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ABSTRACT

Zonally propagating solutions of the primitive equations for an isolated volume 
of fluid are considered. In a moving stereographic projection (from the antipode 

of the center of mass) geometric distortion enters at O(R−2), with R the radius 

of the earth, whereas planet curvature effects are O(R−1). The imbalance 
between the centrifugal force and the poleward gravitational force, due to the 
drift c, is equilibrated by the average Coriolis force, proportional to β. The 
results are valid for both homogeneous and stratified cases and the lowest-order 
solution need not be an axisymmetric vortex. The classical β-plane 
approximation predicts correctly the leading order of c/β, but makes large errors 

in the O(R−1) term of the vortex structure. 

A method is developed to construct the correct O(R−1) term, starting from any 

steady solution of the f-plane equations, as the O(R0) term. The expansion is 
exemplified starting with a homogeneous fluid, solid body rotating at an 

anticyclonic rate −νf0, with 0 < ν < 1. To O(R−1) particle orbits and isobaths 

belong to different families of nonconcentric circles. A water column moves 
faster and becomes taller the farther away it is from the equator. In order to 
keep its potential vorticity, the water column experiences changes of relative 
vorticity equal to −(2 − ν)/(3 − 3ν) times the variations of the ambient vorticity 
(Coriolis parameter). The physics of this solution is compared with that of a 
circular and rigid disk, studied in Part I.

1. Introduction  
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Ball (1963) studied the shallow-water equations in the framework of the f-plane approximation (constant Coriolis 
parameter f  and Cartesian geometry), showing that “the motion of the centre of gravity of a finite volume of liquid with free 
boundaries . . . is independent of the motion relative to the centre of gravity, and vice versa.”  More precisely, in the 

absence of topography this center of mass movement is but an inertial oscillation in a circular orbit1 and the motion relative 
to it satisfies the full, nonlinear, shallow-water equations. Cushman-Roisin and Nof (1985), Young (1986), and Cushman-
Roisin (1987) reinterpreted the results of Ball (1963) in a “reduced gravity”  setting in which the active volume of fluid is 
assumed to be floating on top of a motionless heavier liquid. As long as the ambient layer is assumed to be at rest, there is no 
mathematical difference between Ball’s setting, a volume of fluid over the surface of the planet (which will be adopted here), 
or the reduced gravity ones. Maas and Zahariev (1996) further generalized these results to a three-dimensional elliptical 
vortex moving inside a motionless stratified fluid: in addition to the horizontal inertial oscillations, the center of mass 
performs vertical buoyancy oscillations.

Ball (1963) showed that conservation of the energy , measured in the terrestrial frame, and the vertical component of 
the angular momentum  play an important role in the motion of the fluid relative to the center of mass, and also proved that 
there are exact solutions of the f-plane shallow-water equations, in which the pressure (velocity) is a second (first) order 
polynomial of the coordinates; the time-dependent polynomial coefficients satisfy nonlinear ODE. Particular examples of 
these “polynomial solutions”  were discussed by Cushman-Roisin and Nof (1985), Young (1986), and Cushman-Roisin 
(1987), and the general solution of the system of ODE was found by Holm (1991). It is worth recalling that, even though 
these are exact solutions the f-plane shallow water equations, they might be unstable, particularly the more elongated ones, 
to perturbations in the form of a higher degree polynomial (Cushman-Roisin 1986; Ripa 1987; Ripa and Jiménez 1988; Pavía 
and López 1994). 

Allowing for effects of the planet’s curvature changes completely Ball’s scenario: the inertial oscillations are not circular 
but experience a secular drift, they are coupled with the internal motions,  is no longer an integral of motion, and 
polynomial exact solutions are not possible. A solid-body rotating vortex in the f-plane (the “lens”), can be shown to be 
stable using conservation of , , and potential vorticity (Ripa 1987, 1992); even if there were axialsymmetric solutions on 
the sphere (with the center off the poles), their stability could not be proved by the same method because  is not an 
integral of motion.

Through the analysis of a disk dynamics, in Ripa (2000 henceforth referred to as Part I) it was shown that at low  there 
are two distinct parts of the drift velocity c: that due to the inertial oscillations co and that caused by the intrinsic rotation ci, 

which were respectively denoted “orbital drift”  and “internal drift”  for simplicity (both refer to the translation of the whole 
solution, though, the name distinguishes the origin of the drift; see Table 1 in Part I). The present paper is devoted to the 
second effect on isolated vortices; the most difficult problem of a vortex experiencing both inertial oscillations of its center 
of mass and internal motions will be left for Part III of these works.

