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ABSTRACT

What drives the equatorial deep jets is a puzzle because of their isolation from 
surface forcing by the intervening main pycnocline and the Equatorial 
Undercurrent, and from lateral boundaries by distances of tens of thousands of 
kilometers. It would take decades for energy to propagate to the jets’  midbasin 
location from boundary sources. Their persistence points to some mechanism 
maintaining them in situ. The authors hypothesize that the ambient internal wave 
field deposits momentum fluxes at critical layers within the deep jets and, using 
calculated momentum- and energy-flux divergences as forcing, estimate 
acceleration of the mean zonal flow in the deep jets. Internal wave momentum-
flux divergences are more than sufficient to sustain the jets, acting to sharpen 
the shear between the jets on timescales of months to years. Predicted energy-
flux divergences produce turbulent dissipation rates compatible with those 
observed.

1. Introduction  

Some basic characteristics of the Pacific equatorial deep jets are well established 
(Firing 1987; Ponte and Luyten 1989; Muench et al. 1994). The jets form vertically 

alternating layers of ±5 cm s−1 zonal flow with vertical wavelengths of 300–500 m 
straddling ±2° of the equator. They span the depth range 500–3000 m, insulated 
from the surface by the Equatorial Undercurrent and the main pycnocline. In the 
Pacific, where they have been best measured, they are zonally coherent over at 
least 10° longitude (Ponte and Luyten 1989) and steady on timescales of at least 
two years (Eriksen 1985). Their zonal velocity reverses at ±1.5° latitude and potential vorticity anomalies are associated with 
them, properties of first-meridional-mode equatorially trapped long Rossby waves with zonal group velocities Cgx = N/[(2n + 

1)kz] (O’Neill and Luyten 1984; Muench et al. 1994) rather than long Kelvin waves (Eriksen 1980; McCreary and Lukas 

1986; Ponte and Luyten 1989). 
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However, what generates or maintains the deep jets is still unknown. Wind forcing (Wunsch 1977) cannot explain their 
deep penetration (McCreary 1984; McCreary and Lukas 1986), which would require multiple reflections off the eastern and 
western boundaries, taking decades to set up (Ponte and Luyten 1989). Even waves generated on the eastern boundary 
(Ponte 1989) would take a decade to reach the central equatorial Pacific where jets have been observed. Neither can these 
sources explain the jets’  narrow vertical wavenumber band. The isolation from plausible external forces suggests that there 
must be some local mechanism sustaining the jets.

Various modes of instability have been investigated (L. M. Rothstein 1999, personal communication; Rowe 1996). Hua et 
al. (1997) showed that structure closely resembling the jets is a natural outcome of equatorial inertial instability, f   0 
(where  is the potential vorticity) and that energy will cascade from smaller instability scales to deep-jet wavelengths. They 
also argued that the meridional shear Uy > 0 across the equator was unstable using data from Firing (1987). However, as 

shown by Muench et al. (1994), the deep jets dominate potential vorticity anomalies and Uy on the equator. 

High dissipation rates found in the shear zones between the jets would erode the jets in Δt = E/  = 6–10 yr, where E is the 
jet energy and  the observed turbulent kinetic energy dissipation rate (Gregg et al. 1995). This is an underestimate of Δt if 
the jets are not the source of the turbulence as argued here.

Muench and Kunze (1999, referred to as Part I) postulate that the elevated dissipation rates between the deep jets arose 
from internal wave critical layers. They quantify the magnitude and structure of the momentum- and energy-flux 
divergences due to an isotropic Garrett and Munk internal wave field set at 3° latitude (Munk 1981) and encountering critical 
layers within the jets (their Fig. 8, reproduced here in Fig. 2 ). Crude estimates suggest that the magnitude of the 
momentum-flux divergence is sufficient to significantly accelerate the deep jets. 

In this paper, we examine the forced response more rigorously by applying the Muench and Kunze (1999) estimates for 
momentum-flux divergences that take into account shadowing by adjacent jets and spectral replenishment within and 
between the jets to an analytic model for the acceleration and cross-stream circulation of a jet. We also investigate the 
sensitivity of the model to plausible changes in the momentum-flux divergence. 

a. Theoretical background  

Central to understanding how waves interact with a mean flow is the “noninteraction”  theorem. This theorem was proven 
more than 35 years ago for planetary Rossby waves in geostrophic shear (Eliassen and Palm 1961) and since then 
generalized to other wave–mean flow systems (Charney and Drazin 1961; Holton 1974;Andrews and McIntyre 1976; Boyd 
1976; Dunkerton 1980). It states that, given a linear inviscid harmonic wave field, there is no net acceleration of the mean 
flow, and no net change of the mean background density structure, in the absence of forcing, damping, or critical layers. 
The wave field may drive an Eulerian circulation but, in the absence of irreversible processes, Eulerian and wave transports 
exactly balance (Boyd 1976) so that no net Lagrangian transport of properties occurs. This theorem imposes important 
restrictions on the impact of a wave field on a background flow.

