
Sign in  

AMS Journals Online

AMS Home  Journals Home  Journal Archive  Subscribe  For Authors  Help  Advanced Search            Search

Full Text View
Volume 30, Issue 10 (October 2000) 

Journal of Physical Oceanography
Article: pp. 2481–2503 | Abstract | PDF (861K) 

Representation of Eddies in Primitive Equation Models by a PV Flux 

Richard Wardle

MIT/WHOI Joint Program, Massachusetts Institute of Technology, Cambridge, Massachusetts

John Marshall

Program in Atmospheres, Oceans and Climate, Massachusetts Institute of Technology, Cambridge, Massachusetts 

(Manuscript received September 2, 1998, in final form November 12, 1999)

DOI: 10.1175/1520-0485(2000)030<2481:ROEIPE>2.0.CO;2 

 
ABSTRACT

The parametric representation of buoyancy and momentum transport by 
baroclinic eddies in a primitive equation “β plane”  channel is studied through a 
transformation of the governing equations. Adoption of the“transformed 
Eulerian mean”  and the assumption that the eddies (but not the mean flow) are 
quasigeostrophic in nature leads to 1) the eddies being represented symbolically 
by one term, an eddy potential vorticity flux, rendering a representation that 
incorporates both eddy momentum and eddy buoyancy fluxes, and 2) the 
advecting velocities being those of the residual mean circulation. A closure is 
employed for the eddy potential vorticity flux that directs it down the mean 
potential vorticity gradient. Care is taken to ensure that the resulting force does 
not generate any net momentum in the channel but only acts to redistribute it.

The approach is investigated by comparing a zonally averaged parameterized 
model with a three-dimensional eddy-resolving calculation of flow in a stress-
driven channel. The stress at the upper surface is communicated down the 
water column to the bottom by eddy form drag. Moreover, lateral eddy 
momentum fluxes act to strengthen and sharpen the mean flow, transporting 
eastward momentum from the flanks to the center of the jet, up its large-scale 
gradient. Both vertical momentum transfer and lateral, upgradient momentum 
transfer by eddies, is captured in the parameterized model.

Finally, advantages of the parametric approach are demonstrated in two further 
contexts: 1) the spindown of a baroclinic zone and 2) the maintenance of 
surface winds by eddy momentum flux in the atmosphere.
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1. Introduction  

Representation of eddies in ocean models remains one of the outstanding computational and intellectual challenges in 
ocean modeling. To resolve the eddy field explicitly in models demands either that we study regional ocean circulation or that 
we embark on global eddy-resolving numerical calculations, which tax even the biggest and fastest computers available—
see, for example, Semtner and Chervin (1992). In climate studies the most appealing way forward is to parameterize, rather 
than resolve, transfers of heat, momentum, and vorticity on the eddy scale. In quasigeostrophic models a framework is 
strongly suggested by the attendant potential vorticity (PV) theorem. The heat and momentum aspects of the eddy-transfer 
process can then be naturally combined by phrasing them in terms of PV transport—see, for example, Marshall (1981). 
Eddy closure, although still thwart with difficulties, is then at its most transparent. But the ocean is not quasigeostrophic. 
For example, it is inappropriate to linearize the thermodynamic equation about a constant reference stability profile which, in 
quasigeostrophic theory, cannot be allowed to vary in the horizontal. How, then, can we proceed in more complete models?

A potential vorticity theorem exists for the hydrostatic primitive equations (HPE), the starting point of most ocean models. 

But, unlike in quasigeostrophic models, the prognostic variable is not potential vorticity.1 In the HPEs, momentum and 
temperature are stepped forward separately and the effect of the eddies (eddy momentum and heat flux divergences) appear 
as “forcing terms”  on the rhs and are parameterized separately. We argue here that this separation of the heat and vorticity 
transporting properties of eddies—a separation dictated largely by algorithmic rather than physical considerations—
significantly complicates the parameterization problem and, if possible, should be avoided.

A way forward is provided if the full HPEs are “transformed,”  guided by the formalism of the “transformed Eulerian 
mean”  (TEM) of Andrews and McIntyre (1976). In the zonal average, and if the eddies are assumed to obey 
quasigeostrophic scaling and dynamics, their effect appears as a single term—an eddy PV flux—driving the momentum 
equation. Importantly, however, in the approach advocated here the lhs of the equations are retained in their full primitive 
equation form. Parameterization can then focus on the closure of the eddy PV flux that encapsulates both buoyancy and 
vorticity transporting properties of the eddy field.

Similar approaches have been outlined in Tung (1986), Lee and Leach (1996), and Greatbatch (1998), all of whom 
parameterize the eddies by means of a PV flux appearing in the averaged momentum equations. However, there are 
important differences between the present study and the aforementioned ones. First, we focus on the inclusion of eddy 
relative vorticity fluxes and, to facilitate this, simplify the eddy PV flux by adopting quasigeostrophic scaling for the eddies. 
Second, we remain in height coordinates. Third, and most importantly, we implement our scheme and directly compare it to 
the results of eddy-resolving primitive equation calculations. 

We close for the eddies assuming a flux gradient relationship for potential vorticity and are able to represent cases in 
which momentum is transferred up its mean gradient, thus sharpening the large-scale jet. If the relative vorticity flux in the 
quasigeostrophic PV (QGPV) eddy flux is vanishingly small, then our scheme has a very similar form to that of Gent and 
McWilliams (1990) in the zonal average, although our PV perspective leads to a different implementation. In this paper we 
focus on the zonal-average problem because it is the simplest context in which to explore how to proceed. However, the 
approach set out here can also be applied in three dimensions (albeit if additional assumptions are made). That study will be 
reported later.

In section 2 we briefly review the theoretical background of the transformed Eulerian mean. The relationship between this 
approach and the parameterization of Gent and McWilliams (1990) is discussed. In section 3 we present our closure 
assumption, which asserts that the eddy potential vorticity flux is directed down the large-scale gradient of PV. To ensure 
that the parameterized eddies do not lead to erroneous sources or sinks of momentum, the form of the transfer coefficients 
are chosen to satisfy a zonal momentum constraint. Section 4 presents and discusses the parameterization approach in a 
stress-driven channel and compares the parameterized model to an eddy-resolving calculation. In section 5 we illustrate our 
approach through two further examples: the spindown of a baroclinic zone and the atmospheric “surface wind”  problem. 

2. Zonal average theory  

a. The transformed Eulerian mean  

The Eulerian mean zonally-averaged hydrostatic, primitive equations for Boussinesq flow, subject to forces F = (Fx, Fy), 
and source/sinks of buoyancy G, are



 

where the zonal mean of a variable has been denoted by an overbar and the perturbation or eddy part has been denoted by 
a prime: a(x, y, z, t) = a(y, z, t) + a′(x, y, z, t). Further, in the zonal mean, gradients in the zonal direction vanish. 

The effect of eddies appears as the divergence of the Reynolds stresses in the momentum equations and the divergence of 
the eddy buoyancy flux in the buoyancy equation. This separation of the momentum (vorticity) and buoyancy transporting 
properties of the eddy field has led to them being treated separately in models. For example, Reynolds stresses are almost 

universally represented as a Fickian process, · (u′u′) = −K 2u, in large-scale ocean models, even though it is known that 
geostrophic eddies can, and often do, “unmix”  momentum—see Starr (1948). Indeed, because momentum is not conserved 
following the motion (it is constantly being changed by pressure gradient forces), there is no physical basis for using mixing 
length arguments for momentum and for adopting a Fickian-like closure. 

