing the shape of azimuthal velocity distribution in the eddy. To determine 
how the spectra depend on the shape of the velocity field in the eddy, we consider three functions for f( ):

 

where a = 1.306 54 is a constant whose value is chosen to ensure the maximum of f( ) at  = 1. Functions (12)–(14) are 
shown in Fig. 5 . 

Let us define our stochastic process as a process in which Nbirth eddies given by (11)–(14) are born per unit time in a 

square domain L × L, L  R, provided that each eddy birth is an independent event and the probability of eddy birth is 
uniform by the domain. The velocity field in the domain is determined as a linear superposition of velocities of each eddy. 

The velocity field in the domain interior, except its marginal areas with typical width several times greater than R, may be 
considered as a random, stationary, homogeneous, isotropic 2D field. Our goal is to obtain spectra F1(k1) and F2(k1) for 

this model field.

In general, the model spectra F1(k1) and F2(k1) will depend on four parameters: ω, Nbirth/L2 (the number of eddies born 

per unit time and area), T , and R, as well as the wavenumber k1. Because only two dimensions are involved (time and 

length), we can construct three dimensionless variables. However, we may suppose the existence of a self-similarity that 
reduces all variety of spectra F1(k1) and F2(k1) to some functions of one variable. Of course, the shape of self-similar 

spectra will depend on the shape of the eddy given by formulas (12) or (13) or (14). 



The total kinetic energy (Eeddy) of each eddy may be estimated as

Eeddy  D(ωR)2R2,(15)

 

where D is the 2D density (mass per unit area). 

The mean number of eddies per unit area is

ρeddy  NbirthT /L2.(16)

 

The total energy of eddies per unit area, Etotal, is

 

Therefore, the variance of the velocity field ′2 is estimated as

 

If we suppose that spectra F1(k1) and F2(k1) are determined by ′2, R, and k1, and apply dimensional analysis, we obtain 

self-similar forms

 

where f1( 1), f2( 1) are some functions of a dimensionless wavenumber 1 = k1R.
 

We realize that (19) is a hypothesis only. To prove it, we address numerical simulations of the random field defined above. 

We choose a domain 4000 km × 4000 km and, using a random number generator, produce rows of coordinates of eddy 
center x0(i) and y0(i), i = 1, 2, 3, · · · , randomly spaced in the domain with uniform probability. Prescribing some values 

of parameters ω, T , R, and identifying time in (11) with numbering i of the succession [x0(i), y0(i)], we compute the 

velocity field as the superposition of velocities of each eddy (11). The truncation of the succession is determined by a 
condition

exp(−i/T )  Asmall,(20)
 

where Asmall  1 is the truncation constant. In our numerical experiments, we take Asmall = 1 × 10−3 and vary the 

governing parameters in the following ranges: 10 km  R  100 km, 0.4 × 10−5 s−1  ω  3 × 10−5 s−1, 800  T  
 24 000. The spectra F1(k1) and F2(k1) were calculated as the Fourier transform of the correlation function, that is, 

using exactly the same approach we had used to calculate the empirical drifterborne spectra.

When normalized by (19), all model spectra computed at different values of parameters ω, R, T  and the same eddy 
shape merge into one. Therefore, the self-similarity suggested above is validated. Figure 6  presents self-similar model 
spatial spectra and correlations for three different eddy shapes (12)–(14). 

In general, all three pairs of self-similar spectra F1(k1) and F2(k1) and correlations BLL(r) and BNN(r) in Fig. 6  

resemble one another and reproduce well the shape of the empirical drifterborne spatial spectra and correlations presented in 
Figs. 3  and 4 . Since the model is based on simple and physically clear assumptions, it may be considered as a 
physical interpretation of drifterborne spatial spectra and correlations. We have not seen in the literature a more simple and 
clear interpretation of longitudinal and transverse correlations and spectra.

Closer inspection of Fig. 6  reveals that statistical population of eddies with different shape produces spatial spectra and 
correlations of different shape. For example, the exponential eddy (14) with a relatively long “tail”  of slowly decreasing 
velocity at large distances produces long tails of F2(k1) and BNN(r) at large k1 and r, respectively. To determine which eddy 

shape, (12), (13), or (14), offers a better description of empirical spatial spectra, we present all the spectra, both empirical 
and model ones, in a normalized form



 

where 1 is the wavenumber at which F2(k1) is the maximum.
 

