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ABSTRACT

Mixing in a stratified ocean is controlled by different physics, depending on 
the large-scale Richardson number. At high Richardson numbers, mixing is 
controlled by interactions between internal wave modes. At Richardson 
numbers of order 1, mixing is controlled by instabilities of the large-scale 
wave modes. A “wave–turbulence”  (W–T) transition separates these two 
regimes. This paper investigates the W–T transition, using observed 
oceanic and atmospheric spectra and parameterizations. Viewed in terms 
of Lagrangian (intrinsic) frequency spectra, the transition occurs when the 
inertial subrange of turbulence, confined to frequencies greater than the 
buoyancy frequency N, reaches the level of the internal waves, confined to 
frequencies less than N. Viewed in terms of vertical wavenumber spectra, 
the W–T transition occurs when the bandwidth of internal waves becomes 
small. Both of these singularities occur when the typical internal wave 
velocity becomes comparable to the phase speed of the lowest internal 
wave mode. At energies below that of the W–T transition, the dissipation 
rate varies as the energy squared; above the transition the dependence is 
linear. The transition occurs at lower shear and dissipation rates where the 
phase speed of the lowest mode is smaller, that is, in shallower water for 
the same stratification. Traditional turbulence closure models, which ignore 
internal waves, can be accurate only at energies above the W–T transition. 

1. Introduction  

Two very different classes of models have been used to understand turbulence and mixing in stratified geophysical flows. 
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One approach attempts to extrapolate the physics of unstratified turbulence into the stratified regime. Such “stratified 
turbulence”  models (Mellor and Yamada 1982; Luyten et al. 1996) work well if the stratification is not too strong and the 
flow remains highly turbulent, but fail if the stratification is too strong (Simpson et al. 1996). A second approach attempts to 
extrapolate the physics of internal waves into a partially turbulent regime. Such “wave–wave interaction”  models (Müller et 
al. 1986) work well in the weakly turbulent ocean thermocline (Gregg 1989; Polzin et al. 1995; Winkel 1998) but have not 
been well tested in other regimes. The two classes of models are fundamentally different in their physical assumptions and 
mathematical forms and will yield very different results if applied to the same flow.

The two different classes of models are designed to operate in different large-scale Richardson number regimes. Wave–
wave interaction models assume that the flow can be expressed as the sum of interacting internal waves, each of which is a 
solution to the inviscid linear internal wave equations. Energy transfer and fluxes occur through the interactions of these 
waves. This approach is appropriate at high large-scale Richardson numbers, where the waves are stable and interact only 
weakly. Stratified-turbulence models generally parameterize fluxes by assuming a local turbulent eddy viscosity, or similar 
closure, whose strength depends on the local time and length scales of the flow. This approach is appropriate at low 
Richardson number where the flow is mostly turbulent and waves play only a minor role (Henyey 1989). A transition from 
the high Richardson number wave physics to the low Richardson number turbulent physics should occur at some 
intermediate Richardson number. We will call this the wave to stratified turbulence transition, or W–T transition. It is the 
focus of this paper.

We will study the W–T transition from an oceanographic viewpoint, considering how the physics of a broadband, high 
Richardson number flow, dominated by internal waves, such as that in the open ocean thermocline, changes as its energy 
increases. The analysis is based on the observed shapes of oceanic and atmospheric spectra and existing parameterizations 
of the dissipation rate. We first (section 2) consider the Lagrangian frequency spectrum of velocity, a recently measured 
quantity. We then (section 3) consider the Eulerian wavenumber spectrum of shear, a quantity that is well measured and 
modeled in the oceanic thermocline. Neither spectrum can maintain its low energy form at high energy, implying that a 
transition must occur. We then quantify the transition (section 4) and find that both spectra lose their low energy form at the 
energy level at which the rms velocity reaches approximately the lowest mode phase speed. We compare these predictions 
with oceanic observations and traditional turbulence closure models (section 5) and finally (section 6) summarize and 
discuss the limitations of the analysis.

2. Lagrangian frequency spectrum  

Lien et al. (1998) and D’Asaro and Lien (2000) describe frequency spectra ( u(ω), (ω), w(ω)) [m2 s−1] of velocity 

(u, , w) [m s−1] as a function of Lagrangian frequency ω [s−1], as observed by neutrally buoyant floats in regions of both 
strong and weak turbulence. On the basis of their observations, we propose the spectral form shown in Fig. 1 . The 
model spectrum is the sum of internal wave and turbulent components.

