
Sign in  

AMS Journals Online

AMS Home  Journals Home  Journal Archive  Subscribe  For Authors  Help  Advanced Search            Search

Full Text View
Volume 30, Issue 11 (November 2000) 

Journal of Physical Oceanography
Article: pp. 2830–2852 | Abstract | PDF (1.46M) 

Orthobaric Density: A Thermodynamic Variable for Ocean Circulation Studies 

Roland A. de Szoeke, Scott R. Springer, and David M. Oxilia

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

(Manuscript received October 21, 1998, in final form December 30, 1999)

DOI: 10.1175/1520-0485(2001)031<2830:>2.0.CO;2 

 
ABSTRACT

A new density variable, empirically corrected for pressure, is constructed. 
This is done by first fitting compressibility (or sound speed) computed from 
global ocean datasets to an empirical function of pressure and in situ density 
(or specific volume). Then, by replacing true compressibility by this best-fit 
virtual compressibility in the thermodynamic density equation, an exact 
integral of a Pfaffian differential form can be found; this is called orthobaric 
density. The compressibility anomaly (true minus best-fit) is not neglected, 
but used to develop a gain factor  on the irreversible processes that 
contribute to the density equation and drive diapycnal motion. The 
complement of the gain factor,  − 1, multiplies the reversible motion of 
orthobaric density surfaces to make a second contribution to diapycnal 
motion. The gain factor is a diagnostic of the materiality of orthobaric 
density: gain factors of 1 would indicate that orthobaric density surfaces are 
as material as potential density surfaces. Calculations of the gain factor for 
extensive north–south ocean sections in the Atlantic and Pacific show that it 
generally lies between 0.8 and 1.2.

Orthobaric density in the ocean possesses advantages over potential density 
that commend its use as a vertical coordinate for both descriptive and 
modeling purposes. A geostrophic streamfunction exists for the momentum 
equations transformed to orthobaric density coordinates so that the gradients 
of orthobaric density surfaces give precisely the geostrophic shear. A form of 
Ertel's potential vorticity can be defined whose evolution equation contains no 
contribution from the baroclinicity vector. Orthobaric density surfaces are 
invariant to the choice of reference pressure. All of these are properties that 
potential density lacks.

In the continuous limit, patched potential density surfaces, which are formed by joining segments of locally 
referenced potential density surfaces in various pressure ranges and are extensively used in descriptive physical 
oceanography, become a particular form of orthobaric density surfaces. The method of selecting the segments is 
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equivalent to choosing the virtual compressibility function. This correspondence is a useful aid in interpreting patched 
potential density surfaces. In particular, there is a material flow across such surfaces that is analogous to the 
reversible flow across orthobaric isopycnals.

1. Introduction  

In a companion paper (de Szoeke 2000) the equations of motion were set down in a form in which an arbitrary 
thermodynamical variable was used as vertical coordinate instead of depth. The variable was expressed as a function of 

pressure, specific volume, and salinity1; the only restriction on it was that it be monotonic with respect to depth. It was 
shown that, in general, using such a variable as a coordinate introduces into the momentum equations terms explicitly 
involving salinity gradients, multiplied by a thermodynamic coefficient that is determined by the specification of the 
coordinate variable. As this coefficient is the chemical potential when entropy is used as coordinate, it is termed the chemical 
potential analogue. If conventional potential density is used as vertical coordinate, these salinity-gradient terms are by no 
means negligible in pressure ranges more than a few hundred decibars from the reference pressure.

Potential density of seawater was originally put forward as a generalization of the notion of potential temperature for a 
single-component fluid like dry air (Wüst 1933; Montgomery 1938). In the case of dry air, potential temperature possesses 
dual thermodynamic and dynamic properties that make it uniquely useful. It is an alias of entropy, so it can change only 
because of irreversible processes, such as molecular diffusion, turbulent mixing, diabatic heating, cabbeling, etc.; we may 
call such a variable quasi-conservative or quasi-material. It is also the sole determinant in the fluid of the buoyant force due 
to density variations. Potential density of seawater, on the other hand, though it may be quasi-conservative, is severely 
lacking in its dynamical properties. It may exhibit inversions even in regions where the ocean is stably stratified (Ekman 
1934; Lynn and Reid 1968). It is not the sole determinant of buoyant force, for salinity gradients on potential density 
surfaces may still generate significant contributions to the momentum balance (de Szoeke 2000). This behavior is a 
consequence of the thermobaric character of seawater, namely, that the thermal expansion coefficient of seawater depends 
strongly on pressure (Ekman 1934; McDougall 1987a). 