Other studies of wave–mean flow interactions have considered damping by Rayleigh friction and Newtonian cooling so 
that wave fluxes are no longer conserved (Andrews and McIntyre 1976; Boyd 1976; McPhaden et al. 1986; Proehl 1990). In 
this paper, we will conserve wave fluxes except at critical layers; that is, we assume that conditions for the noninteraction 
theorem are violated only at critical layers. Critical-layer interactions produce (i) acceleration or deceleration of the mean 
flow through deposition of internal wave momentum flux, as well as (ii) possible frictional deceleration due to mixing of 
momentum arising from turbulence generated by energy-flux divergences. 

b. Prior results  

Previous oceanographic investigations of wave–mean flow interactions have focused on acceleration by a single forcing 
term in the momentum equations. Following an atmosphere model by Jones and Houghton (1971), Ruddick (1980) balanced 
the vertical momentum-flux divergence with acceleration of the mean flow,

 

where the angle brackets denote a time mean, primes are second-order wave quantities, and the U/ t refers to wave-
driven mean acceleration. Kunze and Müller (1989) argued that, by analogy to surface wind stress forcing, the momentum-
flux divergence is directly balanced by the Coriolis term,

 

This result requires that there are no horizontal gradients to the momentum-flux divergence, so no Ekman pumping. A 
more complete scale analysis (e.g., Charney 1973) reveals that forcing of a mean flow of finite extent by momentum-flux 
divergences requires consideration of more complete equations of motion. The Ruddick (1980) balance holds in the limit of 
tall narrow jets (aspect ratios H/L  f/N), and the Kunze and Müller balance in the limit of very broad flow. 



The complete equations of motion are necessary here. Our approach is shown to be identical to the transformed Eulerian 
mean equations and the Eliassen–Palm formalism (Andrews et al. 1987) in the appendix. The Eliassen–Palm flux was 
developed in conjunction with the noninteraction theorem. It is often used as a diagnostic for wave–mean flow interactions 
in quasigeostrophic problems because of its unique definition under that scaling which links the momentum fluxes of a 
quasigeostrophic forcing eddy field to the meridional flux of potential vorticity, · F = ‹ ′q′›. No such link exists for 
internal gravity wave forcing (which has zero potential vorticity fluxes). Therefore, to keep the number of variables to a 
minimum, it is preferable to use momentum- and buoyancy-fluxes rather than Eliassen–Palm fluxes for our problem. 

Separate forced equations are produced for the acceleration of the mean zonal flow and the cross-stream circulation 
induced by momentum-flux divergences of the internal wave field (section 2). We will use flux-divergence forcing from 
Muench and Kunze (1999), summarized in section 3. The first-order solution is presented first (section 4a). Solutions 
including O(Ro) terms (section 4b), and the effects of turbulent viscosity and diffusion (section 4c), are shown to differ 
little from the first-order solution. The resulting alongstream acceleration and across-stream circulation, as well as their 
implications, are discussed in the conclusions (section 5). 

2. Method  

a. Equations of motion  

We begin our analysis by deriving the appropriate equations of motion. Observations of the deep jets show that they are 
zonally coherent over at least 10° of latitude, implying a zonal wavelength x in excess of 10 000 km (Ponte and Luyten 

1989). Therefore, we assume the background flow associated with the equatorial deep jets is unidirectional with / x = 0 and 
slowly varying in time, that is, U(y, z, t). 

We define a cross-stream mean circulation ( , ) induced by second-order fluctuating wave quantities, for example, ′ 

such that ‹ ′›  = 0 where the angle brackets denote a long-time average. Then, the equations of motion for mean background 
zonal velocity U, meridional velocity , vertical velocity , buoyancy B, and reduced pressure P are

 

where νe(y, z) and κe(y, z) represent turbulent eddy viscosities and diffusivities. We assume that the meridional -

momentum equation remains in equatorial geostrophic balance [braced terms in (2)] (Lukas and Firing 1984) and the vertical 
w-momentum equation in hydrostatic balance (3), allowing us to relate deep equatorial jet zonal velocity U and buoyancy B 
through the equatorial thermal wind

βyUz = −By.
 

This requires that the deep equatorial jets’  timescale
 



t  (βy)−1  (βL)−1  10 days,

where the equatorial radius of deformation L = (N z/(2πβ) )½ = 68 km. The observed jets have timescales exceeding 15 

months (Firing 1987; Fig. 3 of Muench et al. 1994), justifying this assumption. 

