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ABSTRACT

The influence of turbulent mixing on double-diffusively driven thermohaline 
interleaving is investigated. The problem is formulated using a turbulence-
modified flux ratio to link the fluxes of T and S; the addition of turbulence 
changes the way in which the effective flux ratio varies with the density ratio 
R
ρ
. Formulation of the problem maps onto past interleaving studies, except that 

the flux ratio is a function of R
ρ
 in the present work. Posing the problem in this 

way allows the effects of turbulence and intrinsic variations in the salt-finger 
flux ratio to be studied within the same theoretical framework.

Turbulence modifies the slope, wavelength, and growth rate of the fastest-
growing intrusions, decreasing the range of slopes and wavenumbers that can 
grow. However, analysis shows that growing solutions exist for any finite value 

of the turbulent diffusivity Kt, suggesting that double-diffusively driven 
intrusions can exist in the ocean even when double-diffusive fluxes are much 
weaker than turbulent fluxes.

If the flux ratio is a decreasing function of R
ρ
 (as suggested by some models of 

salt finger convection) a different instability occurs, which has unbounded 
growth rates in the high wavenumber limit (a “UV catastrophe”). In most cases, 
the instability can be suppressed by the addition of sufficiently strong turbulent 
mixing. The threshold for this instability depends upon variation of the T/S flux 
ratio with R

ρ
, and hence on the relative strengths of turbulent and double-

diffusive mixing. The instability is shown to be nonintrusive in nature, as it does 
not rely upon lateral advection across a front; it is found to be closely related to 
the one-dimensional double-diffusive instability investigated by Huppert.

1. Introduction  

Thermohaline interleaving is often observed in regions of the ocean characterized by strong lateral T–S gradients. 
Interleaving was first documented by Hamon (1967) and Stommel and Fedorov (1967), who recognized that it could be an 
important mechanism for cross-front mixing. Since then, interleaving has been documented on the edges of mesoscale 
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eddies (Ruddick 1992), on the periphery of major currents (Toole 1981), on shelf-break fronts (Horne 1978; Barton and 
Hughes 1982), and generally at confluences of water masses with differing T–S properties. Carmack et al. (1998) observed 
interleaving layers of Atlantic and Pacific water in the Arctic Ocean; these layers (or intrusions) were laterally coherent over 
distances of more than 1000 km. Carmack et al. suggested they may play an important role in recent large-scale 
thermohaline transitions within the Arctic Ocean. Richards and Pollard (1991) suggest that intrusions several hundred 
kilometers long in the near-surface waters of the equatorial Pacific might be associated with strong lateral mixing within the 
thermocline.

Stern (1967) identified salt finger convection as a possible driving mechanism for interleaving, but the lack of friction in 
his theoretical model led to unbounded growth rates in the high wavenumber limit. This was remedied by Toole and Georgi 
(1981), who incorporated friction into Stern’s model. Their modification led to a prediction of a finite wavelength for the 
fastest-growing intrusion, in reasonably good agreement with observations. Since Toole and Georgi’s study, numerous 
theoretical studies have appeared, most of which are variations on their linearized stability analysis. Holyer (1983) 
investigated intrusions driven by molecular fluxes of T and S and found that growth was possible, even when the 
stratification was stable to double-diffusive convection, because the molecular diffusivities of T and S differ. McDougall 
(1985a) recast Toole and Georgi’s analysis in a layer framework, assuming a background of convecting layers separated by 
double-diffusive interfaces. Walsh and Ruddick (1995a) investigated the effect of R

ρ
-dependent diffusivities on growing 

intrusions and found that nonconstant diffusivities could lead to growth rates much larger than predicted by constant 
diffusivity models. Kuz’mina and Rodionov (1992) and May and Kelley (1997) have examined the effect of baroclinic shear 
on intrusions, and their work suggests that background shear can have an important effect on growing intrusions. May and 
Kelley argue that shear may either increase or decrease growth rates, depending on the relative signs of the cross-front 
salinity and density gradients.

Most theoretical investigations since Stern’s (1967) study have assumed that small-scale fluxes are purely double 
diffusive. However, while stratification conditions in large parts of the World Ocean are unstable to salt fingering (Schmitt 
1981), salt fingers rarely occur without turbulence. Except perhaps in large-scale thermohaline staircases like the C-SALT 
staircase (Schmitt et al. 1987), both fingers and turbulence typically contribute to the total flux of salt, heat, and buoyancy. 
Microstructure observations by Ruddick et al. (1997) in the North Atlantic Tracer Release Experiment (NATRE) used the 
“scaled diffusivity ratio,”  Γd, to diagnose double-diffusive effects and failed to find significant evidence of salt finger 

enhancement of turbulent fluxes. Due to lower noise levels and the ability to observe the Richardson number directly, St. 
Laurent and Schmitt (1999) found that the observed Γd in the NATRE region was consistent with salt fingers for segments 

with Richardson number greater than one, low values of R
ρ
, and high χ (to address signal/noise issues only the highest 25% 

of χ values were used in their analysis). Segments with Richardson number less than one, or with double-diffusively stable 
(i.e., nonfingering) stratification had Γd consistent with turbulence values. This indicates the conditions under which salt 

fingers may be found in central waters: absence of turbulence and low R
ρ
, and makes it clear that salt fingers and turbulence 

coexist in such regions. St. Laurent and Schmitt formulated a model of coexisting, noninteracting turbulence and salt fingers 
in which the effects are additive and estimated the net fluxes in the NATRE region. The salt diffusivity was found to be 
enhanced by 60% over the thermal diffusivity estimated from the Osborn–Cox (1972) model. Good agreement was found 
between the salt diffusivity and the directly observed tracer diffusivity, and the buoyancy flux divergence was computed, 

leading to an estimated diapycnal velocity of −1.7 m yr−1, which compared favorably to that inferred from the tracer. 
Thus, the analysis of St. Laurent and Schmitt demonstrates that, in the NATRE region, diapycnal mixing of heat, salt, and 
tracers is dominated by turbulence but enhanced by salt fingers. By focusing on data segments with large Richardson 
number and large χ, St. Laurent and Schmitt found evidence that the T/S flux ratio in the NATRE region was a decreasing 
function of the density ratio R

ρ
, in qualitative agreement with the salt finger model due to Stern (1975). While this result is 

suggestive, interpretation is difficult because the effect of turbulence on the net flux ratio and on the effective diffusivity for 
density is critically dependent on the relative balance between turbulence and salt fingers and on how that balance depends 
on the density ratio and Richardson number.