Nof (1981) and Killworth (1983) calculated the internal drift ci of an isolated vortex in the framework of the classical β-

plane approximation of the shallow-water equations, that is, using

x = (λ − λ0)R cosθ0, y = (θ − θ0)R(1.1)
 

—where (λ0, θ0) are reference (longitude, latitude)—as Cartesian coordinates, but allowing for a linear variation of f  with 

latitude. This approximation is incorrect (except in the equatorial waveguide) because the curvature corrections to a flat 

geometry are of the same order as the variation of the Coriolis parameter, namely, O(R−1). However, Graef (1998) proved 
that the formula derived by Nof (1981) and Killworth (1983) for ci is correct. This does not mean that the classical β plane 

gives the right description of all other details of the motion, as explained in Ripa (1997, hereafter referred to as R97), Part I, 

and this paper. More precisely, the exact arc element in the coordinates (1.1) is given by  
with γ = secθ0 cosθ. Therefore, as y  0 the Coriolis parameter and metric coefficient satisfy

 

where all through these papers the symbol  denotes “equal modulo o(R−1),”  that is, results with an O(R−2) error, and

 

Note that β and τ  are of the same order, namely R−1, except for θ  = 0.

 



0 0

The inadequacy of the classical β-plane approximation is not always clearly recognized. Compare, for instance, the 
formulas for the ageostrophic velocity and divergence, in the quasigeostrophic scaling, given by two classical texts 
[Pedlosky 1979, Eqs. (13a), (13b), and (14) of section 6.3] versus [Gill 1982, Eqs. (17), (18), and (28) in section 12.2]: the 
former include terms proportional to τ0 missing in the latter. In the derivation of the quasigeostrophic model, these “non-

Cartesian”  terms cancel out in the corresponding potential vorticity equation, which is then fortuitously described correctly 
by the classical β-plane approximation (Pedlosky 1979;see also R97). However, it is not unlikely that τ0 should appear in the 

prognostic equation of other balance models, in a correct O(R−1) approximation. 

In the spherical coordinates (1.1), the parameters β and τ0 appear on equal footing because both are O(R−1). Phillips 

(1973) and Verkley (1990) choose other coordinates (xp, yp) such that the xp = 0 is the meridian λ = λ0, whereas yp = 0 is 

another great circle, tangent to the zonal displacement (λ0 + dλ, θ0), instead of the parallel θ = θ0. [Phillips makes a 

stereographic projection from the antipode (λ0 + π, −θ0) whereas Verkley uses spherical coordinates such that yp = 0 is 

their equator.] With these choices of variables the classical β-plane equations are correct up to O(R−1) in a neighborhood of 
θ = θ0 and λ = λ0; this is appropriate for problems in a small domain fixed to the earth (such as a sea) but not for the 

solutions with a secular zonal drift, such as those studied in this and companion papers, since the requirement λ  λ0 is 

eventually violated. Approximations are not uniformly valid in time because the drift is along the great circle yp = 0, instead 

of the parallel of latitude y = 0. (See R97 for a quantitative comparison of the predictions for a single particle made by 
Verkley’s system, the classical β plane, and the full equations.) 

In order to derive approximations that are uniformly valid in time, in Part I were defined moving coordinates (x′, y′) by 

means of a stereographic projection from (λ0 + π + δΩt, −θ0), where δΩ = cR−1 secθ0. In the new frame a particle has a 

velocity u′ = u − γc  and is subject to the action of the Coriolis force −f ′  × u′ and the imbalance between the poleward 
gravitational force and the equatorward centrifugal force − ′ (called “geoforce”  in Part I), where

 

In terms of these coordinates, the arc element and the terrestrial Coriolis parameter are exactly given by 

 with  and f  = (2  − 1)f0 + βy′.
 

The transformation (x′, y′)   (x, y) is given by in appendix A of Part I; if the interest is near 

 making an expansion in r/R, it is also shown in Part I:

 

This yields a transformation of the horizontal velocity components, u  (1 − τ0y)  and  = , of the form

u − c  u′ + τ0x′ ′,   ′ − τ0x′u′,(1.3)
 

where u′   ′ and  ′   ′. Furthermore, since δΩ/Ω = O(R−2) [i.e., c = O(R−1); see Part I],

f ′   f0 + βy′, ′   f0cy′,   1.
 