While, like midlatitude internal waves, the forcing equatorial internal wave field has been observed both to be invariant 
(Blumenthal 1987) and varying by a factor of 3 (Hayes 1981) on seasonal timescales, it seems likely that, averaged over a 
year, the equatorial internal wave field can be taken as invariant. Muench and Kunze (1999) use the Garrett and Munk (Munk 
1981) internal wave field set at 3° latitude to impinge upon the jets. This model is horizontally isotropic. Unlike the GM76 

model (Garrett and Munk 1975; Cairns and Williams 1976), its spectral level varies as f−1. Additional discussion of variability 
in the equatorial internal wave field and its effect on the momentum-flux divergences can be found in the conclusions of 
Muench and Kunze (1999). 

The buoyancy is defined as B(z) + B(y, z, t) + b′ = − gδρ/ρo, where B/ z = Bz = N2 represents the background 

stratification, the overbar denotes a spatial average over the region of interest, B(y, z, t) perturbations are due to the deep 
equatorial jets including the wave-induced background buoyancy perturbation, and b′ is the fluctuating wave buoyancy 
anomalies. The local buoyancy frequency N can be taken as constant in time and space in the vicinity of the deep jets 
(Muench et al. 1994), the jets inducing only weak perturbations to the background stratification. 

We explicitly distinguish between momentum-flux deposition by internal waves at critical layers and mixing of momentum 
by turbulence generated by internal wave breaking at critical layers. The turbulent eddy viscosity νe(y, z) in (1) and eddy 

diffusivity κe(y, z) in (4) arise from elevated turbulence generated at internal wave critical layers between the jets due to 

energy-flux divergences  = | · ( ′p′)|. The turbulent eddy viscosity can be estimated as

 

from the turbulent kinetic energy equation (Osborn 1980) since only wave shears (u′z
2 + ′

z
2) > 2N are large enough to 

give rise to turbulence (Miles and Howard 1961); shear associated with the equatorial jets Uz is far too weak to induce shear 

instability (Gregg et al. 1995), so cannot be directly responsible for the observed turbulence. The double-primed quantities 
are turbulent. The eddy diffusivity can be parameterized as

 

where the “mixing efficiency”  γ  0.2 (Osborn 1980). Approximating the vertical shear by a critical Richardson number 
criterion Ric in (6) may overestimate the turbulent eddy viscosities since Ri < Ric = 0.25 for shear instability (Miles and 

Howard 1961). The turbulent kinetic energy dissipation rate (y, z) is equated to the vertical energy-flux divergence at 
critical layers (Fig. 2a )

 

consistent with observations (Fig. 17 of Kunze et al. 1995). Parameterizations (6)–(8) capture the basic physics of 
turbulent mixing, if not the exact eddy viscosities and diffusivities.

b. Cross-stream streamfunction and alongstream acceleration  

Some manipulation of (1)–(5) is necessary to determine how the momentum-flux divergences influence the zonal mean 
flow U. If the wave-induced accelerations of the mean zonal velocity U remain in thermal-wind balance (2), then we can 
define a geostrophic acceleration potential  such that

 

and, from continuity (5), a cross-stream circulation streamfunction  can be defined such that

 



While an acceleration potential is the simplest way to reduce the equations of motion into two governing equations in 
terms of  and  on a midlatitude f  plane, the geometry of the equator adds an essential singularity to the partial differential 
equation for the acceleration potential , making a solution using this approach problematic. 

Instead, following McPhaden et al. (1986), a conservation equation for the cross-stream streamfunction  and a 
diagnostic equation for the alongstream acceleration U/ t can be formulated. Solving (1) and (4) for the cross-stream 
streamfunction  gives

 

where flow curvatures, Uyy, Uyz, and Uzz, have been neglected. Should vertical and meridional shear terms prove 

significant, neglect of flow curvatures would have to be reevaluated. However, the O(Ro) terms prove to have little impact 
(section 4b), justifying their neglect. Assuming momentum-flux divergences are significant only in the vicinity of critical 
layers within the equatorial deep jets (Muench and Kunze 1999) implies that the cross-stream streamfunction is bounded in 
the far field ( / y = / z  0 as y  ∞). With the jets roughly symmetric about the equator and assuming symmetric 

forcing by the internal wave field, there is no reason to expect any cross-equatorial flow, so  = / z = 0 at y = 0. 
Asymmetric forcing by internal waves, as might arise from asymmetry in atmospheric forcing (such as the tendency for the 
intertropical convergence zone to lie in the Northern Hemisphere), would invalidate this condition, but there is insufficient 
data at present to prescribe asymmetric forcing. Symmetric forcing is more appropriate, given our limited knowledge of the 
equatorial internal wave field.