Motions with N > ω > f, where f  is the Coriolus frequency, are modeled as internal waves. These satisfy the internal wave 
consistency relationship (Fofonoff 1969; Calman 1978)

 

where iw
H = iw

u + iw . We model the internal wave horizontal velocity spectrum using a minor variant on GM76 

(Gregg and Kunze 1991), a traditional combination of Garrett and Munk (1975) and Cairns and Williams (1976). The 
spectral form is

 

where 0 is a constant that sets the internal wave energy and B describes the shape of the spectrum near N. For N  ω 

 f, iw
H has a spectral slope of −2 and iw

w is white. Observed w sometimes show peaks near ω = N. We will ignore 

these and choose

B(ω) = (N2 − ω2)/N2(3)

 

so as to make iw
w white with a value of



 

for f   ω < N. 

Motions with ω > N are modeled as turbulence. We assume isotropic turbulence, turb
H/2 = turb

w  turb. For ω > N, 

we model the spectrum by an inertial subrange (Corrsin 1963; Lien et al. 1998)

 

with a Lagrangian Kolmogorov constant β, which has a value between 1 and 2 (Lien et al. 1998). We use β = 1.8. For 
frequencies much larger than a “large eddy”  frequency, here taken to be N, and much less than a Kolmogorov frequency ωk 

= ( /ν)1/2, we set G = 1, and the spectrum has the exact inertial subrange form. D’Asaro and Lien (2000) give an analytical 
expression for G that defines the spectral shape close to N. We assume no turbulent energy for frequencies below N, 
although this must certainly be an approximation.

Figure 2  shows the evolution of the model w(ω) as a function of internal wave energy. For typical oceanic, that is, 

Garrett–Munk (GM) energy levels (spectrum A), the internal wave spectrum has far more energy than the turbulence 
spectrum. This results in a sharp drop in the spectrum near N. This drop is commonly observed, but is particularly sharp 
when observed from neutrally buoyant floats (Cairns 1975; D’Asaro and Lien 2000; Kunze et al. 1990), that is, for 

Lagrangian spectra. The ratio ΔWT = turb
w(N)/ iw

w(N) will be used to measure the inverse magnitude of the drop; it is 

small for a large drop. Since the value of  increases quadratically with wave energy (Gregg 1989; Polzin et al. 1995), ΔWT 

is proportional to iw
w(N). At low energies (spectrum A) ΔWT is small. As the internal wave energy increases (spectrum 

B), ΔWT also increases until it reaches 1 (spectrum C). At this energy, which will turn out to mark the W–T transition, the 

drop in the spectral level at N disappears. 

If the energy is increased above the W–T transition level, there are two possibilities: ΔWT could continue to increase as 

shown in spectrum E (Fig. 2 , insert), leading to a sharp increase in spectral level at N, or it could remain at unity as 
shown in spectrum D. D’Asaro and Lien (2000) find no spectra that look like E, but many spectra that look like D. We 
therefore assume that only spectrum D occurs. D’Asaro and Lien assume this and, using (5) with their analytical expression 
for G, find

 = 1.2β−1 iw
wN2 = C0 β−1σ2

wN,(7)

 

where C0 = 0.6 is a constant and σ2
w is the total vertical velocity variance, including both wave and turbulent 

components. This expression, valid at or above the W–T transition, shows a linear relationship between energy and 
dissipation. Thus the W–T transition marks a change from a quadratic to a linear relationship between the energy and 
turbulent dissipation rate.

The horizontal velocity variance in the frequency spectrum iw
H(ω) (Fig. 1 ) is obtained by integrating (2) while 

ignoring the small effect of the B factor. For energies well below the W–T transition, the integration extends from f  to N. 
This yields

 

where the last expression assumes N  f. At or above the W–T transition, the integration extends from f  to about ωk. 



Since ωk > N  f  this adds negligible variance. 

The vertical velocity variance is obtained by integrating iw
w(ω) (Fig. 1 ) to obtain

 

at or above the W–T transition and half of this well below the W–T transition. The decrease in iw
w(ω) for ω  f  has 

been ignored since its effect is small for N  f. 

Using (8) and (9) in (7) yields

 

where σ2
U is the variance of horizontal velocity, again showing a linear relationship between dissipation and energy above 

the W–T transition. The decay rate of kinetic energy

 

is constant and approximately equal to 0.8f. 