McDougall (1987b; also Jackett and McDougall 1997) introduced the notion of neutral density to overcome some of the 
difficulties associated with potential density, including the problem of monotonicity when true stratification is stable. 
However, neutral density is not a thermodynamic function; it depends not only on the thermodynamic state of a water 
sample, characterized by the triplet of pressure, temperature, and salinity, but also on the geographical location where it was 
collected—a dependence determined by reference to a global hydrographic dataset. This hybrid character makes it difficult 
to work with, both theoretically and practically.

In this paper we shall consider thermodynamic variables that are pycnotropic—functions of pressure, p, and specific 
volume, α, only. Such a variable, when used as vertical coordinate, produces no extra gradient terms, besides the 
Montgomery function gradient, in the momentum balance equations (de Szoeke 2000). This pycnotropic property is what 
commends such variables for use in defining Ertel’s (1942) potential vorticity. However, in general, pycnotropic variables 
lack the quasi-conservative property that potential density possesses: that the variable changes only because of irreversible 
processes that transport or create heat and salt.

The aim of this paper is to construct a variable, ν, which we call empirical orthobaric specific volume, that is a function 
of p and α, monotonic in depth, and approximately quasi-conservative. By “approximate,”  we shall mean that adiabatic 
changes in ν due to compressibility are as small as can be arranged for such a variable. We shall construct this variable by 
empirically fitting adiabatic compressibility (or sound speed) to a function of p and α, and then using this best-fit 
compressibility to construct an integral of the Pfaffian differential form for density.

The significance of orthobaric specific volume (or its reciprocal, orthobaric density) is twofold. It may be used as an 
alternative to potential density, conventional or patched, for purposes of descriptive display of oceanographic data. Because 
of its attractive dynamical and thermodynamic properties, it may be useful for theoretical manipulations and for numerical 
modeling of ocean circulation. Its dual usefulness for description and modeling derives from the same attributes.

The relation of orthobaric density surfaces to patched potential density surfaces, the latter constructed by joining 
segments of locally referenced potential density surfaces (Reid and Lynn 1971), will be examined (section 4). An interesting 
result will be established; namely, that in the limit of arbitrarily closely spaced locally referenced potential density segments, a 
form of orthobaric density is obtained. The specification of the matching of potential densities at the interfaces between their 
pressure ranges is equivalent to selecting the “best-fit,”  or virtual, compressibility. Just as regionally differentiated methods 
of patching potential density are employed (Reid 1994), geographically variable extensions of the orthobaric density idea may 
likewise be contemplated. The properties of the latter may be used to gain insight into the former.



2. Toward a quasi-conservative thermodynamic variable  

A principal aim of this paper is to determine a variable

 

a function only of pressure p and specific volume α = ρ−1, that is nearly quasi-conservative2; that is, its surfaces are 
nearly normal to the dianeutral vector. We start from the density equation, averaged over small-scale processes,

 

Here q specifies the sources and sinks of density due to (i) irreversible molecular fluxes of heat and salt, which are usually 
negligible; (ii) rectification due to nonlinearities in the equation of state, which produce cabbeling and thermobaric effects; 
and (iii) small-scale turbulent eddy transport divergences (McDougall 1987a; McDougall and Garrett 1992; Davis 1994). The 
second term on the left represents the reversible adiabatic compression in which Γ

ρ
 is the coefficient of adiabatic 

compressibility,3 and may be considered a function of p, α, S:

 

c being the speed of sound. Suppose we write

 

where

 

and (p, α) shall be suitably chosen. We call Γ0 the virtual or best-fit compressibility. The goal is to choose c2
0 to make 

the compressibility anomaly ΔΓ as small as practicable. This will be taken up in the following sections.

Equation (2.2) may be written

 

The left side of this is an exact Pfaffian differential; it may be written Dν/Dt, where  (an integrating factor) and ν are 
pycnotropic functions determined as follows (Sneddon 1957). Define the virtual specific volume A(p′|p, α) by solving

 

subject to

 

This is the potential specific volume relative to reference pressure p′, obtained as though the adiabatic compressibility of 

seawater were . At a fixed reference pressure, say p′ = 0, A(0|p, α) defines a function



 

We call ν the orthobaric (meaning pressure-corrected) specific volume, conditioned on the choice of c0.
 