A logical way forward is to transform the above equations so that the effect of the eddies on the large-scale appears as an 
eddy flux of a quasi-conserved and, hence, more transferable quantity, such as potential vorticity. This can be done by 
adopting the formalism of the transformed Eulerian mean. Following Andrews et al. (1987, section 3), let us “transform”  the 
governing equations by introducing a “residual mean meridional circulation”; thus

 

where the asterisks refer to a transformed velocity,2 which we insist is nondivergent:

*
y + w*

z = 0.(3)

 

In Eq. (2) N2  bxy
z (z, t) is the horizontal mean of the buoyancy frequency and is independent of horizontal position. 

Substituting Eq. (2a,b) into (1a–e) and assuming that the eddies obey quasigeostrophic scaling, we obtain [details are given 
in Andrews et al (1987, section 3)]

 



where ′q′ is the meridional eddy flux of quasigeostrophic potential vorticity, given by

 

and fo is a constant, middle-latitude value of the Coriolis parameter.
 

It should be emphasized here that we only adopt quasigeostrophic scaling for the eddies, thus rendering a simple form for 
the rhs of (4a) and (4b), but retain the full primitive equation form on the left, albeit with some reinterpretation of the terms. 

There are five equations, Eq. (4a–e), and six unknowns: u, *, w*, b, p, and ′q′. If the eddy flux ′q′ can be expressed 
in terms of variables on the lhs of Eq. (4), then a closed set of prognostic equations for the zonal mean flow are obtained in 
which the eddies appear as a single body force in the zonal momentum equation.

In the developments that follow we will exploit the well-known relationship between ′q′ and the Eliassen–Palm (E–P) flux 
(Eliassen and Palm 1961):

 

where

 

The E–P flux is useful when thinking about the role of boundaries, particularly when used in conjunction with the 
“potential vorticity sheets”  introduced by Bretherton (1966). Because PV sheets play an important role in our subsequent 
development, we discuss them briefly here. Drawing on insights from potential theory, Bretherton, again working within the 
confines of quasigeostrophic theory, recognized that boundary temperature (buoyancy) distributions are mathematically 
equivalent to concentrated sheets of quasigeostrophic potential vorticity just interior to the boundaries if those boundaries are 
then assumed to be isentropic (at constant buoyancy;b′ = 0). Thus, if the vertical component of E (that associated with eddy 
buoyancy flux) is finite at an infinitesimal distance from the boundary, it is zero on the boundary itself in the presence of the 
PV sheet. This leads to a concentrated sheet of  · E representing PV fluxes associated with boundary buoyancy 
distributions.

In the presence of PV sheets there is an important and very useful integral constraint on the Eliassen–Palm flux divergence 
and the PV flux:

 

where the eddy momentum flux at lateral boundaries is assumed to vanish and the upper and lower boundaries are 
isentropic. This can be seen directly from (5) since ′ = 0 at the meridional walls and b′ = 0 at the upper and lower 
boundaries. Thus, inspecting (4a) and (8), the eddies can provide no net force on the zonal mean flow and act only to 
redistribute zonal momentum. This momentum constraint will be exploited in section 3, to guide our choice of the spatial 
form of our eddy transfer coefficient.

b. Transformed Eulerian mean in the limit of vanishing relative vorticity flux  

It is notable that in the transformed equations, eddy buoyancy flux divergence terms do not appear on the rhs of Eqs. (4a–
e). This fact lies at the heart of the success of the parameterization of Gent and McWilliams (1990, hereafter GM). There, 
the eddy flux terms are related to an advective flux rather than to a diffusive process. In so doing, the diffusive nature of 
height-coordinate ocean models, which had compromised them since their inception, was in large part removed. In TEM the 
adiabatic nature of the eddy transfer process is automatically guaranteed because (and in contrast to GM) the eddy terms 
appear in the momentum, rather than the tracer equations. Thus the advecting velocities are changed by the introduction of 



an appropriate body force in the momentum equation rather than explicitly in the tracer equation. What is more, the vorticity 
and buoyancy transferring properties of the eddies are handled together and expressed in terms of the eddy transfer of a 
potential vorticity, which is more conserved than either vorticity or buoyancy alone.

If relative vorticity fluxes are neglected, then the eddy meridional flux of potential vorticity given by Eq. (5) reduces to 
(see the appendix)

 

If the eddy buoyancy flux is related to the mean buoyancy gradient, thus

 

where Kb is an eddy transfer coefficient for buoyancy; then using the thermal wind equation, Eq. (9) becomes

 

where uz is the vertical shear of the geostropic velocity. Using Eq. (11) the transformed zonal momentum equation can 

then be written:

 

which is equivalent to Eq. (24) in Gent et al. (1995). It shows that in this limit the eddy potential vorticity flux is 

equivalent to a vertical diffusion of zonal momentum with a coefficient Kbf2
o/N2. This has been discussed previously; see, 

for example, Rhines and Holland (1979), Rhines and Young (1982), Greatbatch and Lamb (1990), and Marshall et al. (1993). 

In Gent and McWilliams (1990) the momentum equations are not transformed. They remain the Eulerian mean equations 
with the Reynolds stresses represented by Fickian diffusion terms. Buoyancy and tracer are advected with an “effective 
transport”  velocity [a term coined from Plumb and Mahlman (1987)] that is explicitly calculated from the large-scale fields. 
The GM parameterization scheme has been the subject of much recent discussion (see, e.g., Tandon and Garret 1996; 
Treguier et al. 1997; Visbeck et al. 1996) and modified approaches have been offered for prescribing the “bolus”  velocity 
(e.g., McDougall and McIntosh 1996; Dukowicz and Greatbatch 1997). It is well documented that GM leads to marked 
improvements in the ability of height-coordinate models to capture and maintain water mass distributions: see, for example, 
Danabasoglu et al. (1995), Böning et al. (1995), Danabasoglu and McWilliams (1995), Robitaille and Weaver (1995), England 
(1995), and Hirst and McDougall (1998). However, there still remains the need for the representation of vorticity and 
momentum transport by geostrophic eddies. Gent and McWilliams (1996) address this issue by considering, as here, the 
transformed Eulerian mean equations. However, in their Eqs. (8)–(9) the residual mean circulation is not a prognostic 
variable as in our Eq. (9) and so has to be explicitly calculated using a closure assumption. Moreover, instead of 
parameterizing the eddy PV flux, they parameterize the individual components of the Eliassen–Palm momentum flux, Eq. (7), 
in terms of downgradient momentum diffusion together with a Coriolis term. Therefore, any unmixing of momentum—
upgradient transfer—will not be captured. 

3. Closing for the eddy PV flux  

a. Flux gradient relationship for PV transfer  

In the framework set out in section 2, it is not necessary to separately parameterize the transfer of momentum and 
buoyancy by the baroclinic eddies. This avoids the problem of how to represent the transfer of momentum by the eddy 
disturbances. Now only the eddy transfer of potential vorticity has to be parameterized. We assume here, and following 
many investigators (e.g., Green 1970; Wiin-Nielsen and Sela 1971; Rhines 1977; Marshall 1981; Rhines and Young 
1982;Pavan and Held 1996; Killworth 1997; Marshall et al. 1999), that the eddy transfer of potential vorticity is directed 

down its mean gradient.3 Consequently the flux is represented as



 

where the K are eddy transfer coefficients of potential vorticity, which can vary spatially and temporally (Green 1970). 
Details of the computation of the mean potential vorticity q used in the model are given in the appendix. 