From these expressions it follows that the correct O(R−1) equations in (x′, y′) coincide with the incorrect β-plane 



equations (i.e., without the τ0 terms) in the coordinates (x − ct, y). Consequently, as long as c is chosen so that the 

solution’s domain remains bounded in these coordinates, the classical β-plane equations give the right solution in the wrong 

frame. Note that the circle (x′, y′) = a(cos , sin ) is not seen as a circle in (x − ct, y) but as (x − ct)2 + y2  a2(1 + τ0a 

cos 2 sin ): the apparent eccentricity is O(R−1), namely, the same order as the difference with the f-plane solutions. This 

problem is not avoided using coordinates (x, y) defined with a Mercator projection, that is,  

since it can be shown (x − ct)2 + y2  a2(1 + τ0a sin ) in this frame (see R97). Here on, (x, y) will denote the spherical 

coordinates (1.1); variables a and τ0 used in R97 correspond to R and τ0R in this paper, whereas 2 from R97 should here 

be set equal to zero.

As done in (Ball 1963), only compact vortices are considered here, that is, bounded by a zero depth line, in the two-
dimensional case, or a surface of vanishing pressure perturbation, in the three dimensional case. For nonisolated vortices, the 
external field plays an important role (Nof 1983; Cushman-Roisin et al. 1990; Benilov 1996; Llewellyn Smith 1997; Stern and 
Radko 1998); study of earth’s curvature effects for these problems is beyond the scope of the present paper. The purpose 
of this paper is twofold: First, bulk formulas (the drift c and the average of the particles zonal velocity ‹u›, whose difference 
is a consequence of the planet’s curvature) are derived for the general problem in section 2, without making particular 
assumptions on the structure of the lowest order fields (e.g., it need not be a monopolar vortex); these results are shown to 
be also valid for a stratified case. Second, the structure and dynamics of a uniformly translating solution of the shallow 

water equations are discussed in section 3. An expansion method to find a general O(R−1) solution is derived. The particular 

case when the starting, O(R0), field is a solid-body rotating vortex is described and its dynamics is compared with that of 
the disk, studied in Part I. Conclusions are finally given in section 4, and mathematical details are left for appendixes. 

2. General equations  

First consider an homogeneous fluid, henceforth referred to as “the vortex,”  in a compact volume bounded by the earth’s 
radii R and R + h(x, t), where the horizontal position x is expressed in any coordinates on the sphere. Each water column 
moves with a horizontal velocity u(x, t). It is important to write down the evolution equations in a coordinate-free form, 
namely

 

where

 

are the vertical relative vorticity and Bernoulli head, respectively. The total volume is conserved

 

Ball (1963) derived, in the case of Cartesian geometry, the theorem

 

for any μ(x, t), where ‹μ›  := ( D hμ dS)/( D h dS) and D/Dt = t + u · . It is easy to show that it is also valid on 

the sphere (in any coordinates and frame).2 [If the domain is not limited by h = 0 and the far-field asymptotic condition is of 

the form h  h
∞

, then the angle brackets are not an average, but rather denote ‹μ›  := ( D hμ dS)/( D (h − h
∞

) dS).] 



Secondly, the equations of motion for a stratified isolated volume of fluid are

 

where D/Dt = t + u ·  + w z, (x, z, t) is the buoyancy field, b = p + ½u2, and p(x, z, t) is the kinematic pressure 

deviation from the atmospheric pressure, in Ball’s volume of fluid setting, or from the reference pressure profile of the 
surrounding fluid, in a “reduced gravity”  setting like that of Maas and Zahariev (1996). It is easy to see that Ball’s theorem 
(2.1) is also valid in three dimensions, where ‹ · · · ›  represents a volume average in the domain D3(t). 

Different orthogonal coordinates (x1, x2) can be used on the sphere. If the arc element takes the form

 

then the area element and the differential operators are

 

For instance, for the rescaled spherical coordinates (1.1) it is Dx/Dt = u/γ and Dy/Dt = , and the shallow water equations 
take the form

 

with τ := −γ−1 dγ/dy = R−1 tanθ. (Note that τ  τ0 as y/R  0.) On the other hand, in the moving stereographic 

coordinates derived in Part I and described in the introduction, the shallow-water equations are, exactly,

 

where ′
t is the operator for the time derivative at fixed x′ = (x′, y′) and

 



Notice that the potential vorticity is the same in both systems q = (f  + )/h  (f ′ +  ′)/h. Since γ1 = γ2 = , the system 

(2.2) for (h, u′, ′)(x′, y′, t) can be explicitly written as

 

where ′
0 is the nabla operator, as if (x′, y′) were Cartesian coordinates.

 

a. Bulk properties for uniform translation  

Assume a steadily propagating solution. In spherical coordinates, all dynamical fields are functions of (x − ct, y) or (x −

ct, y, z) for some constant c (which is an internal drift ci, since inertial oscillations are not included in this calculation). 