Even if turbulent fluxes dominate over double-diffusive fluxes in many situations, evidence still points to double diffusion 
as a primary driving mechanism for interleaving. Convincing evidence for this was provided by Ruddick (1992), who 
showed that intrusion slopes and wavelengths in Meddy Sharon were consistent with double-diffusive driving, both in the 
upper (diffusively stratified) and lower (salt finger stratified) halves of the meddy. Ruddick inferred an effective salt 

diffusivity of KS  3 × 10−5 m2 s−1 in the interleaving layers, comparable with the value of 1–2 (×10−5 m2 s−1) typical of 

shear-driven mixing in the thermocline (e.g., Ledwell et al. 1993). Given the ubiquitous nature of turbulence in the ocean, it 
is likely that both double diffusion and turbulence were present within these intrusions, and this raises the question of how 
intrusions are affected by turbulence. In order to assess the importance of intrusive fluxes in the ocean, a better 
understanding is needed of the factors that limit their growth at large amplitude and set fluxes. One such factor is 
turbulence, which can alter the balance between buoyancy-driven cross-front advection and friction. 

In this work, we extend that of Walsh and Ruddick (1995a) by incorporating the effects of high Reynolds number 
turbulent mixing. In addition, we explore the consequences of using a more realistic R

ρ
-dependent formulation for the salt 

finger flux ratio &lsqb ke those proposed by Stern (1975, pp. 192–195) and Schmitt (1979a)], rather than the constant 
value used in most previous theoretical studies of interleaving. The problem is formulated so that turbulence appears as an 
R
ρ
-dependent T/S flux ratio. This allows an examination of the effects of both turbulence and nonconstant finger flux ratio 

within the same theoretical framework.

In section 2 we formulate the model equations, then linearize the equations and derive a growth rate polynomial for the 
linearized system. In section 3, we consider the constant finger flux ratio case and show that the addition of turbulence 
damps out high-wavenumber intrusions that would otherwise grow. Next, we demonstrate that the qualitative character of 
the solutions can be inferred from properties of the marginal stability curve. The marginal stability curve is found to be either 



elliptical or hyperbolic when plotted as a function of the slope s and squared vertical wavenumber m2, a result independent of 
the detailed form of the diffusivity and flux ratio formulations used. In section 4, we consider the effect of a nonconstant 
salt finger flux ratio and show that using either the formulation due to Stern (1975) or that due to Schmitt (1979a) leads to a 
high wavenumber “UV”  instability different from the classical intrusive instability, but qualitatively similar to that discussed 
by Huppert (1971). Finally, we demonstrate that the qualitative properties of the solutions depend only on variation of the 
turbulence-modified flux ratio with R

ρ
. We end with a discussion (section 5) and conclusions (section 6). 

2. The model  

Our approach is similar to that of Walsh and Ruddick (1995a). We investigate the linear stability of a “front”  characterized 
by uniform horizontal and vertical gradients of temperature and salinity. The basic state is assumed to be unstable to salt 
finger convection, so αTz > βSz. Figure 1  shows quasi-lateral interleaving layers on a wide front, with warm and salty 

layers rising and cool and fresh layers descending as they cross the front. Vertical profiles of salinity, temperature, and the 
associated buoyancy fluxes (shown as vectors) taken at “A”  are also shown. For the case shown, vertical buoyancy flux 
convergences due to salt fingering reinforce the initial motion, causing the intrusions to accelerate across the front. The 
difference between this study and Walsh and Ruddick (1995a) is in the parameterization of the small-scale vertical fluxes, 
which here are taken to be due to a linear superposition of turbulence and double diffusion rather than pure double diffusion. 
Following Walsh and Ruddick (1995a), the model equations are

 

The F(·)
z terms represent vertical flux divergences of heat, salt, and momentum. Incorporated in (1) is the assumption 

that intrusions have small slopes, and therefore horizontal flux divergences are negligible compared with vertical flux 
divergences. Equations (1a–c) can be simplified by using the streamfunction , defined as

x = w z = −u,(2)
 

in which case (1a–c) reduce to a single equation for the alongfront vorticity 2 :

2
t + g(βSx − αTx) = F(u)

zz − F
(w)

zx,(3)

 

indicating that the alongfront vorticity changes in response to cross-front variations in anomalous density and diffusion 
effects.

Small-scale vertical fluxes of heat, salt, and momentum are specified using eddy diffusivities and viscosities, with finger 
fluxes of heat and salt linked via the finger flux ratio γf

αF(T)
fingers = γfβF(S)

fingers,(4)

 

as first suggested by Stern (1967). As in Walsh and Ruddick (1995a), diffusivities and viscosities are taken to be 
functions of the density ratio R

ρ
:

 

The fluxes in (1) are thus given by

 

where in (6d) Eq. (4) has been used to express finger fluxes of temperature in terms of the salt flux. The superscripts “f”  

and “t”  in (6) denote salt fingers and turbulence, respectively, so Kf
S is a finger diffusivity and Kt a turbulent diffusivity. We 



take the turbulent diffusivities of T and S to be equal, consistent with the idea that turbulent mixing is caused by energetic 
high-Reynolds-number turbulence. Flux laws like (6) have been used by Kuz’mina and Rodionov (1992) in an investigation 
focusing on the effect of baroclinicity on double-diffusive interleaving. 

A number of studies have addressed the coexistence of fingers and turbulence. McDougall and Ruddick (1992) proposed 
a method of interpreting microstructure data that can in principle differentiate between double diffusion and shear-driven 
turbulent mixing. Their theory is based on the assumption that salt fingers and turbulence have very different timescales, so 
their combination can be approximately represented by a linear combination of finger and turbulent fluxes. These ideas are 
consistent with laboratory studies due to Crapper (1976) and Linden (1971), who also suggest that turbulent and finger 
fluxes add linearly.

In most theoretical studies of interleaving, the salt finger flux ratio γf is taken to be constant, with a value in the range of 

0.5–0.9. However, theoretical models of of salt fingers (Stern 1975) and laboratory experiments (Schmitt 1979b) indicate 
that γf is a decreasing function of R

ρ
, with a maximum value at R

ρ
 = 1. A more complete analysis by Schmitt (1979a) 

indicates that γf is a decreasing function of R
ρ
 for relatively small values of R

ρ
, but may be an increasing function of R

ρ
 for 

large R
ρ
 (R

ρ
  4). For the diffusive case, Kelley (1984) has analyzed staircase data that indicate the diffusive flux ratio γd is 

largest when R
ρ
 = 1 and decreases monotonically away from R

ρ
 = 1. 