3. Eulerian wavenumber spectrum  

a. Spectral shape  

The spectrum, SS(m) [m s−2] of horizontal shear S [s−1] as a function of vertical wavenumber m [m−1] in the ocean 

thermocline has been measured by many investigators using vertical profilers (Gregg 1991) that resolve the shear down to 
dissipation scales. Measurements have been mostly at near-GM energy levels. The basic form, first proposed by Gargett et 
al. (1981), is shown in Fig. 3 . There are three wavenumber bands: a low wavenumber “internal wave”  band, a high 
wavenumber “turbulence”  band, and an intermediate “−1”  band named for its spectral slope. We will extrapolate this form to 
energy levels much higher than the GM level using wave–wave interaction theory, and show how it eventually fails. 

The low wavenumber band is dominated by internal waves (Müller et al. 1978). We assume a white normalized shear 

spectrum, SS(m)/N2 with a level iw [m−1], consistent with numerous observations (Gregg et al. 1993; Polzin et al. 1995). 

Typically, the vertical wavenumber m varies with depth owing to the change of N with depth. This effect can be mostly 
removed by using a “WKB-stretched”  wavenumber (Leaman and Sanford 1975), which we use in this analysis. The lower 
end of the internal wave band is set by the WKB-stretched wavelength of the gravest internal wave mode m1. For the open 

ocean, this is set by the thermocline depth; we assume the GM76 value m1 = 2π/b [m−1] with b = 1300 m. For the 

continental shelf, this is set by the water depth; we will use b = 100 m. 

In the Garrett–Munk spectrum the shear spectral slope changes from white to +2 below a vertical mode number j*. 
GM76 uses j* = 3. Levine et al. (1997) show evidence that j* is large for low-energy internal wave fields. Measurements 
under a storm (D’Asaro 1985) and on the continental shelf (M. Levine 1999, personal communication) suggest that j* is 
small for high energy internal wave fields. The data therefore suggest that at energy levels substantially above the GM level, 
j* probably falls below 1 and the spectrum is nearly white down to the lowest mode. We therefore ignore the j* factor in 
GM76 and retain a white shear spectrum all the way to the lowest mode.

The upper end of the internal wave band is set by the wavenumber mc, to which we return below. At wavenumbers above 

mc the spectral slope changes to −1. At wavenumbers above mb the spectrum assumes the form of the turbulent “−5/3”  

inertial subrange; that is,
 



turb
SS = αE

2/3m1/3(12)

out to about the Kolmogorov (viscous) wavenumber mk = ( /ν3)1/4. The Kolmogorov constant is αE = 0.5, to an 

accuracy of 10% (Sreenivasan 1995). 

b. Internal wave bandwidth  

Oceanic observations (Duda and Cox 1989; Sherman and Pinkel 1991; Gregg et al. 1993) suggest an inverse relationship 
between the wavenumber mc and the spectral amplitude iw. Munk (1981) suggests that the value of mc is set so that the 

Froude function,

 

equals a critical value, i.e., Fr(mc) = Frc. Polzin et al. (1995) assume this and use Frc = 0.7, although values from 0.3 

(Sherman and Pinkel 1991) to greater than 1 (Duda and Cox 1989) have also been suggested. For mc  m1 this yields

iwmc = Frc.(14)
 

Using this and the assumed spectral shape yields

 

where mO is the inverse Ozmidov (Ozmidov 1965) scale.
 

Figure 4  shows the evolution of the vertical wavenumber spectrum with increasing energy assuming that (14) is true. 
We will measure the internal wave bandwidth by Δmiw = m1/mc. At the GM level (spectrum A) Δmiw is small. With 

increasing energy (spectra B and C), Δmiw increases, but the “−1”  region of the spectrum remains on the same curve, the 

dashed line labeled “Saturation.”  There is considerable experimental support for this result, with very similar scaled spectral 
levels found both in the ocean (Gargett et al. 1981; Gregg et al. 1993; Winkel 1998) and in the middle atmosphere (Smith et 
al. 1987; Fritts 1989; Allen and Vincent 1995). In addition, (14) guarentees that mb is very close to mO as in (15) so that 

1/mO is largest turbulence scale. This is consistent with many oceanographic observations that the overturning (“Thorpe”) 

and Ozmidov scales are nearly identical (Dillon 1982; Moum 1996). 