Consequently, d‹x›/dt = c and d‹ ›/dt = 0. Moreover, from dS = γ dx dy and dγ/dy = −γτ, it follows  

and finally ‹ ›  = 0 implies  and c = ‹γ−1u›, exactly. (The center of 
mass zonal velocity U is equal to c due to the lack, here, of center of mass oscillations.) In an expansion in inverse powers 
of R, to lowest order it is

 

These results are quite general. They apply to both homogeneous and stratified isolated volumes of fluid. They might even 

be valid for a nonisolated, uniformly translating solution, as long as the O(R−2) terms and the remainder in the integration by 
parts of ‹ p/ y›  can be neglected. Notice that to calculate the lowest order contribution to the bulk quantities, namely O

(R−1), it is not necessary to study the motion of the center of mass [as done, for instance, by Killworth (1983) in the 

classical β plane], and it is enough to know the O(R0) solution, which need not be axisymmetric. 

It is much simpler to calculate bulk formulas for homogeneous or stratified uniformly propagating vortices in 
stereographic coordinates, for which the solution is steady, and therefore ‹u′›  is constant (in fact, c must be chosen so that 
‹u′›  = 0). Using Ball’s theorem (2.1) with d‹u′›/dt = 0 yields, exactly,

 

Now ‹ ′p›  is proportional to (½ ′h2) 2 dx′ dy′ in the homogeneous case or to  ( ′p) 2 dx′ dy′ dz in the 

stratified case; integrating by parts it is found ‹ ′p›  = O(R−2) in both cases because  = 1 + O(R−2) and p = 0 in the 

boundary. Using ′  f0cy′, it is then found β‹y′u′›   −f0c ′; that is, β‹y′ ′›  = O(R−2) and

c  −βf−1
0‹y′u′›.(2.4a)

 

Even though ‹u′›  = 0, from (1.3) it follows

‹u›   c + τ0‹x′ ′›(2.4b)
 

and τ0‹x′u′›  = O(R−2). These results can be cast in a form more similar to those obtained for the disk, in Part I, as 

follows. Writing the horizontal velocity field in terms of the rotation velocity ω(x′, y′, z) and radial velocity u′r(x′, y′, z)



 

from d‹x′y′›/dt = 0 it follows ‹ −1(y′u′ + x′ ′)›  = 0, and therefore ‹y′u′ + x′ ′›   0. Consequently, since 

 it is finally found  which implies

 

which are exactly the formulas obtained for the uniformly propagating disk (see Table 1 in Part I and recall that 

 Notice that the only assumption made is the existence of a uniformly propagating 
solution (an approximate example of which is given in section 3): it is not necessary to make any hypothesis on the shape of 
this solution (e.g., the lowest order field need not be axisymmetric).

3. Structure of the purely translating solutions  

For simplicity, a homogeneous vortex will be considered here. In order to find the structure of a vortex in pure 

precession, ′
t = 0 is made in the exact evolution equations (2.2). The first one is satisfied defining a transport function, hu′ 

=  × ′ , which can then be used to write the potential vorticity as

 

The second equation in (2.2) then implies b′ = B(q) and  = (q), where the functions B(q) and (q) could be 
multivalued and are related by

 

These represent coupled and highly nonlinear differential equations for  and h, to be solved in the domain inside the h = 
0 curve (which is part of the solution), and such that c is an eigenvalue (hidden in the definitions of both b′ and q) to be 
determined by the requirement of steady and well-behaved fields. This is hardly a problem to be solved “on the back of an 
envelope.” 

Solutions are thus found making an expansion in R−1 and working with (2.3), which uses (x′, y′) as planar coordinates. 
To lowest order it is

 

and to first order in R−1, it is

 

where in

 



are grouped the leading term of − ′ and −(f ′ − f0)  × u′. These are the equations to solve in order to find the lowest 

order correction to the vortex structure. The a priori formula for the drift velocity (2.4a) follows from the condition ‹F›  = 0. 

Clearly, (3.1) is no more than the equations for a steady solution on the f  plane: A reasonable choice for (h0, u′0) is any 

stable equilibrium and appendix A shows how to use its (f  plane) normal modes in order to calculate (h1, u′1). 

The simplest form of the lowest order solution is probably a circular vortex in (anticyclonic) solid-body rotation, ω = −νf0 

= const, which implies

 

where obviously 0 < ν < 1 and 0  r  a. The a priori formula (2.4a) gives

 

In appendix B it is shown that the O(R−1) solution can be written in compact form as

 

+ O(R−2). Notice that, if h and u′ (=h−1  × ′ ) are written as polynomials in the coordinates (x′, y′), neglecting o(R−1) 
terms, these polynomials are one order larger than that of the exact f-plane solutions discussed in the introduction. Two 
nondimensional parameters characterize the vortex (3.5), ν and

 

in addition to the environmental parameters f0, β, and τ0; as in the analysis of the disk presented in Part I, τ0 only enters in 

the transformation back to spherical coordinates (x′, y′)  (x, y). 