As stressed in Marshall (1981), any parametric representation of the eddy flux of potential vorticity must be applied with 
care: Eq. (8) must be satisfied. That is, the total zonal momentum can be changed only by external forces and friction, and 
not by internally generated baroclinic eddies. This provides an integral constraint on the eddy PV flux term and hence, 
combining Eq. (8) and Eq. (13), on the K

 

The transfer coefficients must be chosen in order to satisfy Eq. (14). There is one constraint and, so, one free parameter. 
We choose to specify the K as follows:

 

Here κref is a reference value that depends on the nature of the flow (e.g., as in Visbeck et al. 1996), Y(y) prescribes the 

meridional structure, and T(t) the temporal form. The vertical structure is assumed to be linear with a scale height of H/γ, 
where H is the total depth of the fluid and γ is the free parameter, which will be chosen so that Eq. (14) is satisfied. 

In the experiments to follow the focus will be upon incorporating the often-neglected eddy relative vorticity fluxes, so 
more completely representing the transfer characteristics of the eddies. However, it will prove useful to consider the limit in 
which eddy relative vorticity fluxes are neglected—as discussed in section 2b. In this case the PV is evaluated using the 
stretching term only and the absolute vorticity is set to zero [see Eq. (A2) in the appendix]. The GM parameterization in the 
zonal average can then be interpreted as a limit case of PV transfer. The vanishing of the stretching term when vertically 
integrated is guaranteed because of the use of Bretherton PV sheets at the top and bottom. As a result, in this limit there is no 
need to vary K spatially to satisfy zonal momentum constraints, and it is therefore set to a constant value. Before going on, 
however, we emphasize that we do not employ a closure for the buoyancy flux [Eq. (10)] in this study, but always work in 
terms of eddy PV fluxes (13)—the limit of vanishing eddy relative vorticity fluxes is obtained by setting absolute vorticity 
gradients to zero when evaluating PV gradients in the parameterized model.

With knowledge of the transfer coefficients K, Eq. (13) closes for the eddy potential vorticity flux, and thus the 
divergence of the Eliassen–Palm flux. We now go on to describe how the above parameterization scheme represents the 
eddy–mean flow interaction in an eddying, β-plane channel. 

4. Parameterization of eddies in a stress-driven channel  

To illustrate the ideas outlined in section 2 and to test the approach to parameterization presented in section 3, we present 
calculations with a three-dimensional numerical model that resolves the baroclinic eddy field. We compute the eddy statistics 
of interest, average zonally, and consider them in light of the theoretical ideas reviewed in sections 2 and 3. We then 
compare the resolved model with a zonally averaged one that implements TEM with eddy-PV flux forcing. The numerical 
model used is that of Marshall et al. (1997a,b). 

a. Flow in a stress-driven β-plane channel  

We simulate the wind-driven flow of an ocean in a periodic channel on a β plane of width 500 km, length 1500 km, and 
depth 4500 m. The calculation can be regarded as a primitive equation counterpart of the kind studied by McWilliams et al. 
(1978) quasigeostrophically. It can be considered to be an analogue of a segment of the Antarctic Circumpolar Current, 
although here our jet is in the northern hemisphere! A wind stress is applied to the upper level of the model of sinusoidal 
form:

 



It has a maximum value of 0.2 Pa at the center of the channel and is zero at the side walls. The initial stratification is 
constant. The vertical grid spacing is 50 m in the upper layer and increases to 400 m in lower layers. Friction is present 
through a bottom drag in the lower layer. Biharmonic viscosity and diffusion suppress numerical noise on the grid scale. 
There is no thermodynamic forcing (G = 0) and no Fickian diffusion terms. Static instability is released by convective 
adjustment. The numerical experiments carried out in this section are summarized in Table 1 . The equation of state is a 
linear function of temperature, so, henceforth, our discussion will be in terms of temperature and temperature flux alone.

Before examining the statistically steady-state solution we consider the spinup of the model from rest. The time 
development of the surface temperature and velocity fields is shown in Fig. 1 . The wind stress drives a southward 
Ekman flow in the upper layer that returns northward in an Ekman layer at the bottom. This results in downward Ekman 
pumping in the southern half of the channel and Ekman suction to the north. The resulting meridional overturning leads to a 
deepening of isotherms in the south and a shoaling to the north. In this way a lateral temperature gradient develops across 
the channel that supports a surface-intensified jet in thermal wind balance. After a year or so the jet develops growing 
meanders due to baroclinic instability, as shown in Fig. 1a . These eddies continue to grow, releasing available potential 
energy as they reach finite amplitude (Fig. 1b ) until wave breaking occurs and coinciding with a conspicuous decrease in 
the zonal velocity of the jet. Following the initial instability the eddy field exhibits more irregularity with a broader spectrum 
of sizes. Finally, after six years or so (see Fig. 1c ) a statistically steady state is reached in which the input of potential 
energy by the wind is equilibrated by its release through baroclinic instability.

1) EQUILIBRATED STATE 

The model was integrated for 20 years and the statistically steady state was reached after approximately 6 years. The time 
average was obtained by averaging the last 10 years of integration. The zonal mean zonal velocity in the equilibrated state is 
characterized by a surface-intensified jet (Fig. 2a ) in thermal wind balance with the temperature field (Fig. 2b ). 

Maximum surface velocities are 0.24 m s−1 in midchannel, reducing to zero at the side walls. The Eulerian mean meridional 
streamfunction is plotted in Fig. 3a  and is that of the stress-driven Ekman flow. It consists of southward transport at the 
surface with sinking in the south and northward return flow at depth. This Eulerian mean flow deepens the isotherms in the 
south and shoals them to the north, acting to increase the meridional temperature gradient. This stress-driven overturning 

rate has a maximum in midchannel of 4.00 Sv (Sv  106 m3 s−1). However, in the transformed Eulerian mean framework, 
Eq. (4d) states that

*Ty + w*Tz = 0(16)
 

in the equilibrated state. If we write the residual mean circulation in terms of a streamfunction,

χ  = χEul + χflux,
 

where χEul is the Eulerian mean streamfunction and χflux = ( ′b′/N2) is the streamfunction associated with buoyancy flux 

terms, then Eq. (16) can now be restated as

J(χ , T) = 0.(17) 

For our stress-driven channel, the only physical solution to Eq. (17) has the streamlines coincident with the isotherms. 
Since the isotherms intersect the vertical walls where χ  = 0, the result is that χ  = 0 everywhere. Thus the residual mean 
overturning circulation has vanished. The wind-driven Eulerian mean circulation is exactly canceled by the terms involving 
the buoyancy fluxes in Eq. (2a–b). The streamfunction χflux is diagnosed directly from the model using the eddy buoyancy 

fluxes and the horizontal mean N2 profile, and is plotted in Fig. 3b . It is almost everywhere equal and opposite to χEul 

(Fig. 3a ). At any latitude χflux is constant with height except for the upper and lower 500 m in the channel center. This 

overturning rate has a maximum in midchannel of 3.98 Sv. For the turbulent, nonlinear, primitive equation eddy resolving 
flow under consideration here there exists a very small nonzero residual mean circulation (over the time interval of the time 
averaging), the running average of which asymptotes to zero. Thus the TEM framework provides a clear understanding of 
the equilibrated zonal mean fields of the stress-driven channel. 