The model wavenumber spectrum becomes singular as mc approaches m1; that is, as Δmiw approaches one. This will 

mark the W–T transition. In this regime, however, (13) and (14) are no longer equivalent, and the relationship between iw 

and mc becomes uncertain. The obvious assumption is to replace (14) by iwmc(1 − Δmiw) = Frc with the same Frc. 

However, as Δmiw approaches one, this assumption causes the “−1”  spectral level to rise far above the observed 

“Saturation”  level and causes mb to greatly exceed mO, as shown by spectrum D in Fig. 4 . This seems to be in 

disagreement with the observations. We therefore choose to use (14). 

There are several possible ways to justify this choice and still maintain the physical simplicity of a critical value of the 
Froude function (13). One might suppose that Frc decreased as Δmiw approached one, that is, that a narrowband internal 

wave field might break with less shear than a wide-band one. It seems unlikely that Frc could change enough to make this 

effect important. Alternatively, the internal wave spectral slope might become steeper at high energy, as suggested by the 
dotted “?”  line in Fig. 4 . This would produce a peak in the spectrum near mc and thus decrease the importance of m1 in 

the Froude function (13). Both Fritts and VanZandt (1993) and Duda and Cox (1989) find spectra with peaks near mc, 

supporting this idea. This would not eliminate the problem, however, just delay it to a larger value of Δmiw. The experimental 

evidence and theoretical support for (13) is not very strong, and probably less than that in favor of a universal “−1”  spectral 



level, so there is probably no reason to be alarmed if (13) is violated. For the purposes of this paper, it is probably best to 
view the use of (14) near the W–T transition as an extrapolation of the relations appropriate for the ocean thermocline into a 
higher energy regime and expect that many of the predicted features will be only qualitatively accurate.

c. Variances  

The horizontal velocity variance in the wavenumber spectrum (Fig. 3 ) is obtained by integrating SS/m2 while 

extending the “−1”  range to infinity. This yields

 

This ignores a small contribution from the turbulent wavenumber band. The “−1”  range contributes ½Δmiw to the braced 

expression. Equating (16) and (8) and solving for 0 yields

 

We will ignore the braced terms in (16) and (17) since their inclusion leads to much greater algebraic complexity with little 
gain of insight. Formally, the braced terms can be neglected only well below the W–T transition where Δmiw is small. 

However, many of the assumptions of our analysis, specifically the assumed Eulerian wavenumber spectral shape, the 
estimation of mc, and the parameterization discussed in section 4a, become uncertain near the W–T transition. Different 

assumptions can change the functional forms of (16) and (17), and subsequent results, in different ways. As in section 3b, 
the most consistent approach is to view our results as an extrapolation of relations appropriate well below the W–T 
transition, that is, those with the braced termed ignored, into a higher energy regime.

4. Quantification  

a. Dissipation closure  

We now compute the energy at which the transitions in the wavenumber and frequency spectra occur. We use the 
dissipation rate expression of Henyey et al. (1986), as expanded by Henyey (1991), implemented by Polzin et al. (1995), and 
explained by Winkel (1998). The dissipation rate is computed as the net energy fluxing past vertical wavenumber mc and is 

written as the product of three terms:

 

The first horizontal bracket expresses the energy density at mc as the product of horizontal kinetic energy density and the 

ratio α of total to horizontal kinetic energy. The second and third brackets approximate the net rate at which wave packets 
cross wavenumber mc under the influence of vertical shear, S. The ray approximation dm/dt = −kHS is used, where kH is 

the horizontal wavenumber. A reflection coefficient r is set to 0.4; S is computed from (13). Combining terms, using single 
wave approximations for α and kH/mc, using (14), and referencing to the GM76 spectrum gives

 

where 0 = 6.7 × 10−10 W kg−1 is a reference dissipation rate for the GM spectrum, mcGM = 0.1 cpm = 0.628 m−1 is 

the value of mc for that spectrum, fGM = 6.35 × 10−5 s−1 is evaluated at 27°N, and NGM = 5.24 × 10−3 s−1. Variations in 



the energy and wavenumber ratios and the amount of reflection are combined into the Γ factor, which equals 1 for a GM 
spectrum. The dimensionless factor,

 

frees the analysis from the arbitrary “GM”  scales, which have plagued the literature for decades. Equation (19) is the 
same as Winkel’s (1998) equation (5.7) and Polzin et al.’s 1995 equation (11) at 27°N. Both authors find it to be accurate to 
about a factor of 2 if the variations in Γ are included.