To second order, the total vertical vorticity is given by

 

The gradient of relatively vorticity −β(2 − ν)/(3 − 3ν) is opposite to the planetary vorticity gradient β, and is very 
important: its smallest value, corresponding to ν  0, equals −(2/3)β; for solutions with anticyclonic absolute vorticity (ν > 
1/2) changes in the relative vorticity are larger, in magnitude, than those of the ambient vorticity.

The height field can be written as h = (1 + 3 y′/a)h0(r); solutions will be restricted to | | < 1/3 (although formally it is  

 1), so that the boundary is the circle h0 = 0. This condition can be seen as limiting the allowed radii a as a function of ν, 

namely, βa/|f0| < 6ν(1 − ν)/(1 + 3ν); the right hand side reaches a maximum of 2/3 at ν = 1/3. The total vorticity can be 

written as



 

and thus it has the same sign all over the domain of the vortex, because

 

Notably, to the order resolved the relationship between Bernoulli head, transport function, and potential vorticity is the 

same as that of the O(R0) solution (valid on the f  plane), namely

 

where A = gf0(1 − 2ν)2/(1 − ν) and  Notice that d /dq = −A/q3 is negative (positive) if ν < 1/2 (ν 

> 1/2), that is, if the total vorticity is cyclonic (anticyclonic). These vortices are circular but not axisymmetric. The 
applicable formal sufficient stability conditions (derived from the conservation of pseudoenergy) take the form d /dq > 0 

and u′2 < gh (Ripa 1991), and are violated somewhere for all   0. Consequently, it is not possible to say anything a priori 
on the stability of these solutions, unlike the f-plane lens, which is proved stable using conservation of pseudoenergy and 
vertical angular pseudomomentum.

The vortex boundary is a circle with radius a. Some points of interest are

 

+ O( 2a). To lowest order in , the depth contours h = const and particle orbits  = const belong to different families of 
nonconcentric circles; see Fig. 1 . Since isobaths and orbits are different circles, a water column changes its height along 

its trajectory, in order to compensate for the changes of total vorticity (3.6), so that the potential vorticity q = (f  + )/h 
remains constant.

Consider a general water column whose orbit has a radius r0 ( a); it can be shown that the center is at

 

Evaluating  along  it follows that the angular velocity is 

anticyclonic and varies linearly with y′, as it does   in (3.6). More precisely, the Lagrangian trajectory and relative vorticity 
of a generic fluid element are given by

 



This is qualitatively similar to the results obtained in Part I for a disk, namely the coordinates (X′, Y′) of its center of mass 
and the internal rotation ω round this point are given by

 

where ρ is the radius inertial oscillation and ω is the temporal mean of ω. 

In the case of the symmetric disk, changes of the intrinsic rotation are related to meridional motions through the law of 
vertical angular momentum conservation f  + ω = const. On the other hand, changes in the relative vorticity of a water 
column are more complicated because they are produced by both the meridional displacements and the divergence field

 

The acceleration and driving forces for water particles in any orbit are presented in Table 1 , where 0 is the radial unit 

vector with respect to the center of that particular orbit, and exemplified in Fig. 2 . 

In the case of the disk, the acceleration,

 

is produced by the Coriolis forces due to the orbital motion −[f0 + (3/2)βY′]ρf0  and the internal motion  as 

well as the geoforce

 

The acceleration and driving forces for the water columns near the boundary, r0  a, are similar to those of the disk’s 

center of mass (see Table 2 in Part I), with the ageostrophic imbalance instead of the Coriolis force and without the internal 
Coriolis force. For water columns near the point of no motion, r0  a, on the other hand, there is a balance between the 

pressure and geoforce, sea level slopes down toward the equator, maintaining the uniform translation c. 

In order to compute a Lagrangian time average of the balances of Table 1 , recall that 0 rotates at a nonuniform rate. 

In particular, it can be shown that

 

these equations imply that the time averaged acceleration vanishes, as it should.

a. The classical β plane  

This approximation is formally equivalent to making γ = 1 (and thus τ0 = 0) in spherical coordinates. Its prediction for 

 (Nof 1981; Killworth 1983) coincides with ((2.4a)), but the value of ‹u›  predicted by this 

approximation, ‹u›  = c instead of (2.4b), is wrong by a factor of cos2θ0. Allowing for oscillations of the center of mass, as 



done in Part III, the prediction for the time-averaged center of mass zonal velocity U is also incorrect (see also Part I). With 
respect to the vorticity, the classical β-plane approximation predicts

 

whereas the correct value is obtained using  in (3.6), which gives an 
extra term, νf0τ0y, of the same order as βy. 