2) EDDY STATISTICS AND TRANSFER CHARACTERISTICS 

Vorticity and potential vorticity fluxes. In the steady state the depth integral of the zonal momentum equation, (4a), is



 

and integrating over the volume of the channel we have

 

Note that at any latitude, however, 0
−H Fx dz  0; the bottom stress does not exactly balance the surface stress. Their 

difference is equal to the vertically integrated potential vorticity flux, which itself is exactly equal to the vertically integrated 

relative vorticity flux (see Fig. 4 ). For reasons which are well known,4 eddies pump eastward momentum in to the jet, 
taking it from the flanks. The net effect of the eddy vorticity transfer, then, is to sharpen the jet with momentum being 
transferred up its large-scale gradient. 

Figure 6a  plots the meridional profile of ′q′ deduced according to Eq. (5) and shows that eddies exert a positive 
(eastward) body force in the lower sheet and a negative body force in the upper PV sheet. This can be understood when we 
consider the zonal momentum balance, written thus:

 

for the upper boundary, interior, and the lower boundary of the channel, respectively. Thus at the upper boundary the 
imposed wind stress is balanced by a southward eddy flux of potential vorticity. At the lower boundary the bottom stress is 
balanced by a northward eddy flux of potential vorticity. In the interior the meridional eddy flux of potential vorticity is very 
small and the Eliassen–Palm flux is nondivergent. 

The zonal-mean eddy flux of temperature (see Fig. 6b ) is almost constant with height in midchannel but varies as the 

surface is approached. However ′T′/N2 is almost constant with depth since N2 is weaker in the upper km—this was 
exploited by Johnson and Bryden (1989) and Marshall et al. (1993) in their simplified models of the Antarctic Circumpolar 
Current. The temperature flux characteristics are broadly in accord with the Eady model of baroclinic instability.

Eddy transfer coefficients. We now inspect the sense of the meridional eddy flux of potential vorticity with respect to the 
mean PV gradients to assess whether the eddy closure hypothesis, Eq. (13), is appropriate. The meridional profile of the 
transfer coefficients for the upper and lower PV sheets are shown in Fig. 7 . All values of K are positive except near the 
southern boundary where the sign of the mean potential vorticity gradient changes sign but ′q′ does not. In the upper sheet 

K ranges from 200 m2 s−1 in the center of the jet, where the mean PV gradients are a maximum, to 900 m2 s−1 at the 
northern flank where the mean gradients are weaker. In the lower sheet the values of K are higher than in the upper sheet, 

reaching a maximum value of 6900 m2 s−1 in the jet center. A local minimum is found on either side of the jet in regions 
where the mean potential vorticity gradients have slight maxima. Thus the form of the diagnosed transfer coefficients is 
rather complex with structure in both the horizontal and vertical. This complexity is further revealed when we plot ′q′ 
against qy for each sheet (Fig. 8 ). If the transfer were truly local and directed downgradient, then the slope of ′q′ 

versus qy would be −K. Figure 8  shows that the line for the upper sheet is not straight but rather doubles back to form a 

partly open curve suggesting that for any particular value of the gradient there are two values of eddy PV flux. This is 
because different values of qy occur on either side of the jet center and have different eddy fluxes associated with them. 

b. The parameterized model  

The equivalent wind-driven experiment was performed in the parameterized model (see Table 1 ). The governing 
equations are given by Eqs. (9a–e), where we represent the meridional eddy flux of perturbation QG potential vorticity by a 
downgradient transfer of mean QG potential vorticity with the coefficient K in the form expressed by Eq. (13). 

The magnitude of κref was chosen so that the peak of the depth-integrated transport in the zonally-averaged model 

matched that of the eddy-resolved calculation and Y(y) = 1 (Table 1 ). As in the eddy-resolving model, the wind stress 
drives a southward Ekman flow in the upper level of the model, which results in downward displacement of isotherms in the 
southern half of the channel. The meridional flow returns within the Ekman layer at the bottom level, inducing upward 



isothermal displacement to the north. This gives rise to a linearly increasing lateral temperature gradient across the channel 
that, through thermal wind, supports a surface-intensified jet. The contribution to the quasigeostrophic PV from the relative 
vorticity and stretching terms increases as the flow field evolves. At each time step the eddy PV transfer coefficient K is 
calculated from the evolving fields using the momentum constraint, Eq. (14). If the necessary conditions for instability are 
not satisfied, [i.e., if Eq. (14) can only be satisfied if the K become negative somewhere] then K is set to zero. 

As the isotherms tilt, the temperature perturbations at the lower boundary give rise to a contribution to the PV that acts to 
offset β, eventually leading to a reversal in the PV gradients. This allows the momentum constraint, Eq. (14), to be met with 
K(y, z, t) > 0 everywhere and the necessary conditions for instability to be satisfied. When the K are initially nonzero, they 
are increased linearly over a month to crudely simulate the growth of baroclinic instability. The evolution of the global mean 
K is displayed in Fig. 9a  and shows that after 5 years the model is in a steady state. 

The mean zonal velocity (Fig. 10a ) consists of a surface-intensified jet in the channel center with weak return 
(westward flow) at depth on the flanks. The zonal velocity is in thermal wind balance with the temperature field shown in 
Fig. 10b . It compares favorably with the mean flow of the resolved calculation (see Figs. 2a,b ). 

The steady-state zonal momentum balance throughout the fluid is

 

The balances in (19) are shown in Fig. 11 . At the upper boundary (Fig. 11a ) the wind stress is balanced by the 
term representing the eddy flux of QG potential vorticity, giving a sheet with a southward eddy flux of potential vorticity. At 
the bottom (Fig. 11c ) the stress is balanced by the parameterized terms representing a northward eddy flux of potential 
vorticity. In the interior (Fig. 11b ), there is no applied force; thus in the steady state the eddy PV flux is zero. Because of 
the flux gradient relationship assumed for the eddy-PV flux [Eq. (13)], this implies that the interior QG potential vorticity 
gradients are zero.

The reference transfer coefficient in the upper layer was specified to be 1050 m2 s−1. In the steady state the value of the 
free parameter γ in (15) was −3.21, giving

 

with K increasing as we move down in the column. Figure 9b  shows the K profile. The transfer coefficient becomes 
large in the lower PV sheet to compensate for the small negative potential vorticity gradient there, just as for the K diagnosed 
from the resolved model. As shown in Fig. 11 ,  · E in the steady state consists of boundary sheets with divergence at 
the lower horizontal boundary and convergence at the surface. The meridional profile is shown in Fig. 12a . This is 
consistent with the EP signature for the eddy resolving calculation.

The depth-integrated parameterized eddy PV flux is plotted in Fig. 12b  and shows that the effect of the eddies is to 
exert a positive (eastward) body force on the zonal momentum in the center of the jet and a negative (westward) body force 
on the flanks. Thus momentum is transferred upgradient into the jet center resulting in the depth-integrated zonal flow 
shown in Fig. 13 . This agrees with diagnosed eddy forcing of the zonal mean flow from the eddy-resolving flow and 
demonstrates that the zonal-average model can capture this rather subtle aspect of eddy–mean flow interaction. 

One shortcoming of the zonal-average model is that it fails to take into account some of the nonlocal effects. The resolved 
fields exhibit a change in sign of the surface quasigeostrophic potential vorticity close to the southern vertical wall, which is 
absent from the parameterized model. A second difference is that the magnitude of the parameterized depth-integrated eddy 
PV flux is 25% less than that diagnosed from the eddy-resolving calculation (Figs. 4  and 12b ). The size of the 
potential vorticity flux in the upper sheet in each model is very similar [it has to be since it must balance the surface stress in 
both resolved and parameterized models; see Eq. (19)], but the magnitude of the potential vorticity flux at the bottom is 
underestimated in the parameterized model. Since this flux acts to balance the bottom drag, the velocities at depth in 
midchannel are smaller for the parameterized model, as can be seen by comparing Figs. 2a  and 10a , even though the 
depth-integrated zonal mean flow are very similar. Consequently the depth integral of the potential vorticity flux is smaller in 
the parameterized model compared to the eddy-resolved model. 