The functional forms of Kf
S and Af are poorly known. Schmitt’s (1981) study suggests that Kf

S is maximum near R
ρ
 = 1 

(where finger growth rates are largest) and decreases rapidly with increasing R
ρ
. Kunze (1994) proposed a model for salt 

fingers disrupted by intermittent turbulence. Kunze’s results suggest that Kf
S may increase with R

ρ
 for small values of R

ρ
 

but should decrease with R
ρ
 for larger R

ρ
, in agreement with Schmitt’s result. There are further discrepancies between the 

diffusivities predicted by Schmitt and Kunze, the most notable being that Schmitt’s diffusivities are some two orders of 
magnitude larger than those predicted by Kunze and are almost certainly too large. In the following derivation we will carry 
through the full R

ρ
 dependence of the diffusivity and viscosity for the sake of completeness but, in the discussion sections 

that follow, we will focus almost exclusively on the effect of an R
ρ
-dependent flux ratio rather than on the effect of a 

nonconstant diffusivity. This is due to the uncertain diffusivities, and because the effect of R
ρ
-dependent diffusivity on 

interleaving has already been discussed by Walsh and Ruddick (1995a,b). 

Equations (6c,d) can be manipulated to give

 

Comparing (7) with (4) shows that the expression in parentheses in (7) has the form of a turbulence-modified “effective”  
T/S flux ratio

 

The effective flux ratio γeff is a function of R
ρ
 even when both γf and Kf

S are constants. For nonzero Kt/Kf
S and constant 

γf (=0.6), γeff is a monotonically increasing function of R
ρ
 (Fig. 2 ). 

Using (1d), (1e), (3), (6), and (8), the governing equations can be written in the form:

 

These are identical to the equations analyzed by Walsh and Ruddick (1995a), except that the finger flux ratio has been 
replaced by the modified flux ratio γeff, which is a function of R

ρ
 (and hence is differentiated). Putting S = S + , T = T + 

,  =  in (9) [where terms with tildes (;tz·) are small perturbations], defining R
ρ
 = αTz/βSz, and keeping only terms linear 

in perturbation quantities gives the linearized version of (9):



 

Primes denote differentiation with respect to R
ρ
, and diffusivities and viscosities in (10) are evaluated at R

ρ
 = R

ρ
. While 

the effects of turbulent mixing are incorporated into the right-hand sides of (10a–c), the purely double-diffusive case may be 

recovered by setting γeff = γf, A = Af, and KS = Kf
S. 

Except for the horizontal braced terms, (10) is identical to the equations analyzed by Walsh and Ruddick (1995a) with γf 

replaced by γeff. Variations in the viscosity do not enter into the problem at this order, as discussed in Walsh and Ruddick 

(1995a). Further, although (10) does not include rotational effects, Toole and Georgi (1981) and McDougall (1985a) have 
shown that, in the absence of large-scale shear, the vertical wavenumber, cross-front slope, and growth rate of the fastest-
growing intrusions are unaffected by rotation. The main effect of rotation is to induce an alongfront tilt such that cross-
frontal velocities are in thermal-wind balance. Finally, in deriving (10) it is assumed that ρx = 0 (i.e., αTx = βSx), so the fluid 

is motionless in the basic state. In the rotating case, this assumption removes the complication of alongfront geostrophic 
shear, which will tilt intrusions and disrupt their growth, a possibility which led May and Kelley (1997) to suggest that 
intrusions in strongly sheared fronts cannot tilt in the alongfront direction.

The growth rate polynomial for (10) is obtained by substituting solutions of the form ei(k;zzx+m;zzz)+λ;zzt into the 
linearized form of (10), giving

 
(Click the equation graphic to enlarge/reduce size)

The following dimensionless quantities have been introduced:

 

We have assumed that intrusion slopes are small (s  1) in deriving (11). Expression (11) generalizes Eq. (13) from Walsh 
and Ruddick (1995a) to include a nonconstant flux ratio; horizontal braced terms in (11) did not appear in the growth rate 
polynomial analyzed by Walsh and Ruddick (1995a). The polynomial (11) was discussed briefly by Walsh and Ruddick 
(1998), who used it to initialize their numerical model, although they did not discuss its properties in detail.

We will show that (11) admits two different instabilities: the standard intrusive instability analyzed by Toole and Georgi 
(1981), which has peak growth rates at a finite value of the vertical wavenumber m, and an instability with unbounded 
growth rates in the large m limit (henceforth referred to as the high-wavenumber or “UV”  instability), which occurs when 
the flux ratio γeff is a decreasing function of R

ρ
. The two instabilities can coexist, and in general intrusions dominate for 

smaller values of m, while the UV instability dominates at large m. 

a. The marginal stability curve  

Information about intrusion growth rates, slopes, wavenumbers, and parameter dependencies can be gained by 
considering the marginal stability properties of (11). Setting λ = 0 in (11) gives the condition for marginal stability:

 

Thus, either m2 = 0 or the expression in braces is zero. In the latter case the equality can be written



 

where

 

If b is real (as for the constant γf case shown in Fig. 2 ), (14) describes an ellipse in the (s,m2) plane; all values of s 

and m2 within the ellipse correspond to exponentially growing solutions. If b is imaginary, the marginal stability curve is 
hyperbolic, and there is no high wavenumber cutoff for growth (this case will be discussed in section 4). 

The real part of the growth rate is contoured in Fig. 3  as a function of the slope s and squared vertical wavenumber 

m2 (R
ρ
 = 1.6, Pr = 5, x = 0.05, γf = 0.6, and Kt/Kf

S = 0.1). For each s and m2, the root of (11) with the largest real part is 

shown. Shading shows growth rates with nonzero imaginary part, indicating solutions that oscillate as they grow or decay. 
The heavy line is the curve Re(λ) = 0; the ellipse described by (14) surrounds the region with positive, real growth rates. 

Growth rates for the oscillatory solutions depend strongly on m2 and only weakly on s, indicating that these modes are 
strongly damped by friction.