In the classical β-plane model, the transformation to the frame moving with the vortex is x" = x − ct and y" = y. The 

equations of motion also take the form (2.2), except that the transformed variables are u" = u − c , f" = f, " = , and " = 

cf0y + ½cβy2 (Nof 1981; Killworth 1983). These differ from the exact ones at O(R−2) [for instance, the effective potential 

should be  Consequently, the lowest order nontrivial 
solutions of (3.1) and (3.2) are formally the same, except that they are posed in different coordinate systems, which differ in 

O(R−1). A similar situation is encountered in the simpler problems of the particle and the disk. In the three cases, the 
classical β-plane approximation gives the correct value of c because it uses the same set of equations even though in the 
incorrect frame, (x", y") instead of (x′, y′). Consequently, the vortex structure calculated by Killworth (1983) can be 
rendered valid reinterpreting (u", ", h")(x", y")  (u′, ′, h′)(x′, y′) (see last paragraph in appendix B). Benilov (1996) 
calculated the structure of (u, , h)(x", y") for a nonisolated vortex (h  h

∞
 as r  ∞). If the decay is fast enough so 

that the geometric terms proportional to r can be neglected, then this solution could also be rendered valid reinterpreting (u
− c, , h)(x", y")  (u′, ′, h′)(x′, y′). 

4. Conclusions  

An isolated vortex in a rotating planet experiences a secular westward drift, along a latitude circle, and consequently the 
natural coordinates to describe the problem are spherical ones. The curvature of the planet has two effects of similar 
importance: the change of Coriolis parameter with latitude (the “β effect”) and a geometric one (the convergence of the 
meridians towards the poles). For a small vortex both effects are O(a/R), where a and R are the radius of the vortex and 
that of the planet; the classical β-plane approximation represents only the first effect, therefore making errors of the same 
order of magnitude as the difference between the f  plane and exact solutions. The β effect is best described in stereographic 

coordinates that move with the secular drift of the vortex, for which nonplanar geometric corrections are then O(R−2), but 
their drift speed c must be determined a posteriori. 

A very simple purely translating solution of the shallow-water equations is found in these coordinates, which has the form 
of the well-known solid body rotating in the f  plane, with O(a/R) corrections. The vortex is circular but not axisymmetric. 
The isobaths are nonconcentric circles with their centers slightly shifted toward the nearest pole with depth. The orbits 
belong to a different set of nonconcentric circles. A water column makes an anticyclonic rotation, decreasing its speed and 
the magnitude of its vorticity (which could be either cyclonic or anticyclonic), while shrinking its height, when approaching 
the equator. The changes of relative vorticity are opposite to those of the ambient vorticity and large enough to keep a 
constant potential vorticity. Two forces produce the acceleration of a water column:the ageostrophic imbalance (sum of the 
pressure and Coriolis forces) in the radial direction of the orbit and the meridional “geoforce,”  which is the imbalance 
between the poleward gravitational force (due to the deviation of the geoid from a perfect sphere and to inhomogeneities in 
the mass distribution within the planet) and the centrifugal force due to the planet’s rotation. 

The model used here is far too idealized to be compared with observations. Real vortices in the ocean or planetary 
atmospheres are not isolated; they usually ride on a external field, whose shear may be important, and exchange properties 
with the environment. Nevertheless, the results of this paper may be used as a scaling guide of what to expect from 

observations. Consider, for instance, θ0 = π/4, and thus f0 = 1.0 × 10−4 s−1, β = 1.6 × 10−11 m−1 s−1, and τ0 = 1.6 × 10−7 

m−1. Choosing as zeroth-order solution a uniform potential vorticity lens, ν = 0.5, with a radius a = 100 km, Eq. (3.4) gives 

c = −1.3 cm s−1. The O(R−1) solution studied in section 3 is a very good approximation of the whole solution. For instance, 

a physically meaningful O(R−2) parameter is the relative change of the frame angular velocity when using coordinates 

following the secular drift; in this case δΩ/Ω = −3 × 10−9, suggesting that corrections beyond O(R−1) are not necessary. 
Nondimensional numbers measuring the importance of the earth’s curvature on the geometry (convergence of the meridians 

towards the pole) and the dynamics (drift speed over maximum particle velocity) are g := τ0a = 1.6 × 10−2 and 

 respectively. Since g > d, it is clear that geometric effects 



in spherical-like coordinates cannot be ignored, that is, the classical β-plane approximation is quantitatively incorrect. 
Consequently, any attempt to describe the physics beyond the f-plane scenario is best done in the stereographic coordinate 
frame, following the secular drift. Notice that this conclusion is independent of the size of the vortex, since g, d  a 

(their ratio is, in general, g/ d = 6 tan2θ0), and thus is expected to hold for solutions large enough for their difference with 

the f-plane structure to be more significant. [A similar conclusion is reached using , defined in the text, instead of d; 

indeed g/  = 18 tan2θ0ν(1 − ν)/(1 + 3ν).] 