Despite these differences, the parameterized model captures the characteristic signatures of eddy buoyancy and 
momentum transfer, and the zonal-mean fields and overturning circulation of the eddy-resolved calculation. 

5. Spindown of a baroclinic zone on a β plane  



We now consider, following Gent et al. (1995) and Visbeck et al. (1996), the spindown of a baroclinic zone in the 
absence of external buoyancy forces. Again, we compare calculations from the three-dimensional numerical model that 
resolves the baroclinic eddy field to the zonal average model in which we parameterize the eddy–PV transfer. 

The sloping baroclinic zone is characterized by the meridional temperature profile displayed in Fig. 14 . The initial 
stratification is of constant value in the vertical. The slope is uniform in the y direction except at the walls where the 
isotherms flatten. The isotherms intersect the surface of the channel and “ground out”  at the lower boundary. The model has 
20 active levels in a periodic channel of length 750 km, width 250 km, and depth 4500 m and was integrated for 10 years 
(see Table 2 ). 

The time evolution of the eddy-resolved flow is summarized in Fig. 15, which shows surface temperature and velocity 

fields at time 165, 180, 240, and 3600 days. Initially, the alongchannel velocity has maxima of approximately 0.9 m s−1. The 
front becomes baroclinically unstable after approximately 165 days. By day 180 finite amplitude eddies fill the channel. These 
are organized to give a cross-zone ageostrophic flow that transfers fluid from one side of the channel to the other. In the 
northern half of the channel downwelling draws cold water down, while to the south the isotherms are raised. This results in 
a release of the mean potential energy stored in the sloping density surfaces. The baroclinic eddies, drawing their kinetic 
energy from potential energy release, spin down the zonal jet. Eventually the available potential energy stored in the sloping 
isotherms can no longer be released and eddy generation ceases. With the instability shut off, a baroclinically stable zonal 
end-state remains: see the surface flow at 3600 days (Fig. 15c ). The final state is shown in Fig. 16 and is obtained from 
time averaging the last 3 years of model time. Averaging the three-dimensional fields along the front in the equilibrated state 

yields a surface-intensified jet with alongfront peak velocity of 0.14 m s−1 in the center of the channel (see Figs. 16b,c ). 
The jet is in thermal wind balance with the temperature field shown in Fig. 16b . 

a. The parameterized model  

The 2D model was employed for the same problem and initialized with the same meridional temperature profile. Unlike in 
section 4, here the eddies and their parameterized fluxes are only present in the transient stage of flow. However, the final 
state depends on the eddy transfers during the transient phase.

The PV gradients in the interior are essentially set by the planetary vorticity gradient, β, with relative vorticity contributing 
as the side walls are approached. To the south at all depths the fluid is warmer than if the isotherms were horizontal, while 
to the north the temperatures are cooler. The attendant temperature perturbations along the upper and lower boundaries are 
associated with PV gradient sheets that oppose one another and satisfy the necessary conditions for baroclinic instability. 

The evolution of the zonally averaged flow closely obeys the momentum balance:

 

where u is only operative at the bottom level of the model. In the model the primary momentum balance is between the 
Coriolis and eddy flux terms with the zonal momentum tendency being the residual between the two. The meridional velocity 
is northward in the upper sheet, enabling the Coriolis term to balance the meridional potential vorticity flux. In the lower 
sheet the zonal momentum tendency is the residual of the balance between the Coriolis, eddy flux, and bottom drag terms. 
The meridional velocity is southward here. In the interior the zonal mean flow is accelerated by the residual between Coriolis 
forces and eddy PV forcing. Thus a residual mean circulation is established that acts to overturn the fluid.

The residual mean circulation draws the warmer water in the south upward, and the colder water to the north downward, 
releasing available potential energy and spinning down the zone. This continues until the component of the PV gradients 
associated with the temperature perturbations of the sheets at the lower boundary are too weak to offset β. At this point the 
necessary conditions for baroclinic instability are no longer satisfied and further spindown ceases due to the stabilizing effect 
of the planetary vorticity gradient. The end-state is baroclinically stable zonal flow: see Fig. 17 . The peak velocity at the 

surface is 0.142 m s−1, similar to the along-zone maximum found in the eddy-resolving calculation. However, when 
compared to the eddy-resolving calculation, the parameterized model has stronger flows at depth, as can be seen by 
comparing Figs. 16  and 17 . 

We now consider the limiting case of zero relative vorticity fluxes, as discussed in section 2c(2). If relative vorticity 
fluxes are set to zero in Eq. (5), then Eq. (14) is automatically satisfied at each latitude y in the channel by the upper and 
lower PV sheets. A constant value of K is used, as in GM. The initial fields satisfy the necessary conditions for baroclinic 
instability, so the evolution of the flow proceeds as before. However, as the zone spins down, the gradients of the 
temperature perturbation on each boundary continue to decrease because there is no stabilizing absolute vorticity gradient. 
The final state of the zone is shown in Fig. 18 ; the parameterized model has adiabatically flattened the isotherms until the 



zone is horizontal with no zonal flow, the limit that would be obtained using GM.

6. Atmospheric jet stream  

a. Tropospheric eddies in the atmosphere  

The troposphere provides a very interesting test of the theoretical ideas outlined in sections 2 and 3 because baroclinic 
eddies are the most important component of the atmospheric general circulation outside of the tropics (Jeffreys 1926; Starr 
1948; Lorenz 1967). The net radiative budget of the earth–atmosphere system, averaged over a year, results in a net surplus 
of incoming radiation in the Tropics and a net deficit at high latitudes. Thus for the global climate to be in equilibrium there 
must be transport of energy from low to high latitudes in order to balance the terrestrial radiation budget. Extratropical 
transport occurs through motions generated by the baroclinic instability of the midlatitude zonal flow. But the instability also 
helps maintain the zonal mean through both eddy heat and momentum fluxes.

We present three experiments here with a zonally averaged TEM atmospheric model: (i) no eddy forcing, (ii) eddy-PV 
forcing, and (iii) eddy-PV forcing in the absence of relative vorticity fluxes. The model solves the governing equations for an 
ideal gas atmosphere in hydrostatic balance. The hydrodynamical core is that of the MIT ocean model, but we employ 
isomorphisms to yield a p-coordinate model applicable to the flow of a compressible atmosphere (see Brugge et al. 1991). 
Potential temperature θ replaces b in the thermodynamic equation, Eq. (4d). Forcing is through relaxation of θ to a 
prescribed “radiative equilibrium”  temperature θeq(p, y) on a timescale τ(p, y) that are both functions of pressure and latitude 

(Held and Suarez 1994). Thus the potential temperature equation takes the form

 

Surface drag is represented through a quadratic drag law and there is no orography.

Five model levels are used, the lowest being at 950 mb, at the top of the surface boundary layer, and the highest at 75 mb, 
in the stratosphere. The parameters used in these experiments are summarized in Table 3 . 

The initial state is a horizontally stratified atmosphere as shown in Fig. 19a , which is then relaxed to the prescribed 
radiative–convective equilibrium profile, θeq, on a spatially dependent timescale τ, (Figs. 19b,c ). Results are presented at 

equilibrium, after roughly 1000 days of integration. The zonal momentum constraint is applied independently over each 
hemisphere to ensure that the eddy transfers in one hemisphere are independent of the PV gradients in the other hemisphere 
and a β-plane geometry is used. 