Solving (11) for the cross-stream streamfunction  provides the wave-induced cross-stream circulation ( , ). Then, 
from (1), the zonal acceleration due to the momentum-flux divergences is given by

 

c. Application to the equatorial deep jets  

The model background jets used in this study (Muench and Kunze 1999) are vertically sinusoidal and meridionally 
Gaussian:

 

(Fig. 1 ), where L = 68 km is the equatorial radius of deformation (Table 1 ). A Gaussian meridional structure 
incorrectly implies Kelvin wave dynamics, while Muench et al. (1994) demonstrated that the jets are better described as 
equatorially trapped long Rossby waves with off-equator flow reversals. However, momentum-flux divergences near the 
equator were found to be comparable when more realistic meridional structures were used in the simulations (Muench and 
Kunze 1999). 

d. Scaling  

Scaling arguments will help identify dominant terms in (11). We define a height scale z/2π, where z = 330 m is the 

vertical wavelength of Pacific jets (Table 1 ; Muench et al. 1994); vertical wavelengths of up to 500 m have been 
observed in the Indian (Luyten and Swallow 1976; Dengler and Quadfasel 2000, manuscript submitted to J. Phys. 
Oceanogr.) and Atlantic (Eriksen 1985; Ponte et al. 1990; Gouriou et al. 1999) oceans. A meridional lengthscale L = (N z/

(2πβ) )½ = 68 km corresponds to the equatorial radius of deformation, and a zonal velocity scale U = 0.05 m s−1 (Table 1 

) is consistent with observations (Firing 1987). The background buoyancy frequency N = 2 × 10−3 rad s−1 can be taken 
as constant. Separating the effective Coriolis term into two parts, terms on the lefthand side of (11) scale as



 

The last three terms are of order Rossby number U/βL2, which is 0.5 in parts of the deep jets, so not small. Terms 
containing vertical shear Uz scale identically to those with meridional shear because the Froude number Uz/N and Rossby 

number Uy/(βy) for the deep jets are identical,

 

This scaling is robust at the equator because Uy  0 at the same rate as y  0.
 

To scale the relative magnitudes of the momentum-flux terms on the righthand side of (11), we assume that momentum-
flux divergences are proportional to gradients of the mean flow,

 

where the method of derivation of the constants of proportionality Cab is described by Eqs. (10) and (11) of Muench and 

Kunze (1999). These parameterizations are developed for scaling purposes only and cannot be used to solve the complete 
problem because they do not accurately capture the degree of localization of the forcing terms (Fig. 2a ). If scales 
appropriate for the deep jets are used (Table 1 ), then

 

The ‹ ′b′›  correction to the residual streamfunction is ‹ ′b′›/N2  O(C bU/N2) = 8 × 10−7 L = 4 × 10−2 m2 s−1, 

implying a correction to the residual meridional circulation  of O(0.1 cm s−1) as compared to O(1 cm s−1) due to ‹u′w′›/
z. Therefore, the only forcing term that needs to be considered in this problem is divergence of the vertical flux of zonal 

momentum, ‹u′w′›/ z. This implies that the jets are broad. 

3. Flux-divergence forcing  

The momentum- and energy-flux divergences that arise from internal waves encountering critical layers in the equatorial 
deep jets were estimated by Muench and Kunze (1999) and are summarized here in Fig. 2 . Muench and Kunze found jet 
geometry to be important for the structure and magnitude of the momentum-flux divergence. Jets of both longer and shorter 
vertical wavelengths were found to have weaker momentum-flux divergences (section 4d of Muench and Kunze)—longer 
wavelengths because there is more time for wave–wave interactions to spectrally replenish that part of the internal wave 
spectrum depleted by critical-layer interactions between and within the jets (thus restoring vertical symmetry and the 
tendency for up- and downgoing waves encountering critical layers to cancel each other)—shorter wavelengths because of 
greater shadowing. However, there are numerous assumptions and uncertainties in the flux divergences so they should be 
taken as order-of-magnitude estimates only.

Muench and Kunze’s (1999) estimates of the vertical divergence of vertical momentum flux are reproduced in Fig. 2a . 
The divergence vanishes at jet centers and between the jets. Arms of positive momentum-flux divergence encircle westward 
jets while arms of negative flux divergence embrace eastward jets. Maximum flux-divergence magnitudes are found at ±0.8° 
latitude above and below jet centers. The magnitude is sensitive to the spectral replenishment rate and the internal wave 
spectral level (section 4a), but the localized structure in Fig. 2a  is a robust feature of the meridional and vertical structure 
of the jets.

The energy-flux divergence (Fig. 2b ), equivalent to the turbulent dissipation rate  (8), reaches a maximum of 5 × 

10−9 W kg−1 localized in the high-shear layers between the jets. These values are consistent with observations (Gregg et al. 
1995; K. Polzin 1999, personal communication). Energy-flux divergences are less pronounced on the lateral edges of the jets 
at ±1° latitude. 