Ball (1963) showed that in the context of the f-plane approximation (constant Coriolis parameter and flat geometry), the 
internal and center of mass motions are decoupled (the latter being a pure inertial oscillation). Including planet curvature 
effects, both motions are coupled and more complicated. The solutions for the vortex in pure translation (done here) and the 
general solution for the disk (presented in Part I) are a first step toward the understanding of this problem. Part III will be 
devoted to the more difficult task of addressing Ball’s problem in the sphere, that is, including the inertial oscillations of the 
center of mass and their interaction with the internal motion.
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APPENDIX A  

5. Derivation of the O(R−1) Uniformly Translating Vortex Fields 

 

As explained in the main text, the solution (h0, u′0) of (3.1) is any stable equilibrium of the f-plane equations. Its 

perturbation normal modes ( a, ûa) are calculated, in the f  plane, as the eigensolutions of

 

where the operator  is defined in (3.2). These eigenmodes satisfy an orthogonality condition of the form

( a, û a) · ( b, ûb) = 0 if a  b,(A.2)

 

where the centered dot denotes a linear operator. A very simple example will be given, and used, shortly: (δh, δu) · (δh,

δu) is the pseudoenergy of the perturbation (δh, δu) superimposed to the basic flow (h0, u′0). Since these modes span a 

complete basis, the solution of (3.2) is easily found to be of the form

 

There are two important points to make about this expansion.

● The solution of (3.2) is defined modulo modes for which  vanishes trivially. 

● For all modes such that a = 0, it must be required  this is the condition that gives the 

eigenvalue c. These modes are also part of the null space of the solution to (3.2). Since the origin of f-plane solutions 

can be changed at will, two of these a = 0 modes are ( a, ûa)  x′(h0, u0) and ( a, ûa)  y′(h0, u0). 

In the particular case of the basic flow (3.3), the eigenmodes of (A.1) are derived in (Ripa 1992):3 the pressure field g a 

and the polar components of the velocity field ûa take the form of a polynomial in r times eim , where m is an integer, and 

the dispersion relations are given by the roots of



 

where n is another integer, ω  = a + mνf0, and f  = f0(1 − 2ν). The pseudoenergy integral for this basic state is simply

 

Given the inner product and the form of (A.3), it is clear that:

● All a = 0 modes with m = 0 are orthogonal to the forcing  these axisymmetric steady modes 

span the trivial part of the null solution of (3.2), which can be absorbed in a change in the angular velocity ω(r). 
These modes will not be included, keeping a solid body rotating as the structure of the lowest order solution: ω = 
−νf0. 

● Orthogonality of the forcing  in (3.2) to the nonsymmetric a = 0 modes ( a, ûa)  x′

(h0, u0) and ( a, ûa)  y′(h0, u0) give the eigenvalue (3.4) and ‹x′y′›  = 0. 

● The O(R−1) solution is then obtained making the expansion (A.3) in the normal modes, or by the method explained in 
appendix B, which gives (B.4).

The expansion in normal modes is useful for two things. First, imposing orthogonality of the forcing with mode x′(h0,

u0) gives the drift velocity (3.4). Second, the solution is defined modulo the addition of this mode that taken as a wave 

sustained by the lens in the f  plane, is related to the freedom of changing the origin of coordinates. Addition of mode x′(h0,

u0) in the present context is not a trivial result, though, because the set (3.1)–(3.2) is not invariant under a change of the 

origin of coordinates (the f-plane dynamics was used only to derive the lowest order solution and the normal modes basis). 

APPENDIX B  

6. Structure of an Almost Solid-Body Rotating Vortex  

The solution of (3.2) in the particular case of the zeroth-order flow in the form of the “lens”  (3.3) could be obtained by 



the general method of making the expansion (A.3) derived in appendix A. However, a more direct method is presented next 
for this particular case. Equation (3.2) is of the type

 

where the forcing F and the response ( , ) are assumed to be proportional to eim . A peculiarity of the lens basic state 
is that these perturbation equations are like the linearized shallow-water equations in paraboloid topography, with a Doppler 
shifted frequency and modified Coriolis parameter, namely

 

where  and f  = f0(1 − 2ν). The second equation gives

(ω2  − f2 )  = (iω  + f ×)(F − g );(B.2)

 

substituting in the first one it is obtained

 

where

 

The normal modes, solution of the F = 0 equation, correspond to the eigenvalues μ = 2n(n + |m| + 1) + |m|. 