The dissipation rate in (19) is proportional to the internal wave spectral level squared, 2
iw. Substituting (16), (8), (9), 

and defining σ2
U = ‹U2›  and σ2

W = ‹W2›  as the horizontal and vertical velocity variances, respectively, and ignoring braced 

terms, we find

 

The dissipation rate is proportional to the kinetic energy squared. The decay rate of kinetic energy

 

where c1  N/m1 is approximately the phase speed of the lowest mode. The bracketed expression is close to unity 

(0.61), and we have neglected the small contribution of vertical kinetic energy for N  f  as well as the braced term in (16). 
The decay rate is proportional to the nonlinearity of the lowest mode, given by the ratio of the typical horizontal velocity to 
c1. 

b. The W–T transition  

We now compute the kinetic energy of the W–T transition in three different ways and show that they are nearly 

equivalent. Equation (21) predicts a quadratic relationship between  and kinetic energy σ2
U. Equation (10) predicts a linear 

relationship. The intersection of these two relationships, one valid at low energy and one valid at high energy, defines the 
first estimate of the W–T transition energy (Fig. 5a ),

 

where W0 = 2Fr2
c/βπI0Γ   1.1 is a dimensionless parameter.

 

The second estimate assumes ΔWT = 1 (Fig. 1 ) at the W–T transition. Combining (5) and (4) yields ΔWT = β / 0f2. 

Substituting for , using (21) and (8) for σ2
U, yields

 

Setting ΔWT = 1 gives σU|WT = 1.1c1.
 

The third estimate assumes Δmiw = 1 (Fig. 4 ) at the W–T transition. Combining (16) and (14) yields

 



σ2
U|WT = c2

1FrcΔmiw.(25)

Setting Δmiw = 1 yields σU|WT = 0.6c1, where the braced factors have again been ignored.
 

The three estimates yield results identical within the errors in the various coefficients and the substantial theoretical 
uncertainties described in section 3. Thus at the W–T transition ΔWT = 1, that is, the turbulent and internal wave spectra 

merge in the Lagrangian frequency spectrum; Δmiw  1, that is, the internal wave bandwidth in the Eulerian wavenumber 

spectrum becomes small; and σU  c1, that is, the rms velocity equals the phase velocity of the lowest mode; and the linear 

and quadratic parameterizations of  converge. This is the main result of the paper. 

These conclusions result from the extrapolation of results at small σ2
U into a regime where they may not be valid. This is 

schematically illustrated in Fig. 5a  by the dark dashed lines showing the extrapolation and the gray dashed lines showing 
possible corrections to the extrapolation near the W–T transition. Although it is clear that a transition must occur, details 
near the transition are not captured by our analysis.

c. Physics  

The W–T transition, as computed here, marks the energy level where the basic assumptions of GM-based wave–wave 
interaction theories fail. At open ocean energy levels and water depths almost all of the energy is in the internal wave 
wavenumber band and can be reasonably represented by the sum of internal wave modes. The transfer of energy from these 
scales to the smaller-scale turbulence is due to wave–wave interactions. Henyey et al.’s (1986) model of this (19) assumes 
the interaction of individual “test”  waves with the “internal wave”  band of wavenumbers in Fig. 3 . At the W–T transition, 
mc and m1 become nearly equal, this band becomes small, and the wave–wave interaction theory becomes ill posed. In 

addition, the Richardson number of the lowest wavenumbers, that is, m1, becomes order 1 on average, and their velocity 

approaches the fastest wave phase speed. Statistical fluctuations will reduce the Richardson number to below critical (¼) in 
places, resulting in localized shear instability of the large-scale motions. The large-scale motions thus become locally unstable 
to shear instability and can directly transfer energy to turbulence. Alternatively, the large-scale waves will start to break since 
their velocity is comparable to their phase speed. This is the physics of stratified turbulence. Thus, the W–T transition marks 
a change from energy transfer controlled by wave–wave interaction to that controlled by instability and turbulence. 

d. The transition energy level  

The spectral level of the W–T transition relative to the GM level can be predicted by finding the internal wave spectral 
level that sets mc = m1 in (14):

 

where GM is the value of iw for the GM spectrum. The kinetic energy at the transition, whether calculationed by (23), 

(24), or (25), is approximately

 

According to (11), the turbulent kinetic dissipation rate is proportional to the kinetic energy times τ−1, so

trans = fKEtrans(28)
 

since τ−1  f  at the transition.