1) NO EDDY-FORCING 

The importance of the eddy forcing of the atmospheric general circulation can be most readily seen by suppressing the 
transfer of momentum and potential temperature by the eddies (i.e., setting ′q′ = 0) and inspecting the large-scale flow that 
occurs in their absence. The resulting flow is axisymmetric consistent with the imposed radiative forcing and the 
subsynoptic mixing present in the absence of the large-scale eddies. 

The potential temperature, zonal velocity, and meridional circulation profiles are shown in Fig. 20 . The potential 
temperature has relaxed to the prescribed profile resulting in a zonal velocity consisting of two westerly jets with maxima 

aloft at 25° latitude. Zonal velocities at 950 mb (Fig. 20d ) vary between easterlies of −0.6 m s−1 and westerlies of 0.35 

m s−1. Since the eddy flux of quasigeostrophic potential vorticity is zero, the residual mean circulation is exactly equal to the 
Eulerian mean circulation and this zonally averaged meridional circulation appears as Hadley cells in each hemisphere (see 
Fig. 20c ). Low-level winds are very weak, easterly at the equator where the warm air rises and westerly at low levels 
where the air in the Hadley cell subsides; the net torque on the atmosphere is zero, as is required in the steady state. In the 
extratropics because of angular momentum constraints there is no meridional motion. The equilibrium zonal flow and 
potential temperature fields are set by the nature of the restoring terms (Held and Hou 1980). 

2) EDDY FORCING 

The approach of sections 2 and 3 is now employed. The reference value of the transfer coefficient is prescribed to be κref 

= 1 × 106 m2 s−1 with the model evaluating K at each latitude and pressure in the manner described in sections 3 and 4. 
Again, if the potential vorticity distribution does not satisfy the necessary conditions for instability then the K are set to zero 
and the eddies do not force the mean flow. Once the midlatitude jets can support baroclinic instability the K become nonzero 



and are linearly ramped up over a 30-day period. This crudely simulates the growth of eddies whose flux will grow as they 
reach finite amplitude. Issues concerning the definition of the PV at the equator are circumvented by the K being zero there 
through the prescription of Y(y); see Table 3 . 

In the steady state the flow in both hemispheres is characterized by westerly jets with maxima of 35 m s−1 at about 38° 

latitude near the tropopause (Fig. 21 ). Zonal velocities at 950 mb display equatorial easterlies of −5.1 m s−1, midlatitude 

westerlies of 6.0 m s−1, and weak polar easterlies. The residual mean streamfunction consists of a single overturning cell in 
each hemisphere extending farther poleward than the Hadley cells in the previous experiment. However, we emphasize that 
these cells are not the Hadley cells that appear in the Eulerian mean formalism; they are the cells of the transformed Eulerian 
mean. The potential temperature relaxation leads to diabatic heating in the Tropics where fluid parcels rise and cooling at 
high latitudes where they subside. Thus the residual mean circulation approximately represents the mean motion of the air 
parcels. It is poleward aloft with return flow at low levels. In our channel ocean experiments there were no sources or sinks 
of temperature, the motion was adiabatic and hence the residual mean overturning motion vanished. Here the meridional 
motion does not vanish due to diabatic forcing.

The eddy PV flux in the meridional plane is plotted in Fig. 22a . At the surface there is a potential vorticity sheet due to 
the presence of potential temperature perturbations along the boundary. There is a northward potential vorticity flux 
corresponding to Eliassen–Palm flux divergence. The compensating convergence occurs at most heights in the extratropical 
troposphere. This map of eddy PV flux agrees well both in form and magnitude with maps diagnosed from atmospheric 
analyzed fields (see, e.g., Schubert et al. 1990). Integrating the zonal momentum equation over each column gives a three-
way balance between the eddy-forcing term, the meridional advection of zonal flow by the residual mean ( *uy), and the 

bottom drag. The column-integrated Eliassen–Palm flux divergence (Fig. 22b ) is positive in midlatitudes and negative at 

the equator and poles. Thus there is a column-integrated Ey that is directed from midlatitudes to the equator south of the 
westerlies and from midlatitudes to the pole to the north; the column-integrated momentum flux is directed toward 
midlatitudes from the flanks of the westerly jets. The result is lateral momentum transfer that shifts the jet center northward 
from 25° to 38° latitude and generates midlatitude surface westerlies. The meridional profiles obtained in the parameterized 
model compare well to zonal-mean cross sections of the zonal wind component for observed annual conditions shown in 
Fig. 7.15a in Peixoto and Oort (1992). The only striking difference between the observed and modeled jets is the lack of 
distinct cores at height in the model. This is likely due to the low vertical resolution of the model at these levels.

3) EDDY FORCING: ZERO REYNOLDS STRESSES 

We now neglect the relative vorticity fluxes in Eq. (5) as in the spindown of the baroclinic zone. Our scheme thus reduces 

to that of GM. The westerly jets in each hemisphere now have maxima at 25° latitude with values of 45 m s−1 (Fig. 23b 
). The meridional profile of potential temperature (Fig. 23a ) is similar to that of the no eddy-forcing case. The residual 

overturning circulation extends toward the poles with a structure similar to that of the eddy-forced experiment, but some 
60% weaker in magnitude. The meridional cross section of the eddy PV flux in the equilibrated state is plotted in Fig. 24a 

. It shows that, as before, there is a PV flux at the lower boundary with compensating convergence at mid heights in the 
troposphere. However the column-integrated eddy PV flux (Fig. 24b ) is zero because relative vorticity fluxes have been 
ignored. There is no lateral momentum flux and only vertical transfer of momentum, which reduces the shear of the 
westerly jets and increases the low-level winds (see Fig. 23d ). However, because of the neglect of lateral momentum 
fluxes, the eddy forcing of the mean flow is unable to change the position of the jet cores and sharpen the midlatitude 
westerlies.

It is well known that the tropospheric circulation cannot be modeled purely in terms of zonally symmetric processes; eddy 
buoyancy and momentum fluxes are crucial to the observed meridional structure and must be appropriately represented in 
order to achieve a realistic circulation. The three atmospheric experiments presented here clearly show that a realistic picture 
of the vertical and meridional distributions of mean zonal flow can only be attained when the full transfer characteristics of 
the eddies are represented.

7. Summary and conclusions  

We have studied and attempted to parameterize the transfer properties of eddies in zonal channels by comparing eddy-
resolved HPE models with their parameterized zonal-average counterparts. By focusing on potential vorticity, rather than 
separately on relative vorticity and thickness fluxes, the artificial separation between the transfer of heat and momentum 
(vorticity) is avoided and can be simultaneously captured. The theoretical context is not new, but by assuming that the 
eddies are quasigeostrophic while retaining full HPE form for the mean flow, we have been able to apply the formalism of 
the transformed Eulerian mean to a HPE model. This approach automatically leads to a representation in which advection is 
by the residual mean circulation. In the limit that eddy disturbances are quasigeostrophic the effect of the eddies appears as 
one term, an eddy PV flux driving the zonal momentum.



The eddy PV flux is assumed to be transferred down its mean gradient with a transfer coefficient K. The form of the K is 
chosen to ensure that an integral constraint on the eddy flux is satisfied so that the eddies act only to redistribute momentum 
in the flow. Downgradient PV flux does not, however, necessarily imply that momentum is diffused downgradient (e.g., u′ ′ 
= −kuy). Indeed the approach can capture the sharpening of jets due to eddy–mean flow interaction on a β plane. 