4. Forcing with realistic estimates of ‹u′w′›   

For greater physical insight, we start with the first-order solutions of the cross-stream streamfunction  (11) and zonal 



acceleration U/ t (12). The O(Ro) terms will be included in section 4b. The first-order cross-stream streamfunction  is 
found by neglecting order-Rossby-number and turbulent viscous/diffusion terms in (11)

 

which may be solved analytically if the momentum-flux divergence forcing is known and is of simple form (Muench 
1995). Likewise, the u-momentum in Eq. (12) reduces to a simple balance between acceleration of the mean zonal flow U/
t, meridional velocity , and the vertical momentum-flux divergence

 

Equations (13) and (14) were solved using a simultaneous overrelaxation algorithm (Press et al. 1987). 

a. Momentum-flux divergences with spectral replenishment  

The cross-stream circulation is shown in Fig. 3b  for the momentum-flux divergences from Muench and Kunze 
(1999), which include shadowing of rays by adjacent jets and spectral replenishment through internal wave–wave 

interactions between and within the jets (Fig. 2a ). Maximum momentum-flux divergences are 1.6 cm s−1/month (Fig. 2b 
). Comparison of Figs. 2a , 3a, and 3b  shows that cross-stream flow tends to balance the flux-divergence off the 

equator, while zonal acceleration dominates on the equator. The circulation is localized and strongest on the edges of the jets, 

with maximum meridional velocities of  = 0.5 cm s−1 carrying fluid into the upper and lower edges of westward jets and 
out of the upper and lower edges of eastward jets. These Eulerian flows largely compensate the transport associated with 
the vertical divergence of vertical momentum-flux ‹u′w′›/ z (Fig. 2a ) off the equator. Approaching the equator, the 
Coriolis frequency βy  0 while  remains finite, so the Coriolis term in (14) becomes negligible, leaving only the zonal 
acceleration U/ t to balance ‹u′w′›/ z. 

The double-lobed acceleration structure (Fig. 3a ) acts on the zonal velocity structure straddling the equator by 

accelerating the upper and lower edges of the jets at maximum rates of 1.6 cm s−1/month. The upper and lower edges of 
westward jets accelerate westward, upper and lower edges of eastward jets eastward (Fig. 3a ). The net effect is to 
sharpen the shear between the jets and make the vertical structure more square-wave-like (Fig. 4 ). Jet centers do not 

intensify or migrate. The maximum acceleration of 1.6 cm s−1/month is large and comparable to βy  = 1.5 cm s−1/month 

for  = 0.5 cm s−1 off the equator (Fig. 3b ). By comparison, McPhaden et al. (1986) found accelerations of less 0.1 cm 

s−1/month due to wind-forced Kelvin waves encountering critical layers in the equatorial undercurrent. Kelvin waves are not 
physically analogous to the problem described here because they are equatorially trapped and so blocked from interacting 
with interior jets by jets above and below. Internal waves overcome this by propagating meridionally as well as zonally.

Under the influence of internal-wave-induced acceleration, the jets become square-wave-like (Figs. 4  and 5 ). 
Sharpening is most pronounced on the equator (cf. Figs. 1  and 5 ). Based on the momentum-flux divergence in Fig. 2 

 (Muench and Kunze 1999), the jet vertical shear should become unstable, Uz/N > 2, in less than a month. This seems 

unrealistic given the observed steady nature of the jets.

Several factors could diminish the magnitude of forcing by momentum-flux divergences:

● reducing the internal wave spectral levels. We have used the Munk (1981) model for the GM spectrum with its f−1 
dependence for variance as compared to the GM76 (Cairns and Williams 1976; Gregg and Kunze 1991) model with 
variance independent of f. Measurements of the finescale vertical wavenumber spectrum across the equator at 140°
W and 156°E (Gregg et al. 1995) find spectral levels elevated above GM76 levels by factors of 2–3 at 3°N (where we 
set our impinging wave field), but smaller than the Munk (1981) level by factors of 3–5, so would reduce the 
momentum-flux divergences by the same amount.

● higher spectral replenishment rates would restore the depleted part of the internal wave field more rapidly, making it 
more symmetric and so diminishing the net momentum-flux divergences through compensation between up- and 
downgoing waves, particularly between the jets. Our replenishment rates are based on midlatitude studies (Müller et 
al. 1986), which may not be valid on the equator. 

● erosion by turbulent friction and diffusion.

● other equatorial zonal shears depleting internal wave momentum fluxes at critical layers, leaving only a fraction 
available to interact with the jets.