3. The effect of turbulence  

We first consider the case in which γf is constant but Kt is nonzero, in which case γeff increases monotonically with R
ρ
, 

as shown in Fig. 2 . Figure 4  shows the effect of nonzero Kt on the slope, wavenumber, and growth rate of the 
fastest-growing mode for the case Pr = 5, x = 0.05, as a function of R

ρ
. The qualitative effect of turbulent mixing is to 

increase the vertical scale and decrease the slope and growth rate of the fastest-growing intrusions. The fastest-growing 
intrusion is quite sensitive to the turbulence level, especially for larger R

ρ
. 

a. Constant flux ratio case  

If there is no turbulent mixing of T or S (Kt = 0) and if γf is constant, then (7) shows that γeff is also constant, and the 

problem reduces to the constant flux ratio case considered by Toole and Georgi (1981) and others. Growth rates for this 

case are contoured in Fig. 5 . The appropriate limiting case of (15) is obtained by letting γ′eff  0 in (15) and setting γeff 

= γf, giving

 

or equivalently

 

This range of slopes and wavenumbers corresponds to the shaded band in Fig. 6 . The range of slopes is larger than 

for the case with nonzero Kt, and there is no high wavenumber cutoff for intrusion growth. The result (16) is independent 
of the value of the viscosity; changing the Prandtl number changes growth rates, but the shape of the marginal stability 
curve remains the same.

b. The limit of strong turbulent mixing  

In this section, we will show that intrusions can grow even when turbulent fluxes of T and S are much larger than double-

diffusive fluxes. If Kf
S  K′fS  Kt and γ′f = 0, then the semimajor axes (15) are approximated by



 

Both axes (18a,b) are proportional to Kf
S/Kt if Kf

S/Kt  1, implying that, for any finite value of Kf
S/Kt, there exists a 

finite area of the (s,m2) plane in which intrusions can grow.1 This suggests intrusions can grow even where double-diffusive 
fluxes are considerably smaller than turbulent fluxes, a rather surprising result. In the strong turbulence limit, (8) shows that 

the effective flux ratio is given by γeff = R
ρ
 + O(Kf

S/Kt), which is larger than one for finger-sense stratification. In this case, 

the effective diffusivity for density is [from (9b,c)] K
ρ
 = −KS(1 − γeff)/(Rρ − 1), which is positive, so the net buoyancy flux 

is downgradient (i.e., turbulent buoyancy fluxes dominate over double-diffusive fluxes). Double diffusion is characterized by 
upgradient buoyancy fluxes, so light water is made lighter and dense water denser; this mechanism is fundamental to 
intrusion growth, so it seems intuitive that intrusions should not grow when γeff > 1. However, it is the ratio of T and S 

divergences— not the flux ratio&mdash at must be less than one to drive intrusion growth, and intrusions grow if this 
&ldquoƒux divergence ratio,”  Γdiv  αFT,z/βFS,z, is less than one [Walsh and Ruddick (1998) discuss this point in some 

detail]. In the constant γf case with no turbulent mixing considered by Toole and Georgi (1981) and others, γf and Γdiv are 

exactly equal, making the distinction unnecessary. However, in the present case, an R
ρ
-dependent flux ratio allows the flux 

divergence ratio to differ from the flux ratio (i.e., αFT,z/βFS,z = γeff + γ′effRρ,zFS/FS,z  γeff) so that intrusions may grow 

even when γeff is larger than one, as long as Γdiv < 1. 

c. The high-wavenumber cutoff  

Figure 6  shows marginal stability curves for various values of Kt/Kf
S (numbers on the curves show the value of 

Kt/Kf
S). Increasing Kt/Kf

S causes the curve to move toward lower slopes and wavenumbers. Comparing these curves with 

the Kt/Kf
S = 0 case (shaded) shows that a major effect of turbulence is to stabilize high wavenumber disturbances. To 

explore the mechanism behind this, we compute eigenvectors for the system (10) in the large-m limit. For maximum 
simplicity, we consider the large Prandtl number limit, which is equivalent to assuming a steady momentum balance in (10a), 
allowing (10b,c) to be written as a closed set for  and . Assuming harmonic solutions gives

 
(Click the equation graphic to enlarge/reduce size)

where  and  are the disturbance amplitudes. Because we are interested in exploring the high-wavenumber cutoff, which 

is not dependent on diffusivity variations, it is sufficient to consider the case K′S = 0. In this case, (19a) gives

 

In the large-m* limit, the eigenvalues of (19) are λ* = −m2
*KS + O(m−4

*) and λ* = −γ′effm
2

*KS + O(m−4
*). We will consider 

the eigenvalue proportional to γ′eff, since (15b) shows that a finite high-wavenumber cutoff requires that γ′eff be positive. In 

the large-m* limit, this eigenvalue corresponds to the eigenvector

 

in which case the velocity û = gk*(β  − α )/Am4
* also vanishes, so these modes are nonadvective in the limit as m*  ∞. 

For disturbances described by (21) Eqs. (19a,b) decouple, and (19b) shows that high wavenumber disturbances evolve 
according to a diffusion equation:

α t  +γ′effKSα zz.(22)

 

If γ′eff > 0, the effective diffusivity is positive, so disturbances decay.



d. The “incomplete”  turbulent mixing case  

The growth rate polynomial (11) is quite general, and growth rates for a wide variety of diffusivity and flux ratio 
formulations can be obtained as special cases of this polynomial. One such case is that considered by Hebert (1999), who 
proposed differential mixing of T and S due to low-Reynolds-number turbulence as a possible driving mechanism for 
intrusions. The idea of differential mixing originated in laboratory experiments done by Turner (1965), who measured 
turbulent fluxes across a density interface as a function of interfacial Reynolds number. Turner found larger effective 
diffusivities when the stratification was maintained by temperature than for the salt stratification case. The differences were 
most pronounced at low Reynolds number, and Turner suggested that his results were a consequence of molecular 
modification of low-Reynolds-number turbulence. Based on Turner’s results, Hebert assumed unequal, constant, diffusivities 
for T and S. This case can be recovered from our analysis by setting γeff = τR

ρ
, where τ is a diffusivity ratio. This 

transforms (11) into the growth rate polynomial derived by Hebert (1999) for the &ldquo∞complete”  turbulent mixing case. 

Equation (15) shows that, if Kf′S = 0, then, if τ < 1, the marginal stability curve is elliptical and solutions resemble intrusions, 

while, if τ > 1, the marginal stability curve is hyperbolic and steeply sloped disturbances reminiscent of salt fingers grow. 

4. Double-diffusive effects: The form of the salt finger flux ratio  

We next consider the purely double-diffusive case and the effect of using a variable finger flux ratio γf. There are a variety 

of theoretical possibilities for the flux ratio. Stern (1975, section 11.2) considers the stability of uniform finger-sense 
gradients to vertically oriented finger motions sinusoidal in x and y. He solves for the maximum growth rate in the limit of 
large Prandtl number and diffusivity ratio, and finds the following form for the finger flux ratio:

 

which is shown as a solid curve in Fig. 7 . This functional form decreases monotonically with R
ρ
 from a value of 1 at 

R
ρ
 = 1 to below 0.6 at R

ρ
 = 2 and asymptotes to 0.5 at large R

ρ
. This form is also found by the finger model of Kunze 

(1987). Schmitt (1979a) extended Stern’s model to finite Prandtl number and diffusivity ratios, solved indirectly for the 
fastest-growing mode, and found a closed but rather complicated form for the finger flux ratio. Schmitt’s flux ratio 
decreases from 0.74 at R

ρ
 = 1 to a minimum of 0.56 at R

ρ
  4, and then begins to increase slowly (dashed curve in 

Fig. 7 ), asymptoting to (R
ρ
/τ)1/2 for large R

ρ
 (τ is the diffusivity ratio). Schmitt also postulated a physically appealing 

interface model in which initial gradients set the fastest-growing wavelength, but fluxes eventually decrease the salinity 
gradient in the interior of the interface to allow fingers to equilibrate. The associated flux ratio for this equilibrium state is 
slightly higher than Schmitt’s fastest-growing form but has qualitatively similar characteristics and the same asymptote at 
high R

ρ
. 