 

For deep ocean depths (m1 = 2π/1300 m, mcGM = 2π/10 m) (26) predicts the W–T transition at 130 times the GM 

spectral level, (27) predicts an internal wave horizontal kinetic energy at the transition of (0.7 m s−1)2, and (28) predicts  = 

3 × 10−5 W kg−1 at the transition. Values of  this large are rarely, if ever, observed in the open ocean thermocline (Gregg 
1998). It appears to remain almost always below the W–T transition. 



In shallow water, the low modes are excluded, and there is much more shear per unit kinetic energy. Consequently, the 
W–T transition occurs at lower energy. Equivalently, the lowest mode phase speed c1 is lower for the same (assumed 

constant) stratification, so lower water velocities are needed match c1. In 100 m of water, (26) predicts the W–T transition 

at 10 times the GM spectral level, (27) predicts an internal wave horizontal kinetic energy at the transition of (0.06 m s−1)2, 

and (28) predicts  = 2 × 10−7 W kg−1 at the transition. Moum and Nash (1999, personal communication) report  values 
much larger than this over rough topography on the Oregon shelf. Gregg et al. (1999) report substantially larger values on 
the shelf near Monterey Bay. The flows in these locations are energetic enough to be clearly above the W–T transition. 
Flows at other locations on the shelf are clearly less energetic and lie below the transition.

5. Parameterizations  

a. Quadratic  

There is ample evidence for quadratic scaling of  with energy in the ocean thermocline (Gregg 1989; Polzin et al. 1995; 
Winkel 1998) and considerable theoretical justification (Winters and D’Asaro 1997; Müller et al. 1986). In this regime the 
Richardson number is above critical and the flow is mostly laminar. In places, the Richardson number falls below critical, 
creating localized turbulence and mixing. The frequency and intensity of these mixing events are controlled by the supply of 
energy from the wave–wave interactions at larger scale (Polzin 1996; Pinkel and Anderson 1997), which therefore control 
the overall rate of mixing.

b. Linear  

In the high energy, stratified turbulence regime, we predict a dissipation rate linearly proportional to the energy

 = Cσ2
wN.(29)

 

We estimate C = C0/β = 0.3–0.6 (7); the uncertainly is set primarily by the uncertainty in β. Parameterizations of this form 

are common in the literature. Weinstock (1981) suggests C = 0.4–0.5 as a good predictor of dissipation in the stratosphere. 

Moum (1996) finds C = 0.73 ± 0.06 for turbulent patches in the ocean thermocline. His measurement of σ2
w is biased low 

by an instrumental high-pass filter, consistent with an estimate of C that is biased high. Observations in the upper equatorial 
Pacific, a region of high mean shear and turbulence, show strong linear relationships between the turbulent dissipation rate 
and several measures of internal wave energy (wave isotherm displacement, wave slope, and wave potential energy) (Moum 
et al. 1992; Lien et al. 1996). We have reanalyzed the data presented by Lien et al. (1996) and find a strong linear relationship 

(r2 = 0.64) between σ2
w, measured from the isothermal displacement rate, and . The estimated C = 0.1. This measurement 

of σ2
w is biased high by temperature fluctuations due to horizontal advection, consistent with a value of C that is biased low. 

c. Stratified turbulence models  

The model presented here yields results similar to those from the high-stratification, low-energy limit of commonly used 
two-equation stratified turbulence models. We discuss the model presented by Burchard et al. (1998, henceforth BPR), 
which is very close to that of Mellor and Yamada (1982) as modified by Galperin et al. (1988, henceforth G88). The low-

energy, high-stratification limit of the model is set by a maximum value of 0.56 for αN = L2N2/k [BPR Eq. (15)]. Here k = ½

(σ2
u + σ2

w) is the turbulent kinetic energy and L = 0.563k3/2/  is the master turbulence length scale [BPR Eq. (11)]. 

Combining these yields

 

[BPR Eq. (16)]. Combining these with BPR’s Eq. (14) and Eq. (30) yields the following expression for the turbulent 
diffusivity of mass:

K
ρ
 = γ /N2; γ = 0.24.(32)

 

Equations (30) and (32) are well established in the ocean mixing literature. Equation (30) states that the outer scale of the 



turbulence is the Ozmidov scale (Dillon 1982), or m−1
b, the upper end of the “−1”  wavenumber band in our model. Equation 

(32) is the Osborn (1980) expression, which forms the basis for dissipation-based estimates of ocean mixing rates. 