These factors would impact the magnitude of the momentum-flux divergences but not their general structure. In the 
following sections, we explore some of the assumptions (Rossby number, turbulent mixing, spectral replenishment rates, 



other background shears) that went into our estimate of the momentum-flux divergence forcing and how these assumptions 
influence the magnitude of the acceleration. Only the first and last factors listed above will remain viable candidates for 
reducing the momentum-flux divergence to reasonable levels. 

b. Including O(Ro) terms  

Although the Rossby number for the jets is not small (Ro  0.5), inclusion of O(Ro) terms—that is, solving (11) and (12) 
rather than (13) and (14)—does not significantly alter the residual meridional velocity. Including O(Ro) terms [(11) rather 
than (13)] reduces the maximum meridional velocity by only 7% and does not shift the region of strongest cross-stream 
circulation. Using (12) rather than (14) to estimate the acceleration likewise produces no major changes; the acceleration 
increases by less than 1% because O(Ro) terms are only significant in 30-m-thick layers (one-tenth of a jet wavelength) 
between the jets in a limited ±0.5° latitudinal band about the equator. Therefore, advection of the background shear by the 
cross-stream circulation is not important and the O(Ro) terms do not significantly alter the spatial structure of the zonal 
acceleration. Likewise, neglected nonlinear advection terms in the -momentum equation (2) are only comparable to the 
retained geostrophic terms in small localized regions of the domain, so do not affect the overall balance significantly.

c. Including turbulent friction and diffusion  

Viscous effects due to internal waves breaking and producing turbulence at critical layers will also influence the mean 

flow [(1)–(5)]. Using our estimate of a maximum dissipation rate of  = 10−8 W kg−1 (Fig. 2b ), the maximum 

viscosity/diffusivity is νe  κe  /4N2  6 × 10−4 m2 s−1 from (6) and (7), respectively. If, for the sake of argument, 

deceleration of the mean flow by turbulent friction is taken to be a first-order balance, we estimate a viscous decay rate 2
z/

(4π2νe) = N2 2
z/(π

2 2)  2–3 months for the jets, comparable to the rate at which internal wave momentum-flux 

divergences sharpen the jets. This is a gross underestimate because high dissipation rates are localized to small regions 
between the jets as shown in the next paragraph. Gregg et al. (1995) estimated a decay timescale on energetic grounds of E/

  6–10 yr. This is also an underestimate since the jets are not the source of the turbulence. 

The effect of the internal-wave-driven turbulent mixing on the jets can be treated more rigorously by including the 
spatially variable diffusion coefficients in (14) as

 

and in (13) as

 

where νe(y, z) and κe(y, z) are given by (6) and (7), respectively, using Fig. 2b  energy-flux divergences. Turbulent 

viscosities and diffusivities will also influence the structure of the internal wave momentum-flux divergence, but this is a still 
higher-order effect that is neglected here. Inclusion of turbulent viscous and diffusion terms, that is, solving (15) and (16), 
does not visibly alter the zonal acceleration. While the dissipation rate is large between the jets, the velocity and energy there 
is small. Dissipation rates are small in the jet centers. Thus, inclusion of turbulent friction drains little energy from the jets. 
Decay times are O(100 yr). 

Elevated turbulent dissipation rates observed in other equatorial shears (Gregg et al. 1995) will increase the overall 
background dissipation rate. Scale analysis suggests that decelerations produced by these increased dissipation rates are O

(3 × 10−3 cm s−1/month), corresponding to decay times of 300 years. Therefore, the effects of turbulent friction and 
mixing are insignificant compared to the momentum-flux divergence. 

d. Interactions with other shears  

Muench and Kunze (1999) discuss interactions between the internal gravity wave field and background equatorial shears 
other than the deep jets in their conclusions. High dissipation rates are found in all regions of high local shear, not just shear 
associated with the deep jets (Gregg et al. 1995). Unlike the steady deep jets, the random isotropic nature of these other 
shears will produce no net mean momentum-flux divergence. Nevertheless, these localized events will deplete the internal 
wave momentum-flux available to interact with the jets. 



According to Ponte and Luyten (1989), the deep jets account for about 20% of the total variance in the zonal velocity 
vertical wavenumber spectrum over the depth range of the jets. The other dominant spectral peak was at a vertical 
wavelength of 560 m. This peak was associated with motions of 3–6 yr period and 10 000-km zonal wavelength that they 
attributed to meridionally symmetric long Rossby waves. If shears other than the deep jets provide a sink for 80% of the 
internal wave energy, then momentum-flux divergences in the deep jets will be reduced by a factor of 5 from those shown 
in Fig. 2a . Taken together with the factor of 3–5 overestimation of internal wave forcing using the Munk (1981) internal 
wave model (section 4a), acceleration of the jets could be reduced by over an order of magnitude, approaching more 

reasonable values of 1 cm s−1/yr (Figs. 4  and 5 ). 

5. Conclusions  

We have explored deposition of internal wave momentum at critical layers in the jets as a possible mechanism for 
maintaining the equatorial deep jets. In Part I, Muench and Kunze (1999) quantify the momentum- and energy-flux 
divergences expected from a Garrett and Munk internal wave field (Munk 1981) propagating equatorward from ±3° latitude 
and encountering critical layers within the jets (Fig. 2a ). Account was made for shadowing by neighboring jets and 
spectral replenishment of the internal wave spectrum through wave–wave interactions (Müller et al. 1986) between and 
within the jets.