The virtual specific volume may also be used to obtain the inverse function of (2.7), namely α(p, ν). Replacing (2.6b) by

 

and integrating (2.6a) to p′ = p, the original in situ specific volume α must be recovered; namely,

 

A few members of this family, α = α(p, ν), for fixed ν, that is, isopleths of ν, are shown schematically on Fig. 1 . 
(Actual examples will be shown later, in Fig. 7 ). The assignation of a numerical label ν to the curves in Fig. 1  
corresponds to the specific volume that a hypothetical water parcel evolving according to (2.6a) would have at the reference 
pressure (zero in this case). Choosing a different reference pressure in (2.7) and (2.8) would alter the label of a particular 
curve in Fig. 1  though not the form of the curve itself. The curves in Fig. 1  are invariant in this sense, and selection 
of a reference pressure is arbitrary.

The integration factor  is given by

 

Because α(0, ν) = A(0|0, ν) = ν, it follows that  = 1 at p = 0. By differentiating Eq. (2.6a) for A(p′|0, ν)/ p′ =  α(p′,
ν)/ p′ with respect to ν, we may show that

 

Given the well-behaved character of the right side of this equation, it is scarcely conceivable that  can attain zero. Hence 
we conclude that  > 0 strictly. 

De Szoeke (2000) showed two extreme examples of forms of orthobaric specific volume, conditioned respectively on the 
choices c0 = ∞ and c0 = 0. The former corresponds to in situ specific volume itself, while the latter can be thought of as 

pressure. While neither of these is particularly conservative, either may serve as a useful coordinate, especially pressure. 

a. Standard salinity; compressibility anomaly  

The virtual compressibility (2.4b) can be taken to define a standard salinity function (p, α) by means of the implicit 
relation

 

Hence the compressibility anomaly (2.4c) is

 

Since Γ
ρ
 = −α−2 α/ p, with θ, S held constant, a change of independent variables shows that



 

The expression after the first equality of (2.13) is strongly dominated by the second term. The expression after the second 
equality is proportional to McDougall’s (1987a) thermobaric parameter Tb. It is also inversely proportional to the pressure 

(or depth) scale H
α
 displayed by Akitomo (1999; see that author’s Fig. 1 ):

 

This shows that compressibility anomalies occur because of deviations of water mass properties, specifically of salinity 

from the standard salinity (p, α), coupled with the thermobaric character of seawater (Tb  0). 

b. Buoyancy frequency  

The average buoyancy frequency n is defined by

 

and is calculated from the microstructure-averaged specific volume profile and the average compressibility (2.3). By using 
the hydrostatic relation,

 

one may write (2.15) as

 

the first term of which, multiplied by αg−1 −1, is the exact differential ν/ z. Hence, using the second equality of (2.16), 
and (2.4c)

 

c. Gain factor  

Equation (2.5) may be written

 

The substantial derivative of pressure, written in terms of ν as independent variable, anticipating a result to be established 
below [Eq. (2.29)], is



 

where I is the gradient operator on surfaces of constant ν. So Eq. (2.18) becomes

 

where

 

which will be called the buoyancy gain factor associated with ν. This may be written, using (2.17),

 

or, upon eliminating p
ν
 between (2.17) and (2.22),

 

[cf. McDougall (1989)]. 

In remarks following Eq. (2.10) we concluded that  > 0. Hence the condition for the validity of the transformation to ν 
as vertical coordinate, namely that

 

requires, from (2.22), that

 

(Actually, either sign of  is acceptable; only a change of sign is intolerable. By convention, we settle on the positive 
sign.)

The gain factor  is an index of the quasi-conservativeness of the scalar ν. The irreversible sources and sinks of density 
(including small-scale turbulent diffusion), q, are multiplied by  to give the sinks and sources of ν in Eq. (2.20). The other 
contribution to , containing the factor (  − 1), is due to a remnant of the reversible compressibility effect. Large  is an 
indication of predominating reversible contributions to . [For example, if ν were in situ specific volume,  could be O(10) 

(de Szoeke 2000).] A choice of c2
0 that renders  close to 1 will be sought. 

d. The transformed equations of motion  

The averaged primitive equations of motion can be put into a form that uses as vertical coordinate the orthobaric specific 
volume variable ν described above by Eq. (2.7), provided only that condition (2.24) or (2.25) is met. These equations are



 

where I  ( x, y)ν is the gradient operator along ν-isopleths, u = (u, , 0), and F is the horizontal frictional force. 