Equation (31) uses k, the total kinetic energy, rather than its vertical component σ2
w/2 as in (29). We define A  σ2

w/k 

as a measure of the anisotropy of the flow so that (31) predicts C = 0.212/A. For an isotropic flow, A = 0.66 and C = 0.32. 
G88’s Eq. (31) predicts A = 0.3 in the high stratification limit, yielding C = 0.71. These numbers are comparable to those 
predicted by (7). 

Thus the high stratification limit of the BPR model reproduces many of the basic equations of oceanic mixing. Despite 
this, there are fundamental conceptual differences between these stratified turbulence models and the model presented here. 
The stratified turbulence models claim to represent only the “turbulent”  velocity fluctuations. Thus k in (31) is the turbulent 
kinetic energy. Here, we propose that much of the energy and all of the anisotropy in stratified turbulence is due to its 
internal wave component, as is discussed in more detail by D’Asaro and Lien (2000) and Hanazaki and Hunt (1996). Internal 

waves, in this view, are an intrinsic part of stratified turbulence. Thus σ2
w in (7) includes all of the vertical velocity variance. 

The anisotropy of the flow depends primarily on the low-frequency cutoff of the Lagrangian frequency spectrum not, as in 
G88, on the parameter αN. For the oceanic spectra, (8) and (9) imply A  4f/πN, which will usually be far below the G88 

minimum value of 0.3. The observation that both the high-energy limit of the model presented here and the low-energy limit 
of BPR yield similar parameterizations [Eqs. (30), (31), (32)] suggests that a hybrid model, combining appropriate aspects of 
each, may be possible.

BPR find that their model greatly underpredicts  in the stratified thermocline. Their solution is to continue to use (31), 

but to set an arbitrary lower limit k > k2
min in order to include “internal wave breaking.”  We suggest that the problem is 

more fundamental. Their model, tuned to work above the W–T transition, fails to work below it. We suggest that, close to 
the transition, (29) will be superior to (31). Below the transition, (19) should be used along with model components that 
track the generation, propagation, and interactions of internal waves.

d. N scaling of diffusivity  

We have emphasized how the dynamics of a stratified flow vary with energy. Alternatively, one can view the decay rate 
of kinetic energy as a function of stratification at fixed energy, as shown in Fig. 5b . Below the W–T transition a “+2”  
slope is found (22); above the transition the decay rate is constant (11). 

The diapycnal diffusivity of mass due to internal-wave-driven turbulence is often computed from (32) using a mixing 
efficiency γ of about 0.2 (Ivey and Imberger 1991). For energies below the W–T transition, (19) leads to a diffusivity 
independent of N and proportional to the internal wave spectral level iw squared. For energies above the W–T transition, 

(7) leads to a diffusivity proportional to σ2
wN−1. Gargett (1984) showed that seasonally averaged diffusivities in lakes and 

fjords scaled as N−1 and proposed this scaling for the ocean interior. Subsequent measurements have showed this to be 
inappropriate for the ocean. Fjords are usually mixed by vigorous turbulence at a sill (D’Asaro and Lien 2000; Farmer and 
Freeland 1983), while lakes are often mixed by the rapid breakdown of intermittent wind-generated seiches (Imberger 1994). 
We suggest that Gargett’s (1984) scaling is appropriate for fjords and lakes because they are mixed by strong turbulence 
above the W–T transition and inappropriate for the open ocean because it is mixed by motions below the W–T transition. 

6. Summary and discussion  

We hypothesize the existence of two distinct dynamical regimes for mixing in stratified flows. At low energies, flow 
evolution is controlled by interactions between internal wave modes. At high energies, flow evolution is controlled by 
instabilities of the wave modes. The “wave–turbulence”  transition separating these regimes is marked by 

● an rms velocity approximately equal to the phase speed of the lowest internal wave mode

● the merging of the internal wave and turbulence spectra near Lagrangian frequency N (Fig. 2 ) 

● the decrease of the large-scale Richardson number to near one 

● the reduction of the internal wave vertical wavenumber bandwidth to a small value (Fig. 4 ) 

● a change from a quadratic relationship between wave energy and dissipation rate at low energies (19) to a linear 



relationship at high energies (7). 