Equating energy-flux divergences to turbulence production rates implies maximum turbulence dissipation rates of 5 × 10−9 

W kg−1 (Fig. 2b ), consistent with microstructure measurements. Turbulent friction and mixing have negligible impact on 
the deep jets because they are confined to thin layers in the shear zones between the jets. As energy-flux divergences would 
arise even in the presence of perfectly compensating up- and downgoing momentum fluxes, they only provide an upper 
bound constraint on the momentum-flux divergences. 

Momentum-flux divergences due to internal wave critical layers within the equatorial deep jets are more than sufficient to 
maintain the jets. These accelerations act to make the vertical structure on the equator more square-wave-like (Fig. 4 ). 
Jet centers do not intensify or migrate, but shear between the jets sharpens (Figs. 4  and 5 ). These intensifying shears 
might ultimately break down into turbulence through shear instability (Uz/N > 2), weakening the background shear, or 

cascade upscale to jet wavelengths as argued by Hua et al. (1997). The O(Ro) terms in (11) and (12) were found to have 
negligible impact on acceleration of the jets. This implies that terms involving background flow curvature can be neglected 
as well so that the simpler diagnostic equations for cross-stream streamfunction (13) and geostrophic acceleration (14) can 
be used.

The magnitude of the inferred accelerations indicates that this forcing mechanism cannot be ignored despite its 

uncertainties. In fact, the 1.6 cm s−1/month accelerations of the upper and lower edges of the jets based on the momentum-
flux divergences in Fig. 2a  are clearly excessive given the steady nature of the jets in two years of observations (Firing 
1987). Several processes could reduce the momentum-flux divergences and geostrophic acceleration to more plausible 
levels:

1. (i) observed internal wave levels at 3°N (Gregg et al. 1995) are a factor of 3–5 weaker than predicted by the 
Munk (1981) internal wave spectral model used by Muench and Kunze (1999). This would reduce the momentum-
flux divergences by a comparable amount.

2. (ii) critical-layer interactions with the other background shears that account for 80% of the zonal flows at the 
equator (Ponte and Luyten 1989) would deplete the internal wave field and reduce momentum-flux divergences in the 
deep jets by a factor of 5.

3. (iii) higher spectral replenishment rates would diminish the difference between up- and downgoing waves 
encountering critical layers, thus reducing the net momentum-flux divergences; if spectral replenishment was 
complete and instantaneous, there would be no net momentum-flux divergence and no acceleration of the mean flow. 
It has been suggested that spectral replenishment rates at the equator are lower than the midlatitude rates we have 
used (M. C. Gregg 1999, personal communication) but this has not yet been tested rigorously.

Taken together, (i) and (ii) would reduce internal wave momentum-flux divergences (Fig. 2a ) and geostrophic 

accelerations (Fig. 3a ) by more than an order of magnitude to more reasonable values of 0.5–1 cm s−1/yr. Thus, shear 
between the jets is sharpening at a sufficient rate to produce shear instability Uz > 2N in 1–2 years. Both longer and shorter 

jet wavelengths were found to have diminished momentum-flux divergences (section 4d of Muench and Kunze), possibly 
insufficient to maintain scales other than those observed against turbulent erosion. Longer wavelengths allow more spectral 
replenishment between critical layers which symmetrizes the up- and downgoing internal wave fields. Shorter wavelengths 
have reduced momentum-flux divergences because of greater shadowing. Alternatively, Hua et al. (1997) argued that 
equatorial instabilities on scales shorter than those of the jets cascade energy upscale to jet wavelengths.

With this picture of how the equatorial deep jets might persist, questions remain about the origin of these giant coherent 
structures. Given their long Rossby wave character (Muench et al. 1994), implying westward energy propagation, clues 
might be found on the eastern boundary along the continental slope of South America. However, the strong positive 



feedback associated with internal wave momentum-flux divergences maintaining existing jets may obscure such origins. 
Alternatively, Hua et al.’s (1997) work suggests that structure like that of the equatorial deep jets is a natural outcome of 
instability on the equator, so could arise in situ from forcing by a variety of sources including but not limited to the 
deposition of momentum-flux at the internal wave critical layers described here. 
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APPENDIX  

6. Equivalence to the Eliassen–Palm Flux Approach  

Atmospheric scientists and some equatorial oceanographers have approached the question of wave–mean flow interaction 
using Eliassen–Palm fluxes in the transformed Eulerian-mean equations (Andrews and McIntyre 1976; McPhaden et al. 
1986; Proehl 1990). While appropriate for the atmosphere, some of the approximations made to the transformed Eulerian-
mean equations by these authors are not appropriate for our application. However, with approximations appropriate for the 
deep jets, the two approaches will be shown to be equivalent in this appendix.