The three flux ratio formulations all have similar characteristics and values for the range R
ρ
  4, where fingers might 

dominate over turbulence. In the range 4  R
ρ
  10, the Schmitt formulation has positive slope while Stern’s has negative 

slope, but quantitative differences between the three are small. The scatter and range of observed flux ratios from laboratory 
experiments is too large to allow one formulation to be selected over others. The main characteristic that laboratory 
experiments demonstrate is a systematic increase in flux ratio as R

ρ
 approaches 1, and all three formulas capture this 

characteristic. Nevertheless, the relatively small differences between the these formulations lead to important differences in 
the behavior of our model solutions. We have chosen to use Stern’s flux ratio (23) and Schmitt’s fastest-growing finger 
formulation [Eq. (12) from Schmitt (1979a)] to illustrate these differences. 

a. UV catastrophe  

In this section, we demonstrate that the flux ratio (23) and that proposed by Schmitt (1979a) lead to a “UV catastrophe”  
in which growth rates increase monotonically with vertical wavenumber m (see Fig. 8 ) and become unbounded as m  
∞. To examine the effect in the simplest way possible, we first show that the instability occurs in a simplified nonadvective 

system, then show that it also occurs in the full interleaving system. For maximum simplicity, we replace KS by Kf
S (so 

vertical fluxes are purely double diffusive) and γeff in (10) by either Stern’s (1975) formulation (23) or by Schmitt’s (1979a) 

formulation, and consider the limiting case in which advective effects are negligible. This gives

 

which is very similar to the system analyzed by Walsh and Ruddick (1995b), except that here we allow for a nonconstant 
flux ratio.

The characteristic polynomial for (24) is



 

There are positive roots (i.e., growing solutions) to (25) when the braced term is negative (i.e., γ′f < 0). Because γ′f is 

always negative for Stern’s formulation (23), there is always one positive real (growing) root and one negative real 

(decaying) root to (25), regardless of the sign or magnitude of Kf′S/Kf
S. If Kf′S/Kf

S is negligible, the roots of (25) are

λ = −m2 or λ = −γ′fm
2,(26)

 

the second of which is the unstable root. Hence, using Stern’s formulation (23) for the flux ratio changes the marginally 
stable root (λ = 0) found by Walsh and Ruddick (1995b) to an unstable root; Schmitt’s formulation has the same effect for 

R
ρ
  4. Any negative value of γ′f, however small, is sufficient to trigger the UV catastrophe. Equation (26) implies that λ 

 ∞ as m2  ∞: there is no upper bound to the growth rate. In reality this cannot be strictly true since small-scale 
dissipative effects will act to suppress the highest wavenumber disturbances. In addition, it is worth noting that our 
parameterization of salt finger fluxes cannot in any case be valid at scales smaller than the salt finger scale.

Equations (24) and (26) show that the UV instability does not rely on lateral advection, and hence is not intrusive in 
nature. Furthermore, the instability is different from the high-wavenumber intrusive instability found by Stern (1967) 
because it is nonadvective (and hence cannot be suppressed by friction). Instead, it is closely related to that discussed by 
Huppert (1971), who considered a system of three fluid layers separated by diffusive interfaces and found that layer 
overturning occurred when the flux ratio decreased with R

ρ
. In contrast with Huppert’s study, where a layer scale was 

imposed, there is no external length scale in this study, so arbitrarily small scales can grow. Comparison of (24) with (19) 

shows that (24) is the high-wavenumber limit of the full system (with Kt = 0), demonstrating that diffusion dominates over 
advection at high wavenumber and that high wavenumber solutions to the full interleaving system (10) should be well 
described by (24).

To illustrate the mechanism for the UV instability, we compute eigenvectors of the system (24). Equation (24a) gives

 

where  and  are disturbance amplitudes. We set Kf′S = 0 without (much) loss of generality since (25) shows that the 

instability does not require variations in Kf
S. Substituting the unstable eigenvalue (λ = −γ′fm

2) into (27) gives

 

in which case (24a,b) decouple, and (24b) shows that the disturbance evolves according to

α t  +γ′fK
f
Sα zz.(29)

 

Because γ′f < 0, the effective diffusivity is negative, so disturbances grow.

 

The instability mechanism is sketched in Fig. 9 . The basic state has uniform vertical T–S gradients and uniform 
vertical fluxes. A small T disturbance (leftmost profile) produces a corresponding R

ρ
 disturbance, and because γf is a 

decreasing function of R
ρ
 the flux ratio varies as shown. Salt fluxes are unaffected by the imposed temperature anomaly, 

and because fluxes of T and S are linked via (4) the heat flux at A increases relative to that at B (as shown in the rightmost 
profile), reinforcing the initial perturbation and causing growth. The equations governing the growth of the instability can 
also be derived directly from the temperature equation as follows:

 

in agreement with (29). 

b. Turbulent suppression of the UV catastrophe in the reduced system  

The discussion in section 4a related the UV catastrophe to the form of the flux ratio for the system (24). This is readily 
generalized to give a stability criterion when turbulent mixing of T and S is present:

 



is sufficient to prevent the UV catastrophe &lsqb is follows directly from (22)]. In Fig. 10 , γeff is plotted versus R
ρ
 

for various values of Kt, using Stern’s γf formulation (23) (Fig. 10a ); in Fig. 10b  the same quantities are plotted for 

Schmitt’s (1979a) formulation. For the Stern formulation, there is always a range of R
ρ
 in which γ′eff < 0 while, for 

sufficiently large R
ρ
, γ′eff > 0 for any nonzero Kt. Further, for any value of Kt, we are assured that γ′eff will be negative for 

sufficiently small R
ρ
 since γ′f  −∞ as R

ρ
  1 for Stern’s formula. The dashed curve in Fig. 10a  is the function R

ρ
/

(2R
ρ
 − 1), which connects the minima of the solid curves. Points beneath this curve are unstable to the UV instability, those 

above it are stable. Thus, T–S profiles subject to Stern’s flux ratio with an effective T/S flux ratio less than R
ρ
/(2R

ρ
 − 1) will 

be unstable to the UV instability—a result which holds for any value of Kt. Figure 10b  is similar to Fig. 10a  except 
quantities are plotted using Schmitt’s flux ratio instead of Stern’s. The two plots are similar in many respects, but in Fig. 