Existing parameterizations of the Lagrangian and Eulerian wavenumber spectral shapes (Figs. 1  and 3 ), combined 
with the Polzin et al. (1995) parameterization of dissipation rate (19), predict that all of the above will occur at nearly the 
same energy. The shape of the Lagrangian and Eulerian spectra (Figs. 2  and 4 ) may be a useful diagnostic as to 
whether a given flow is above or below the W–T transition.

The W–T transition is predicted to occur at a lower average dissipation rate and internal wave shear, but similar energy 
density, in shallow water than in deep water [Eqs. (26), (27), (28)]. The open ocean thermocline is likely to remain below 
the transition, but flow on the continental shelves may often rise above it. The upper atmosphere appears to be close to the 
transition, judging from the small range of wavenumbers below mc. Turbulence parameterization schemes that ignore 

internal waves will be accurate only for energies above the transition.

The present analysis, although aimed mostly at oceanic applications, should also be relevant to other stratified flows. The 
most obvious obstacle is the presence of the Coriolis frequency f  in many of the expressions. This appears, first, because 
the internal wave energy in the ocean is dominated by motions near f. Expressions (2) and (4) describing energy spectra 
thus contain f. Second, the internal wave dissipation closure (18) depends most fundamentally on the horizontal 
wavenumber, kH, parameterized in (19) by the vertical wavenumber m times the aspect ratio of the flow, which is 

proportional to f/N. In neither case is f  fundamental to the analysis, and a theory in which f  did not appear could be 
formulated. Henyey (1991) gives a short description of how to proceed. 

Although the analysis above has enabled us to sketch the nature of the W–T transition some features remain 
unsatisfactory. In particular, the results are sensitive to low-mode, low-frequency energy that dominates the internal wave 
energy spectrum. It seems far more likely that the high modes, that is, the shear rather than the energy, are important, but 
we do not have measurements of their frequency spectra. The analysis would thus be more satisfactory if it were 
formulated using Lagrangian and Eulerian spectra of either shear or vertical velocity. Similarly, the analysis ignores zero 
frequency motions, although any mean shear must be important if sufficiently large. This may explain the absence of 
“vortical modes”  (Müller et al. 1986) in the formulation. Furthermore, peaks in energy at frequencies near N are often 
observed; these could significantly modify the results. The analysis depends heavily on assumptions about the “−1”  
wavenumber range in the shear spectrum. It is unsettling that the dynamical nature of this region remains unresolved 
(Holloway 1983; Hines 1991; Eckermann 1999; Gardner 1996; Pinkel and Anderson 1997). Finally, we have been unable to 
formulate a satisfactory theory near the W–T transition, as shown by the neglect of “braced”  expressions throughout the 
analysis. Our results are bold extrapolations from above and below the transition. There is a clear need for measurements, 
particularly of vertical wavenumber spectra near and above the transition, to test the various assumptions required here. 
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Figures  
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Fig. 1. Model Lagrangian frequency spectra of vertical [ w(ω)] and horizontal [ H(ω)] velocity as a function of Lagrangian 

frequency ω. The model consists of an internal wave component (f < ω < N), extending from the Coriolis frequency f to the 
buoyancy frequency N, and a turbulent component (N < ω < ωk), extending to the Kolmogorov frequency ωk and proportional to 

the turbulent dissipation rate . 
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Fig. 2. Evolution of Lagrangian frequency spectrum of vertical velocity with increasing energy. Spectra A and B are below the 
W–T transition energy. Spectrum C is just at the transition energy. Spectra D and E are two possible spectra above the transition 
energy. Spectrum E is not observed to occur. The near-discontinuity of the spectrum at frequency N is measured by ΔWT . 
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Fig. 3. Model spectra of vertical wavenumber spectrum of shear.
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Fig. 4. Evolution of model vertical wavenumber spectra of shear with increasing energy. Spectrum A is close to GM energy. 
With increasing energy the bandwidth of the internal waves shrinks and the bandwidth of turbulence increases, but the spectrum 
remains tied to the dashed line labeled “Saturation.”  Spectrum C is close to the wave-turbulence transition. Spectrum D (insert) 
is not observed.
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Fig. 5. The W–T transition energy defined as the intersection of the wave–wave interaction and stratified turbulence model 

predictions of  as a function of σ2
U. The coordinates are log–log. Gray-dashed lines show possible extrapolation errors near the 



 

 

transition: (a) dimensional and (b) nondimensional.
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