We first define a residual wave-induced mean meridional circulation



 

This transformation removes meridional and vertical velocities associated with compensating Eulerian mean and wave-
induced transports. These effects are small for the deep jets but are included here to illustrate the development of this 
method. Substituting (A1) and (A2) into (1)–(5), the transformed Eulerian-mean (TEM) equations are

 

where the Eliassen–Palm flux vector (0, Fy, Fz) is given by

 

The jet zonal velocity U, including the wave-induced mean perturbation, is assumed to remain in thermal-wind balance 
with the buoyancy to leading order (A4);that is, accelerations are assumed to be weak. 

We define a residual cross-stream streamfunction χ such that

 

which represents the cross-stream circulation not compensated for by wave-induced momentum fluxes, that is, the net 
cross-stream transport. The equations of motion then become

 

Using the assumed geostrophic nature of the residual zonal flow, a governing equation for the cross-stream 
streamfunction may be found:



 

where By = −βyUz. With the transformation, χ =  − ‹ ′b′›/N2, and neglecting turbulent friction and diffusion, this 

equation is identical to (11). The induced acceleration of the zonal flow may now be found by solving for χ in (A13) and 
using (A11) to obtain U/ t. The scaling for the left-hand side of (A13) is identical to that of (8) and implies that χ  . 

Were the induced cross-stream circulation small, allowing neglect of the residual meridional and vertical velocities in (A3), 
a simple balance between the acceleration of the zonal flow and the Eliassen–Palm flux divergence would be possible. Under 
these conditions, the Eliassen–Palm flux approach is useful because it allows for direct estimate of the acceleration from the 
momentum-flux divergences. Andrews and McIntyre (1976) showed that this was appropriate in the limit of high 
background Richardson number (Ri  1). However, this is not an appropriate scaling for our problem where momentum-
flux diverences act both to accelerate the mean zonal flow and form a cross-stream circulation. 

The Eliassen–Palm approach removes compensating Lagrangian transports from the residual mean cross-stream 
circulation when those effects are large and reveals when cancellation between flux-divergence terms occurs due to the 
nonacceleration theorem. However, for our problem, in which Lagrangian transports are small, using the Eliassen–Palm flux 
divergence to represent the forcing obscures the fact that only the vertical momentum-flux divergence contributes 
significantly to the acceleration of the zonal jets, so neither simplifies the physics nor provides insight into the problem. 

Tables  

Table 1. Parameter values for the equatorial deep jets.
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Figures  
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Fig. 1. The meridional and vertical structure of the zonal velocity for the model deep equatorial jets with vertical wavelength z 

= 330 m, meridional scale L = 68 km, and maximum zonal velocity U = 5 cm s−1. 
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Fig. 2. Momentum-flux divergence ‹u′w′›/ z (a) and energy-flux divergence | ‹w′p′›/ z| =  (b) estimates assuming the 
influence of shadow effects between the jets and allowing spectral replenishment of shadowed ray paths within each jet (from 
Muench and Kunze 1999). 
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Fig. 3. Zonal acceleration U/ t (a) and residual cross-stream circulation ( , ) forced by the momentum-flux divergences 



 

 

shown in Fig. 2 . Order-Rossby-number terms in (11) have been ignored. Contour intervals for zonal acceleration are 0.2 × 10−8 

m s−2. The tops and bottoms of the jets are accelerated in the sense of the jet flow so as to make the vertical structure more 
square-wave-like (Fig. 4 ). The cross-stream circulation carries water equatorward on the upper and lower edges of westward 
jets, poleward on the upper and lower edges of eastward jets. Vertical motion  is into (out of) eastward (westward) jets on the 
equator but very weak because vertical scales for the momentum-flux divergence (Fig. 2a ) are much smaller than the jet 
wavelengths z. 
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Fig. 4. Time evolution of vertical profiles of deep-jet zonal velocity U(z) accelerated by internal wave momentum-flux 
divergences. The vertical structure of the jets goes from being sinusoidal to square-wave-like with intensified shear between the 
jets. If the accelerations shown in Fig. 3a  are used, the time series spans one month with 7 days between profiles. If jet 
accelerations are reduced due to lower internal wave spectra and losses to other zonal shears on the equator (section 4d), the 
time series spans 1–2 years with 3–6 months between profiles. 
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Fig. 5. Meridional/vertical structure of the deep-jet zonal velocity U(y, z) after being accelerated for 2 days (one month) by the 
rate shown in Fig. 3a  (1/15th the Fig. 3a  rate, section 4d). The maximum zonal velocity does not change but the upper and 
lower edges of the jets accelerate on the equator, intensifying vertical shear between the jets.
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