10b  there is a critical value of Kt/Kf
S above which γeff increases monotonically for all values of R

ρ
 (a consequence of the 

finite slope of Schmitt’s curve as R
ρ
  1). Thus, for Schmitt’s γf formulation, sufficiently large values of Kt/Kf

S (Kt/Kf
S  

0.59) will suppress the high-wavenumber instability for all R
ρ
. Furthermore, since γ′f > 0 for Schmitt’s formulation 

whenever R
ρ
  4, the UV instability will be suppressed even in the absence of background turbulence for large R

ρ
. 

Using the definition of γeff (8), the above stability condition (31) can be written as a constraint on Kt:

 

and, if terms involving Kf′S are negligible, this takes the simple form

 

as the condition to suppress the UV instability. When γ′f < 0, a nonzero Kt is required to suppress the instability, and it 

follows that when Kt = 0 instabilities grow for any negative γ′f. Neglect of terms involving Kf′S in (33) is not equivalent to 

assuming that Kf
S is strictly constant, but rather that variations in Kf

S associated with small amplitude intrusions are not of O

(1) importance. Nevertheless, (32) shows that sufficiently large, positive values of Kf′S &lsqb ke those predicted by 

Kunze’s (1987) salt finger model] could have a destabilizing effect. Substitution of Kunze’s (1987) formulation for Kf
S into 

(32) (and using Stern’s flux ratio) shows that a nearly uniform value of 3–4 (×10−6 m2 s−1) for Kt is sufficient to suppress 

the UV instability, except at very small values of R
ρ
 (R

ρ
  1.2) where Kt values of up to 2–3 (×10−5 m2 s−1) are needed. 

Using Schmitt’s flux ratio gives similar results, although somewhat smaller values (about 25%– 50% smaller for R
ρ
 values 

between 1 and 3) of Kt are needed to suppress the instability. By contrast, Fig. 11  shows that when Kt  3–4 (×10−6 

m2 s−1) and R
ρ
  2, Kf

S must be larger than about 5 × 10−5 m2 s−1 to trigger the UV instability, much larger than the 

analogous value of about 1 × 10−5 m2 s−1 required when Kunze’s diffusivity is used. 

Violation of the criterion (33) could lead to growth of high-wavenumber instabilities, and it is plausible that this is related 
to the “steppy”  finestructure often seen at low values of R

ρ
, where double diffusion may dominate over turbulence. The 

quantity −1/γ′f is plotted in Fig. 11  for both the Stern (solid) and Schmitt (dashed) flux ratio formulations. According to 

(33), y-axis values represent critical values of Kf
S/Kt below which the UV instability is suppressed. For larger values of R

ρ
, 

larger finger diffusivities are required to trigger the UV instability. Using Stern’s formulation, and assuming that Kt = 10−5 

m2 s−1, it follows that Kf
S must be at least 4 × 10−5 m2 s−1 to cause instability when R

ρ
  1.5, but must be greater than the 

(very large) value of 5 × 10−4 m2 s−1 for the instability to occur when R
ρ
  3. Schmitt’s γf formulation is &ldquo re 

stable”  than Stern’s, since larger values of Kf
S/Kt are required to trigger the UV instability for all values of R

ρ
. 

c. Generalization to the full interleaving system  

Equation (22) from section 3c and the discussion in section 4b shows that a sufficient condition for the occurrence of the 
UV instability in the reduced (nonadvective) system is that γeff be a decreasing function of R

ρ
; that is,

γ′eff < 0.(34)

 



Thus, the sign of γ′eff is fundamental to the behavior of the system (10): when γ′eff  0 there is no high-wavenumber 

cutoff, so disturbances of arbitrarily small scale can grow. Similarly, expansion of (11) shows that there are solutions to 
(11) of the form

λ/m2 = −γ′eff/[1 + (γeff − Rρ)K
′
S/KS] + O(γ′eff)

 

in the high-wavenumber limit, valid when γ′eff  1. This demonstrates again that the full interleaving system (10) is 

susceptible to the UV instability when γ′eff < 0. In contrast with (34), (15b) shows that there is no high-wavenumber cutoff 

when

 

and the marginal stability curve is hyperbolic when this inequality is satisfied. In the appendix, we show that the quantity 

in braces is positive for all R
ρ
 > 1 for any of the the flux ratio formulations used in this study, so the sign of γ′eff is sufficient 

to determine if (35) is satisfied. 

Figure 12  shows the effect on the marginal stability curve of increasing Kt/Kf
S. For small values, the marginal stability 

curve is hyperbolic, with slopes and wavenumbers above the curve being unstable. Increasing Kt/Kf
S causes the curve to 

become elliptical when (33) is satisfied, and intrusions grow over the range of slopes and wavenumbers within the ellipse. 

The maximum growth rate is contoured in Fig. 13  for the case Pr = 5, R
ρ
 = 1.6, x = 0.05, Kt/Kf

S = 0.1, using Stern’s 

flux ratio formulation (23). Intrusive disturbances dominate at low wavenumbers (as shown by the local growth rate 

maximum at small values of m2), while growth rates increase monotonically for large m2, where the high-wavenumber 
instability dominates. Note the spectral gap between intrusions and the high-wavenumber UV modes. In this case, the 
addition of turbulence has inhibited the UV instability, so intrusions are able to dominate at low wavenumbers. This is in 

contrast with Fig. 8 , where the UV instability dominates for all values of s and m2. 

5. Discussion  

The previous sections demonstrated that the system (10) is unstable to two different instabilities: an intrusive instability 
relying on buoyancy-driven advection across a front and a nonadvective “Huppert”  instability resulting from the specific 
character of the vertical fluxes of T and S. Being predominantly a vertical process, the Huppert instability should have a 
preferred direction in T–S space distinct from that of intrusions, so the two phenomena should be distinguishable in T–S 
data. Specifically, intrusions (which are nearly isopycnal advective features) should cause zigzags in the T–S curve that are 
nearly aligned with density lines, while the high-wavenumber (UV) instability should cause “bunching”  along the T–S curve. 
It is possible that the UV instability considered here is related to the formation of the steps and layers often seen at low R

ρ
. 

Unfortunately, our analysis does not allow a prediction of the dominant scale of steppy finestructure, which might result 
from the UV instability, since the scale-selection mechanism at work in the ocean almost certainly relies on small-scale 
physics not contained in our model.