The normalized spectra are shown in Fig. 7 . Despite considerable scatter of the empirical spectral estimates, the model 
with exponential eddy shape appears to fit the empirical spectra much better than those of Gaussian and cosine eddy shapes. 
Physically, this implies that mesoscale ocean eddies consist of a relatively small core with solid-body rotation so that the 
transverse velocity is maximum at the outer edge of the core and there is much wider peripheral “ring”  where the velocity is 
about constant (inner periphery) and then slowly decreases with distance outward from the eddy center (outer periphery).

In order to test this issue quantitatively, we calculate a mean square deviation (MSD) of the empirical spectral estimates in 
Fig. 7  from respective model curves. It is found that the MSD produced by the model with exponential eddy shape is 1.8 
and 2.1 times smaller than that of the Gaussian and cosine eddy shapes, respectively. We also calculate MSD using the best-
fit curve of a sixth power polynomial to the normalized empirical spectra instead of the empirical spectral estimates 
themselves (dotted lines in Fig. 7 ). The result is found to be even more convincing: MSD for the exponential eddy model 
(14) is 6.3 and 8.7 times smaller than that of models (12) and (13), respectively. 

c. Length scales derived from the spatial spectra  

Since all empirical spectra F2(k1) display clearly the maximum at some k1 = 1, it seems reasonable to estimate the 

respective spectral length scale  = 1/ 1 and, in the wake of Krauss et al. (1990), compare it with the internal Rossby radius 

Ri. In addition to  and Ri, we will compare respective radii of model eddies (12)–(14) which provide the best fit of the 

empirical spectra (i.e., when the model transverse spectrum is the maximum at the same wavenumber k1 = 1): R1 = 0.162

, R2 = 0.199 , and R3 = 0.0859  (the Gaussian, cosine, and exponential eddy shapes, respectively). 

The wavenumber of spectral maximum 1 was estimated by the parabolic interpolation of the empirical spectrum F2(k1) 

in the vicinity of its maximum. For Ri, we took estimates of the internal Rossby radius calculated by Emery et al. (1984) by 

solving respective eigenvalue problems with annual mean vertical profiles of Brunt–Väisälä frequency by 5° squares for the 
North Pacific and the North Atlantic.

Estimates of , R1, R2, R3, and Ri for six pairs of empirical spectra F1(k1) and F2(k1) shown in Fig. 4  are given in 

Table 1 . One cannot miss surprisingly good coincidence of the estimates of the best-fit radius of exponential eddy R3 

and the internal Rossby radius Ri for all clusters of drifters in the California Current System (cases 1–4) and the North 

Atlantic Current (case 5). We suppose that this coincidence is not casual. In the Newfoundland Basin (case 6), 
correspondence between R3 and Ri is worse (36 km vs 20.6 km). 

5. Conclusions  

We have suggested a particle pair approach to estimate spatial spectra of mesoscale horizontal turbulence in the ocean 
using data of satellite-tracked drifters. The approach was applied to the data of 19 drifters deployed simultaneously in the 
California Current System in 1993. We also calculate power spectra from longitudinal and transverse correlations obtained 
by Poulain and Niiler (1989) (a cluster of drifters deployed in the California Current System in 1985/86) and Krauss et al. 
(1990) (two clusters of drifters deployed in the North Atlantic Current and the Newfoundland Basin, respectively). 

In all cases, spectra F1(k1) as well as spectra F2(k1) occurred to have the same shape: being the maximum at the origin 

(k1 = 0), F1(k1) decreases monotonically vanishing at large k1, while F2(k1) is the maximum at some k1 = 1 > 0 and 

vanishes at k1  ∞ and k1  0. Such a behavior of empirical estimates of F1(k1) and F2(k1) is in accordance with 

theoretical predictions for 2D isotropic nondivergent turbulent flow.

To determine the shape of F1(k1) and F2(k1) in more detail, we have developed stochastic models consisting of a 

population of randomly spaced, two-dimensional axisymmetric eddies of a given shape. Numerical experiments with 
different eddy shapes (the Gaussian, cosine, and exponential shapes of the transverse velocity were applied) showed that the 
model spectra obey a self-similarity, that is, for a given eddy shape they depend on the variance of stochastic process and a 
length scale (radius) of the eddy only. Comparing self-similar model spectra with the empirical ones, we found that a model 
with exponential eddy shape fits drifterborne F1(k1) and F2(k1) much better than the other models. It may be physically 

interpreted as if mesoscale ocean eddies consist of a relatively small core with solid-body rotation and a much wider 
peripheral ring where the velocity is about constant in the inner part of the ring and slowly decreasing with the distance 
outward from the eddy center in the outer part of the ring.