Equation (2.20) should be substituted for p
ν

 in (2.28). The substantial rate of change operator is defined by

 

the special functions appearing in (2.26)–(2.28) are

 

Details may be found in de Szoeke (2000). Notice particularly the absence of μ IS, μ S/ ν terms from (2.26) and (2.27). 

This is a consequence of the pycnotropic character of ν. Because of this also, an Ertelian potential vorticity can be defined,

 

which would be conserved if ν were conservative (   Dν/Dt = 0) and if friction were negligible (F = 0). The function α
(p, ν) to be used in (2.30), (2.31) is defined by Eq. (2.8); it is the inverse function of (2.7). From (2.9) and (2.31), the 
integrating factor  is related to  by

 

Making the geostrophic approximation in (2.26), and using the hydrostatic balance (2.27), one may eliminate M from 
these equations to obtain the thermal wind balance,

 

Hence gradients of the Exner function on orthobaric specific volume surfaces give the geostrophic “shear,”  
ν
u. On 

account of (2.34),

 

in which Ip is practically the same as the slope of constant ν surfaces. There are no additional terms in (2.35), as there 

would be if the coordinate were potential density, for example (de Szoeke 2000). 

e. Neutrality of orthobaric specific volume surfaces  

Water parcels are often assumed to follow neutral trajectories that are everywhere perpendicular to the local dianeutral 
vector

 

(McDougall 1987b; Davis 1994; Eden and Willebrand 1999). One may ask how closely neutral trajectories follow 



orthobaric specific volume surfaces, ν = const, whose local normal is

 

The angle β between e and e0 is given by

 

Substituting, one obtains

 

Both e and e0 are dominated by their vertical components, so that (2.15) and (2.22) show that

 

These are adequate approximations for the denominator of (2.39). Hence, using the second equality of (2.40), and (2.23),

 

Using the first equality of (2.38), and (2.22),

 

Transforming the horizontal partial derivatives into derivatives along constant-ν surfaces, one obtains

 

Because | Iz|  1, this is very well approximated by

 

where Ip is the gradient of pressure in constant-ν surfaces. Applying I to (2.30) and (2.32) and substituting in (2.43),

 

In this expression, Iz is the slope of orthobaric specific volume surfaces, which one may take to change by hundreds of 

meters through the oceans, while g−1
IM is the gradient of dynamic height, which varies on the order of meters at most. 

Hence, (2.44) may be approximated by

 

This means that the slope of a neutral trajectory at a point differs from the slope of the orthobaric specific volume surface 
through the same point by a proportion |  − 1|. 



If the diffusivity tensor for the concentration of a scalar is diagonal with respect to principal axes oriented to the dianeutral 
vector e at a point,

 

then the rotated tensor, with respect to axes oriented to e0, is

 

where (β1, β2) = (  − 1) Iz (Redi 1982; de Szoeke and Bennett 1993). The size of the term KHβ
2 enhancing the “true”  

dianeutral diffusivity KD in the third diagonal element is a matter of particular concern. It is worth stressing that the 

orientation of the principal axes of K in (2.46) is an assumption, however plausible. 

3. Orthobaric specific volume: An empirical pycnotropic variable  

In this section we calculate a mean estimate of c0(p, α) from the global distribution of temperature and salinity in the 

ocean and use it to construct an empirical orthobaric specific volume variable. We examine its suitability as a coordinate for 
use in modeling the World Ocean and analyzing oceanographic data.

From the global degree-square averaged National Oceanographic Data Center (NODC) hydrographic dataset of T and S at 
standard depths (Boyer and Levitus 1994), pressure, specific volume, and sound speed were calculated at every point on a 
three-dimensional spatial grid. Sound speeds were sorted into δp × δα bins. The size of the δp bins was dictated by the 
standard depths of the NODC data and ranged from 10 dbar near the surface to 500 dbar at depth; each δα bin was chozen 

to be 0.005 × 10−5 m3 kg−1 (corresponding to δρ = 0.05 kg m−3). The average sound speed, standard deviation, and 
number of points within each bin are shown in Figs. 2 , 3 , and 4 , respectively. In each of these figures the 
abscissa is adjusted specific volume,

 

where γ = 3.941 × 10−9 m3 kg−1 dbar−1. This adjustment is done purely for convenience to reduce the range of specific 
volume caused by pressure dependence, permitting a finer scale for α*. 