A limiting case of our approach leads to a different implementation of the scheme advocated by Gent and McWilliams 
(1990) in the zonal average. Their parameterization has led to improvements in water mass distributions and transport 
because they transform the buoyancy equation so that the eddy buoyancy flux terms become implicit. However, because the 
momentum equations are not also transformed, vorticity is arbitrarily transferred down its mean gradient. By using the 
complete TEM framework outlined here, we are able to encapsulate both the buoyancy and vorticity transporting properties 
of the eddy field, albeit in the zonal average, without having to parameterize them separately.

The theoretical arguments and eddy PV closure was tested using a three-dimensional, eddy-resolving, hydrostatic 
primitive equation model for stress-driven flow in a β-plane channel. The mean fields and eddy transfer characteristics of the 
eddy-resolving flow were compared to those of the same stress-driven flow in a parameterized model. The comparison 
shows that the transformed Eulerian mean approach offers advantages over existing parameterization schemes. The zonal 
mean fields of the parameterized model closely matched those of the eddy resolving calculation in the equilibrated state. 
Study of two further flow configurations highlighted the advantages of representing eddies through a PV flux.

In a recent study Greatbatch (1998) advocates a parameterization scheme similar to the one above, based on the 
isopycnal, downgradient flux of PV. He notes that his scheme is not complete because parameterizing the eddy kinetic 
energy (EKE) terms in his time mean equation (89) is problematic. However, in the zonal mean, the EKE terms vanish in the 
zonal momentum equation and can be neglected in the meridional momentum equation if, as here, quasigeostrophic scaling 
for the eddies is assumed.

The approach to parameterization we advocate focuses, as have many others, on the eddy flux of potential vorticity rather 
than separately on thickness and relative vorticity fluxes. This strategy is not without its critics, however, because a simple 
relationship between PV flux and the large-scale gradient of PV is not always found. For example, Olbers et al. (2000) 
describes how potential vorticity mixing ideas need to be modified to understand eddy–mean flow interaction in a stress-
driven, baroclinically unstable quasigeostrophic channel. But, although departures from ′q′ = − q are found, PV mixing 
driven by eddy enstrophy cascades is the canonical theoretical reference. Significantly Olbers et al. find no support for 
mixing of thickness with constant diffusivities in their numerical simulations. It should be noted, however, that Smith (1999) 
discusses the parameterization problem from a theoretical perspective and finds support for the idea of mixing of layer 
thickness from a stochastic theory of adiabatic stratified turbulence. This is achieved by making the Monin–Yaglom 
postulate, as first introduced in Dukowicz and Smith (1999). However, as a reviewer points out, Dukowicz and Greatbach 
(1999) avoid making this postulate and use an identity between the layer thickness flux and the PV flux that leads to support 
for PV mixing within the stochastic theory of turbulence. Nevertheless, the issue of layer thickness mixing needs to be 
further tested against eddy-resolved numerical experiments. 

We have focused on problems that display a marked symmetry in the direction of the mean flow because it is the simplest 
context in which to proceed. With the zonally symmetric mean flows, the zonal symmetry displayed by the eddy statistics 
are implicit by design. This is due to there being no variation in the mean flow in the zonal direction. However, in the 
absence of a zonal-symmetric mean flow, advection of eddy PV variance by the mean flow give rise to a nonlocal 
contribution to the eddy fluxes, which may direct eddy transfer of PV upgradient. In spite of that, Marshall and Shutts 
(1981) show that for quasigeostrophic flows in which the mean PV is approximately conserved along mean streamlines the 
eddy PV flux can be separated into two parts: a rotational, nondivergent flux and an irrotational, divergent flux. The former 
balances the mean flow advection of the eddy PV variance and are associated with the spatial growth and decay of the 
eddies. The divergent flux balances the conversion from the mean field and is directed down the mean PV gradient if there is 
an enstrophy cascade. Thus a closure scheme based on downgradient transfer of PV may be appropriate, at least as a 
starting point, for gyrelike flows in which the zonal symmetry is broken.

We are studying whether the approach investigated here can be extended to three-dimensional flows and test if the 
divergent component of the eddy flux can be related to the mean gradient through transfer coefficients. This work is under 
way and will be reported in a later paper.
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APPENDIX  

a. Calculation of the quasigeostrophic PV and its flux in a primitive equation model  

The quasigeostrophic potential vorticity is computed in the primitive equation model using the definition

 

where

 

is the geostrophic streamfunction and po(z) is the suitably defined horizontal mean reference pressure profile;N2  N2(z) 

= bxy
z is the square of the horizontal mean buoyancy frequency. The geostrophic velocities are (u, ) = (− / y, / x), 

and the buoyancy is given by b = fo / z. 

In the limit of vanishing eddy relative vorticity fluxes, PV gradients are evaluated using

 

The zonal mean meridional eddy flux of PV, ′q′, is evaluated using the departures of  and q from the zonal average. 

b. Upper and lower boundary conditions  

1)  AND Q 

At the upper and lower boundaries the buoyancy distribution b = fo / z provides inhomogeneous Neumann boundary 

conditions. A computational and conceptual simplification can be made if we replace the the inhomogeneous Neumann 
boundary conditions by homogeneous ones, following Bretherton (1966). This enables us to incorporate the boundary 
buoyancy distributions as parts of the interior PV distribution.

Let us define the quasigeostrophic potential vorticity (y, z), which is equal to q(y, z) in the fluid interior except adjacent 
to the horizontal boundaries. Just inside these boundaries, we place delta-function sheets of PV, δqupper and δqlower, of a 

strength and distribution chosen to represent the buoyancy variation on the boundary. Thus,

 = q + δqupper + δqlower,(A3)
 

where the delta-function sheets are given by



 

In the numerical model these sheets manifest themselves in the top and bottom vertical levels of the model. The boundary 
conditions that go along with (3) are / z = 0. 

2) E AND W  

Because we choose to employ interior PV sheets together with the boundary condition / z = 0, the buoyancy and lateral 

buoyancy flux at the horizontal boundaries necessarily vanishes. Hence the component of the Eliassen–Palm flux (Ez) 
through the boundary is zero, providing an integral constraint on momentum, Eq. (8). Moreover, from Eq (2b), this provides 
the needed boundary condition on the vertical component of the residual mean circulation at the upper and lower boundaries: 
w* = 0. The upper and lower boundary conditions on w* are discussed in detail by Treguier et al. (1997). To avoid 
erroneously large w* where isopycnals are vertical, they set the transfer coefficient for buoyancy to be zero at the upper and 
lower boundaries. This should be contrasted with the approach used here where PV transfer coefficients are nonzero 
adjacent to the boundary and act on PV gradients in the sheets.