We have found that the best agreement between the drifterborne and model spectra is achieved when the radius of an 
exponentially shaped model eddy is taken equal to the internal Rossby radius.
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APPENDIX  

6. Confidence Intervals  

Following Middleton and Garrett (1986), confidence intervals for normalized structure functions and autocorrelation 
functions can be calculated using the Fisher distribution with n1 and n2 degrees of freedom (Bendat and Piersol 1971), 

where n1 is the degrees of freedom for DLL(r) and DNN(r) estimates and n2 is that of ′2. In our case, n1(n2) is the number 

of independent estimates of particle pair velocity (particle velocity) included in the averaging. To treat the independence, two 
issues were taken into account. First, the particle pair velocity (particle velocity) estimate is considered as independent if it is 
lagged by an independence time τind = 2TL, where TL is the Lagrangian integral timescale. Estimating TL by the first zero 

crossing of the Lagrangian autocorrelation function, we obtain τind = 10 days. Second, if the statistics is based on Nd 

drifters, so that Nd(Nd − 1)/2 pairs are available, no more than 2Nd pairs are independent because this is just the number of 

coordinates for Nd drifters. Therefore, if an estimate of the structure function at a given value of the space lag r is based on 

n(r) estimates of the pair velocity, the degrees of freedom are

n1 = n(r)f(Nd)Δt/τind,(A1)
 



where f(Nd) = min(1, 4/(Nd − 1) and Δt is the sampling time (6 h). Similarly, the degrees of freedom for ′2 are

n2 = 4Nf(Nd) Δt/τind,(A2)
 

where the factor 4 is because every particle pair yields four estimates of velocity components.

In the whole area and the northern region in Fig. 1 , Nd = 19 so that f(Nd)Δt/τind = 1/180, while in the southern region 

Nd = 12 so that f(Nd)Δt/τind = 1/110. Typical value of n(r) at r < 250 km is 2400, 1500, and 700 in the whole area, and the 

northern and southern regions, respectively, so that respective estimates of n1 are 13.3, 8.3, and 6.4. Because in all cases n2 

> 300 we may take n2 = ∞. Ultimately, the 95% confidence intervals for the structure function are (0.46–1.71)D(r), (0.35–

1.94)D(r), and (0.29–2.08)D(r) at r < 250 km in the three cases, respectively. The confidence intervals grow fast at r > 250 
due to the decrease of n(r). 

Tables  

Table 1. The comparison between the empirical spectral length scale ; the best-fit radii of Gaussian, cosine, and exponential 
model eddies (R1, R2, R3, respectively) and the internal Rossby radius Ri.The cases are numbered in accordance with Fig. 3. 
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Figures  
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Fig. 1. Summary plot of 19 free-drifting buoy tracks used in the analysis. 
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Fig. 2. (a) Empirical structure functions (DLL: dashed, DNN: solid), (b) mean difference of longitudinal pair velocities Δ L, (c) 

ratio of longitudinal to transverse velocity variances ‹ ′2
L›r/‹

′2
N›r, and (d) the number of particle pairs n vs the space lag r. 

Bold, regular, and thin lines refer to the whole area, northern region, and southern region, respectively (see Fig. 1 ). 
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Fig. 3. Normalized autocorrelation functions BLL(r) (dotted) and BNN(r) (solid): 1, 2, 3—the whole area, northern region, and 

southern region, respectively (see Fig. 1 ); 4—a cluster of drifters deployed in the California Current System at 32° and 34°N 
[the curves were taken from (Poulain and Niiler 1989)]; 5 and 6—clusters of drifters in the North Atlantic Current and the 
Newfoundland Basin with the mean position 49.2°N, 42.9°W and 43.8°N, 43.4°W, respectively [the curves were taken from 
(Krauss et al. 1990)]. 
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Fig. 4. Normalized longitudinal (F1) and transverse (F2) power spectra. For explanation, see Fig. 3 .
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Fig. 5. The transverse velocity distribution in a model eddy given by formulas (12)–(14) indicated by isoplethes labeled 1, 2, 
and 3.
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Fig. 6. Self-similar model spectra F1 (dashed) and F2 (solid) and correlations BLL and BNN. Numbered isoplethes (1, 2, 3) inside 

the panels refer to the eddy shape formulas (12), (13), (14), respectively. 
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Fig. 7. The comparison of the normalized empirical spectra and model spectra. Regular solid, thin solid, and thin dashed lines 
depict the model spectra with exponential, Gaussian, and cosine eddy shape, respectively. Dotted line is the best-fit curve of 
empirical spectra by a sixth power polynomial. The empirical spectra legend is given in Fig. 3 . 
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