If something akin to the UV instability does occur in the ocean and if it leads to the formation of steps and layers, then the 
vertical fluxes of heat and salt driving intrusion growth would very likely change as well. This potential for modification of 
vertical fluxes by high-wavenumber instabilities and the consequent modification of intrusion growth rates suggests a 
possible interaction between instability modes that cannot be studied within the context of our model. Nevertheless, many of 
the qualitative features of our analysis should still hold. It is possible that a similar combination of high-wavenumber 
instabilities and low-wavenumber intrusive instabilities could explain observations of steppy intrusions made by Perkin and 
Lewis (1984). 

While we have not discussed the effect of R
ρ
-dependent diffusivities in detail, we feel that these effects are not likely to 

qualitatively change the conclusions of this work. This does not imply, however, that an R
ρ
-dependent diffusivity cannot 

have important qualitative effects on oceanic processes in other circumstances; Schmitt (1981) argues that an R
ρ
-dependent 

diffusivity may provide the mechanism for maintaining the nearly uniform values of R
ρ
 in the central waters. And there are 

several ways in which an R
ρ
-dependent diffusivity could quantitatively affect our results, the most obvious being through 

changing the properties of the marginal stability curve. For example, Walsh and Ruddick (1995a) carried out a detailed 
analysis of the effect of diffusivities that are decreasing functions of R

ρ
 (like that proposed by Schmitt 1981) on small 

amplitude interleaving, finding enhanced growth rates and larger vertical scales for the fastest-growing intrusions. 

On a more qualitative level, a nonconstant diffusivity could allow different types of instabilities to occur. Walsh and 
Ruddick (1995b) discussed instabilities resulting from the salt-finger diffusivity parameterizations due to Stern (1969) and 
Kunze (1987). These authors proposed flux-limiting constraints for growing salt fingers, resulting in diffusivity formulations 
which are increasing functions of R

ρ
. Walsh and Ruddick (1995b) showed that diffusivities of this form can lead to a UV 



catastrophe if they are rapidly increasing functions of R
ρ
 because the effective diffusivity for T–S anomalies [Kf

S + (γf − Rρ)

Kf′S] can then be negative. The instability that occurs in this case is similar to that discussed by Phillips (1972). The Phillips 

instability occurs when the flux of a quantity  decreases as its gradient is increased. Hence, if the vertical flux of  is 
characterized by a nonlinear diffusivity so that the flux F( ) is given by

F( ) = −K( z) z,(36)
 

small perturbations will grow if the “effective diffusivity”  is negative, that is,

 

This condition is satisfied if K( z) decreases faster than −1
z, in which case the flux of  increases where gradients are 

weak and decreases where they are large, causing disturbances to grow. In our case the situation is slightly different 
because the flux of salt is given by FS = −KS(R

ρ
)Sz [according to (6)], and R

ρ
 has an inverse dependence on Sz [from (5)]. 

It follows that, for fixed Tz, instability will occur if KS increases faster than linearly (i.e., faster than R+1
ρ
). Such behavior 

could affect our conclusions significantly if it occurred, although the growth rate expression (11) and the expressions for 
the marginal-stability curve [(14), (15)] would still be valid. However, evidence suggests that effective diffusivities in salt-
finger-stratified regions of the ocean are decreasing functions of R

ρ
 (Schmitt 1981) [except perhaps at rather low values of 

R
ρ
 (Kunze 1994)], in which case the instability discussed by Walsh and Ruddick (1995b) would not occur. In contrast, 

evidence that the flux ratio decreases with R
ρ
 seems stronger [e.g., Schmitt (1979b); St. Laurent and Schmitt (1999)], so 

the “Huppert”  instability discussed in this work may be more relevant to the ocean. 

A better understanding of the large amplitude behavior of thermohaline interleaving is needed to evaluate its role in the 
ocean. To achieve this, an improved understanding of the small-scale fluxes driving intrusions is needed, as is a better 
understanding of the ways interleaving structures interact with the mesoscale features in which they are embedded. Our 
approach in this work has been to examine the effect of particular assumptions about small-scale double-diffusive and 
turbulent fluxes on small amplitude intrusions. Eventually, we hope to be able to reliably predict the fluxes of heat, salt, 
density, and momentum associated with fully developed interleaving for any particular set of initial conditions (e.g., 
stratification, lateral T–S gradients, shear). This will require an understanding of the large amplitude dynamics of intrusions, 
and at present we are a long way from having the necessary level of understanding. Some progress in this direction has been 
made by McDougall (1985b), who obtained a family of equilibrium solutions representing large amplitude, &ldquo ab”  
intrusions (i.e., convecting layers separated by thin diffusive and salt finger interfaces) and analyzed their stability in a 
heuristic fashion. Walsh and Ruddick (1998) used a one-dimensional numerical model to show how the fluxes of T and S 
driving intrusions can adjust as they grow to allow small-amplitude, exponentially growing intrusions to achieve a large 
amplitude equilibrium. Recently, Merryfield (2000) has presented model results suggesting that intrusions may in some cases 
evolve into thermohaline staircases, rather than the large amplitude equilibrium intrusions found by Walsh and Ruddick 
(1998). This remains an active area of investigation. 

6. Conclusions  

The interleaving problem has been formulated such that the combined effects of turbulence and double diffusion are 
characterized by an R

ρ
-dependent flux ratio, γeff. This approach allows the two phenomena to be studied and compared 

within the same theoretical framework. Turbulence decreases the range of slopes and wavenumbers over which intrusions 

grow, but intrusions still grow for any finite value of Kt/Kf
S. This suggests that interleaving can occur even when turbulent 

fluxes are larger than double-diffusive fluxes, as may be the case over much of the world’s ocean. 

The qualitative behavior of the interleaving system (10) is found to depend upon the variation of γeff with R
ρ

: when γ′eff > 

0 (the &ldquo rbulence-dominated”  case), the marginal stability curve is elliptical and high-wavenumber disturbances are 

suppressed; when γ′eff < 0 (the “finger-dominant”  case) the marginal stability curve is hyperbolic and growth rates are 

unbounded as m  ∞. The expression (14) describing the marginal stability curve is very general, giving qualitative 

information about the stability of the system (10) independent of the detailed form of Kf
S and γf.