For m = 1 it is μ = 1 and  The solution of (B.2)/(B.3) is

 

in Cartesian coordinates, where the terms proportional to the arbitrary parameter κ represent the freedom mentioned 
above, namely adding to ( , ) a term proportional to y′(h0, u0), which is an homogeneous solution of (B.1). [The polar 

coordinates of u′1; that is, the real and imaginary parts of  have only terms proportional to cos  and 



sin , as it should. The solution in spherical coordinates, fixed to the Earth, is more complicated, namely, u = c + νf0[y − 

½τ0(x − ct)2] + u′1 for the zonal component and  = −νf0(x − ct) + ′
1 for the meridional one, where (x′, y′)   (x, y) in the 

expression of u′1 and ′
1, since they are O(R−1) terms.] 

The second-order solution is then h = h0 + h1 + O(R−2) (and similarly for the velocity fields u′ and  ′), and is obviously 

valid in the domain determined by h  0. Notice that if κ = 0 the boundary of the vortex is the circle r = a. A simpler 
representation of the solution is obtained as follows. First, the absolute vorticity is given by (3.6), independent of κ. Second, 
an appropriate transport function is given by

12(1 − ν)f0  = gh2
0 − gh0f0β[(1 + ν)(r2 − a2) − κa2(1 + 3ν)]y′;

 

the rotated gradient of this function gives (h0 + h1)u′0 + h0u′1 not (h0 + h1)(u′0 + u′1) but, since the difference between 

both vector fields is O(R−2),  can be redefined to be equal to the expression in (3.5b) so that  ×   (h0 + h1)(u′0 + u′

1). Finally, for  = O(1) and   1, the parameter κ gives only a trivial displacement (0, (3/2)κ a) of the whole solution; 

for example, (3/2)κ a can be subtracted from y′ in the formula (3.6) for the total vorticity, within the same order of 
accuracy. The second-order solution is then given by equations (3.5), where it has been chosen κ = 0, for simplicity. 
Killworth (1983) obtained the equivalent of solution (B.4) for κ = −1 and ν = (0, ½, 1), but in the incorrect frame used by 
the classical β-plane approximation: (x", y") instead of (x′, y′). [There are discrepancies between the solutions published by 
Killworth (1983) and those of this paper, though.] 

Tables  

Table 1. Uniformly translating vortex, as seen in a stereographic projection following the secular drift. (The entries are the 
factors that multiply the vectors defined on top of each column.) For a particle in an orbit of radius r0 ( a), the radial and 

meridional components of the acceleration are produced by the ageostrophic imbalance (sum of the Coriolis and pressure forces) 
and the “geoforce”  (sum of the equatorward centrifugal force and the poleward gravitational one); see Fig. 2 
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Figures  
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Fig. 1. Structure of a circular and almost solid-body rotating vortex, Eq. (3.5), in a stereographic projection following the secular 
drift. The effects of the earth’s curvature are exaggerated. The orbits (solid lines) are contours of potential vorticity, transport 
function, or Bernoulli head; the three fields are functionally related in Eq. (3.7). Dashed contours are isobaths. Notice that in each 
orbit the depth increases with the distance to the equator; the absolute vorticity changes likewise, in order to conserve potential 
vorticity
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Fig. 2. Excess acceleration and forces, from the f-plane balance, for the boundary, one internal orbit, and the point of no motion 

[see O(R−1) contributions in Table 1 ]. This diagram is similar to that corresponding to the inertial oscillation of a particle or 
disk, except that the Coriolis force is here replaced by the ageostrophic imbalance, that is, the sum of the Coriolis and pressure 
forces. The (larger) smaller the orbit the more meridional (central) the pressure forces are; in the limit of the point of no motion, 
there is an exact balance between the “geoforce”  and the pressure force 

 

 

1 Ball (1963) studied a more general case with a paraboloid topography. However, if this is concave and of revolution, then in the f plane there is a 
transformation to a rotating system which “eliminates”  the topography while changing the value of the Coriolis parameter (Ripa 1987). 

2 Since (d/dt) D μh dS = D t(μh) dS + [fy917,1]) D μhu ·  dl = D [ t (μh) + · (μhu)] dS = D h Dμ/Dt dS.
 

3 There are two typos on p. 404 of (Ripa 1992): a right parenthesis is missing in the equation for , it should finish “. . . grH )  = 0,”  and a + 

sign is missing in the line after dispersion relation, it should read “where 2 := 2n(n + |m| + 1) + |m| (see . . .” 
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