Tables  

Table 1. Parameters for the stress-driven channel expts 
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Table 2. Parameters for the spindown of a baroclinic zone expts
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Table 3. Parameters for the tropospheric eddies in the atmosphere expts
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Fig. 1. Surface velocities from the eddy-resolving channel model after 420, 460, and 3900 days. The temperature is contoured 
and shaded with lighter shading denoting warmer water. The panels on the right display the corresponding zonal mean zonal 
surface velocity in meters per second
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Fig. 2. Zonal-average fields from the β-plane eddy resolving channel model. The time-averaged meridional cross sections of (a) 

zonal mean zonal velocity (m s−1) and (b) zonal mean temperature. The time average was taken from 10 to 20 years 
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Fig. 3. The wind-driven Eulerian mean streamfunction in the eddy-resolving model, χEul, in (a) is almost exactly canceled by 

χflux in (b). Units are Sverdrups (106 m3 s−1). The result is the near vanishing of the residual mean overturning circulation 
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Fig. 4. The depth integrated PV flux in the eddy resolving model. At any latitude the difference between the bottom drag and 
surface stress is balanced by an eddy flux of PV. A positive (eastward) body force is exerted on the zonal flow in the center of the 
channel and a negative (westward) body force is exerted on the flanks of the jet
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Fig. 5. Eddy momentum fluxes associated with a “banana-shaped”  eddy. The eddy velocities (u′,  ′) have a zero zonal mean, 

but their product can be nonzero if the eddy, as here, is anisotropic. To the south of the jet axis the trough slopes in a 
southwest–northeast sense inducing a northward eddy flux of eastward eddy zonal velocity u′ ′ > 0. North of the jet axis, the 
troughs tilt southeast–northwest and u′ ′ < 0. Thus the effect of the eddies is to transfer eastward momentum into the center of 
the eastward jet from the flanks. This effect is well known in the atmospheric literature (see, e.g., Starr 1968) 

 
Click on thumbnail for full-sized image. 

Fig. 6. Meridional cross sections of (a) the eddy-PV flux ( ′q′xt) dominated by the boundary sheets with divergence at depth 

and surface convergence; (b) the eddy flux of temperature, ′T′xt, ci = 1 × 10−3 m s−1 K; (c) the eddy flux of momentum, u′ ′
xt; ci 

= 1 × 10−3 m2 s−2 
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Fig. 7. The diagnosed transfer coefficients for quasigeostrophic potential vorticity in the upper PV sheet (circles) and the lower 
PV sheet (crosses) in the statistically steady state of the eddy resolved model
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Fig. 8. Plot of ( ′q′) vs qy for the PV sheets in the eddy-resolved model
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Fig. 9. (a) The time series of the global average K (m2 s−1) in the parameterized model; (b) the steady-state K profile with κref = 

1050 ms s−1 
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Fig. 10. Steady-state meridional cross sections from the parameterized model: (a) zonal mean zonal velocity (m s−1) and (b) 
zonal mean temperature
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Fig. 11. The stress (dashed) and ′q′ (solid) terms in the steady-state momentum equation of the parameterized model for (a) 
the upper-PV sheet, (b) the interior, and (c) the lower-PV sheet. Equation (19) is exactly satisfied 
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Fig. 12. (a) The PV flux ( ′q′) for the parameterized model; (b) the depth integrated PV flux. Its effect is to exert a positive 
(eastward) body force on the zonal momentum in the center of the channel, and a negative (westward) body force in the flanks of 
the jet, consistent with the eddy characteristics diagnosed from the eddy-resolving model 
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Fig. 13. The depth average of the zonal mean zonal velocity in the (a) parameterized model and (b) eddy-resolving model 
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Fig. 14. The initial state of the baroclinic spindown problem: (a) zonal velocity, (b) temperature, and (c) zonal mean zonal 
surface velocity in the eddy-resolved model 
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Fig. 15. Spindown of a baroclinic zone in the eddy resolved model. Surface temperature and velocities from the eddy-resolving 
channel model after 165, 180, 240, and 3600 days. The temperature is contoured and shaded with lighter shading denoting warmer 
water
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Fig. 16. Spindown of a baroclinic zone. Zonal average fields from the eddy resolving model. The time-averaged meridional 

cross sections of (a) zonal mean zonal velocity (m s−1), (b) zonal mean temperature, and (c) zonal mean surface velocity (m s−1). 
The time average was taken over the last three years of integration
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Fig. 17. Spindown of a baroclinic zone in the paramterized model. The final-state meridional cross sections of zonal average 



fields: (a) zonal mean zonal velocity (m s−1), (b) zonal mean temperature, and (c) zonal mean surface velocity (m s−1) 
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Fig. 18. Spindown of a baroclinic zone in the parametrized model. Zonal average fields from the parameterized model when 

relative vorticity fluxes are set to zero. The final-state meridional cross sections of (a) zonal mean zonal velocity (m s−1), (b) zonal 

mean temperature, and (c) zonal mean surface velocity (m s−1) 
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Fig. 19. Initial meridional cross sections for the troposphere experiments: (a) potential temperature, (b) θeq the relaxation 

potential temperature, and (c) τ the relaxation timescale in days 
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Fig. 20. The meridional cross sections after 1000 days for the experiment when ′q′ = 0 in the parameterized model: (a) potential 
temperature, (b) zonal velocity, (c) residual mean overturning streamfunction, and (d) 950-mb winds 
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Fig. 21. The meridional cross sections after 1000 days for the experiment with parameterized PV fluxes, ′q′ = 0: (a) potential 
temperature, (b) zonal velocity, (c) residual mean overturning streamfunction, and (d) 950-mb winds 
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Fig. 22. (a) The eddy PV flux for the case shown in Fig. (7) ; (b) the column integrated PV flux. The eddies exert a westerly 
force at midlatitudes and easterly forces in the Tropics and toward the poles
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Fig. 23. The meridional profiles after 1000 days when Reynolds stress are set to zero in the parameterized model: (a) potential 
temperature, (b) zonal velocity, (c) residual mean overturning streamfunction, and (d) 950-mb winds 
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Fig. 24. The meridional cross sections of (a) the PV flux when Reynolds stresses are neglected, and (b) the column integrated 
PV flux. The column-integrated flux of PV is zero because relative vorticity fluxes have been ignored. There is no lateral 

momentum flux (Ey = 0) and so there is only vertical transfer of momentum associated with the lateral eddy buoyancy fluxes 

 

 

1 Some additional balance assumptions could perhaps be made to invert the PV for the primitive variables, but only at the expense of major 
complications in the treatment of the lateral boundaries, and the loss of gravity wave dynamics.

2 In the oceanographic literature the difference between * and , in Eq. (2), is sometimes called an “eddy-induced velocity,”  which, somewhat 
misleadingly, implies that the flow can be separated in to two parts: one of which is independent of the eddy disturbances and one that is the sole 
result of them. Instead we prefer to use the term “residual mean velocities”  to describe *, a nomenclature commonly used in meteorology. 

3 This assumption remains highly controversial. Circumstances can arise in which it is not true. It may be useful to regard Eq. (13) as a definition, 
and then the debate revolves around the transfer coefficient K—is it positive, and how does it depend on large-scale properties of the flow? But we 
will show, by diagnosis of the eddy-resolved channel flow described in section 4, that K is indeed positive in that simple case and has a form that is 
plausible and understandable.

4 The form of the eddy momentum flux can be understood in terms of the horizontal anisotropy of the eddies. The eddy velocities (u′,  ′) have a 

zero zonal mean, but their correlation u′ ′ will be nonzero if the eddies are not circular. Deformation of eddies, by mean flow and Rossby wave 
propagation, leads to them becoming “banana shaped”  as shown in Fig. 5 . To the south of the jet axis the troughs slope in a southwest–
northeast sense to give a northward eddy flux of eastward eddy zonal velocity in the zonal mean. North of the jet axis, troughs exhibit a southeast–
northwest tilt resulting in a southward eddy flux of eastward eddy zonal velocity. Thus the effect of the eddies is to transfer eastward momentum 
into the center of the eastward jet resulting in a zonal-mean eastward body force that sharpens and intensifies the mean zonal flow in the center and 



 

 

decelerates it on the flanks.
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