 

A nonconstant salt-finger flux ratio that is a decreasing function of R
ρ
 (Stern 1975; Schmitt 1979a) leads to a UV 

catastrophe, the mechanics of which are similar to that for the instability discussed by Huppert (1971). This UV instability is 
nonadvective in the large m limit and hence cannot be suppressed by friction, in contrast with the high-wavenumber 
intrusive instability discussed by Stern (1967). However, in most cases, the UV instability can be suppressed by turbulent 
mixing of T and S, and we present a simple criterion for this, relating the strength of turbulence to double diffusion. For 

Stern’s formulation (23) the high-wavenumber instability occurs for small enough R
ρ
 for any Kt/Kf

S, whereas for Schmitt’s 

formulation values of Kt/Kf
S larger than 0.59 will suppress the high wavenumber instability for all R

ρ
. Even when the UV 

instability occurs, the fastest-growing low-wavenumber disturbances may still be intrusive for moderate turbulence levels. 
The spectral gap between intrusions at low-wavenumber and high-wavenumber UV modes may help explain observations of 
intrusions in a background of smaller-scale steps and layers (e.g., Perkin and Lewis 1984). 
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APPENDIX  

7. Determination of Sign of Coefficient in Eq. (35)  

We want to demonstrate that

 

Using (8) and assuming K′S = 0, this reduces to

 

We will show that this inequality is satisfied for any of the flux ratio formulations considered in this work so that the 

inequality (35) is fully determined by the sign of γ′eff. Now, Eq. (A2) is clearly satisfied if γf is constant and less than one 

(since R
ρ
  1). In addition, using Stern’s formulation gives, after some manipulation:

 

which is always positive. From (A2) we can see the reason for this is that the singularity in Stern’s formulation, which is 

of the form γ′f  (R
ρ
 − 1)−1/2 is weaker than the (R

ρ
 − 1)−1 singularity in the last term on the left-hand side of (A2), so the 

latter term (which is positive) dominates as R
ρ
  1. Finally, plotting the left side of (A2) versus R

ρ
 for different values of 

Kt/Kf
S using Schmitt’s formulation shows that the inequality (A2) is indeed satisfied for any of the flux ratio formulations 

considered in this work. Thus, the sign of γ′eff is sufficient to determine whether the UV catastrophe will occur in the full 

interleaving system (10).

Figures  



 
Click on thumbnail for full-sized image. 

Fig. 1. Schematic of interleaving disturbances growing on a T–S front. Warm and salty water rises as it crosses the front; water 
from the cool, fresh side descends across the front. Lateral motions through horizontal T–S gradients produce small T–S 
disturbances (shown at right for the profile at location A), and the resultant variations in double-diffusive density fluxes (shown 
by arrows) accelerate the cross-front motion 
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Fig. 2. Effect of turbulence on the effective T/S flux ratio γeff when γf is constant (γf = 0.6) (numbers on the curves show the 

value of Kt/Kf
S) 
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Fig. 3. Real part of growth rate contoured as a function of slope (s) and squared wavenumber (m2) for the constant γf (=0.6) 

case with nonzero Kt  (Kt/Kf
S = 0.1). Dashed contours show negative growth rates; shading indicates complex growth rates (i.e., 

oscillatory solutions). The heavy solid line shows the curve Re(λ) = 0 
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Fig. 4. Effect of turbulence on the properties of the fastest growing intrusion, plotted as a function of R
ρ
 for various values of 

Kt/Kf
S [Kt/Kf

S = 0 (solid), Kt/Kf
S = 0.1 (dashed), and Kt/Kf

S = 0.2 (dash-dotted)], with γf = 0.6, Pr = 5, x = 0.05, and Kf′
S/Kf

S = 0 
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Fig. 5. As in Fig. 3  but with Kt = 0. In this case there is no high wavenumber cutoff for intrusion growth
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Fig. 6. Marginal stability curves for the constant flux ratio case (γf = 0.6) with turbulent mixing (Pr = 5, x = 0.05, R
ρ
 = 1.6). The 

shaded band is the region in which intrusions grow in the absence of turbulence. The marginal stability region is elliptical when 

Kt is nonzero, and increasing Kt shifts the curve toward smaller slopes and wavenumbers (numbers on the curves show the 

value of Kt/Kf
S) 
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Fig. 7. Stern’s (1975) salt finger flux ratio formula (23) (solid) and Schmitt’s (1979a) formulation (dashed) 
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Fig. 8. Real part of growth rate contoured using Stern’s flux ratio formulation (23), with Kt  = 0, R
ρ
 = 1.6, Pr = 5, and x = 0.05. 

Largest wavenumbers grow fastest, and there is no local maxima corresponding to intrusions. Dashed contours show negative 
growth rates; shaded regions indicate oscillatory solutions. The heavy solid line shows the curve Re(λ) = 0 
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Fig. 9. Schematic of Huppert’s (1971) instability mechanism. A small temperature disturbance produces a corresponding 
variation in R

ρ
. If the flux ratio decreases with R

ρ
 this leads to vertical variations in the flux ratio as shown, and the resulting 

variations in the flux of T (αFT = −γfβK
f
SSz) cause the disturbance to grow 
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Fig. 10. Effect of turbulence on the effective flux ratio γeff using Stern’s formulation for γf (a) and Schmitt’s (1979a) formulation 

(b) for various values of Kt/Kf
S. Dashed curves connect the minima of the solid curves 
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Fig. 11. Value of Kf
S/Kt required to trigger the UV instability, as a function of R

ρ
 [from Eq. (33)]. Shaded regions are stable with 

respect to the high wavenumber UV instability discussed in the text. The dashed curve corresponds to Schmitt’s (1979a) flux 
ratio formulation; the solid curve corresponds to Stern’s formulation (23). When R

ρ
  1, relatively little double-diffusive mixing is 

needed to trigger the instability, but when R
ρ
 is large double diffusive fluxes must be very large to cause instability 
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Fig. 12. Marginal stability curves using Stern’s flux ratio formulation (23), for various values of Kt/Kf
S. The curves correspond 



 

 

to the parameter choice Pr = 5, x = 0.05, R
ρ
 = 1.6, and the labels on the curves show the value of Kt/Kf

S. The marginal stability 

region is hyperbolic when Kt/Kf
S is small, and becomes elliptical when Kt/Kf

S exceeds the threshold defined by (33) 
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Fig. 13. Real part of growth rate contoured using Stern’s flux ratio formulation (23) and nonzero Kt  (Kt/Kf
S = 0.1); all other 

parameters are identical to those used in Fig. 8 . As in Fig. 8 , growth rates increase with m2 for large m2, suggesting a UV 

catastrophe, but the local maximum at m2  0.003 shows that intrusions dominate at low wavenumbers. Dashed contours show 
negative growth rates, shaded areas show regions in which solutions are oscillatory, and the heavy solid line is the curve Re(λ) = 
0

 

 

1 Setting γ′ f = 0 has eliminated the high wavenumber instability, so all growing modes within the ellipse with semimajor axes (18a,b) must be 

intrusive in nature.
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