The colored region in Fig. 4  represents the population density of water in the world’s oceans with respect to pressure 
and specific volume. This region is relatively narrow in the deep ocean, reflecting the fact that there is little variation of 
specific volume there. The range of specific volume at a given pressure increases shallower than 1000 dbar, and becomes 
relatively large shallower than 500 dbar. Most of the region is contiguous, except on the left-hand side of the figure. 
Although there is no explicit geographic information contained in the figure, some parts of it can be identified with specific 
ocean basins because of their distinctive pressure-specific volume relationships. The detached region at the left, for example, 
corresponds to the Mediterranean and Red Seas. Because of the unusual water properties of these seas, their physical 
isolation from the rest of the oceans, as well as the poor coverage of these regions in the NODC data, we have decided to 
exclude these waters from further consideration in this calculation. Examination of the number of points in each δp × δα* 
bin (Fig. 4 ) shows that most of the middepth water falls along one of two branches within the domain. The left branch 
represents the relatively denser (at a given pressure) waters of the Atlantic Ocean, and the right branch represents the less 
dense waters of the Pacific Ocean.

The bin-averaged sound speed, c0, has a fairly simple dependence on pressure and specific volume. Figure 2  displays 

averaged adjusted sound speed

 

with λ = 0.018 m s−1 dbar−1. The λ parameter is arbitrarily chosen to reduce the linear trend in the dependence of sound 
speed on pressure that would otherwise dominate the figure. Usually, at a given pressure, sound speed increases with 
increasing specific volume. This is expected, as both sound speed and specific volume increase with temperature. (An 
exception to this rule occurs on the far left-hand side of the domain where there are low specific volumes but high sound 



speeds owing to the warm but very salty waters found in the Mediterranean and Red Seas.) The average adjusted sound 
speed  in Fig. 2  may be considered an empirical function relating sound speed to pressure and adjusted specific 
volume α*. 

Standard deviation, shown in Fig. 3 , quantifies the variability of the true sound speed about the bin-averaged sound 

speed. It is generally smaller than 10 m s−1 except in the upper ocean at pressures less than 300 dbar, where it may exceed 

40 m s−1. In the mid and deep ocean at pressures greater than 1000 dbar (Fig. 3  inset), the standard deviation is 8 m s−1 
or smaller. Variability in the sound speed estimate comes from two sources. The first is the intrinsic error of projecting a 
function of three independent variables (p, α*, S) onto a function of just two independent variables (p, α*). The second is 
the discretization error, that arises from gridding the data in the first stage of our analysis. In addition, the NODC data 
themselves have been subject to considerable smoothing and binning, which may also affect the calculation.

To assess the possible effects of the analysis procedure, which is applied in producing the gridded data, we independently 
calculated an empirical sound speed function directly from hydrographic data available from WOCE cruises and other 
sources. The geographic distribution of these data are shown in Fig. 5 . Though extensive horizontal coverage is plainly 
lacking, the very high vertical resolution makes possible a much finer bin size in pressure (2 dbar). The difference between 
the WOCE-derived empirical sound speed function and the NODC function (Fig. 2 ) is shown in Fig. 6 . In the areas 

of the p, α* plane where the datasets overlap, the differences are small. They are less than 20 m s−1 within the top 500 dbar 

of the ocean, and less than 2 m s−1 deeper than 1000 dbar (Fig. 6  inset). Since these differences are smaller than the 
standard deviation of the NODC data, we conclude that the preprocessing applied to the NODC data has not compromised it 
for this purpose.

Favoring the distributed horizontal coverage of the NODC data, we used the average adjusted sound speed function of 
Fig. 2  to calculate orthobaric specific volume ν. The adjusted specific volume is related to the virtual specific volume 
function of section 2 by Eqs. (2.8), (3.1),

 

In terms of this, the differential equation (2.6a) becomes

 

subject to

 

A Runge–Kutta procedure was used to integrate Eq. (3.4a). The resulting trajectories are shown in Fig. 7 . They are 
contours of constant ν, when the latter is thought of as a function of p and α*. Such contours exist throughout the populous 
regions of the domain. Away from the sea surface, the value of ν at a given pressure is greater than α*, reflecting the effect 
of pressure on specific volume. (Recall that much of the linear effect of pressure has already been removed in the 
transformation to α*; without the transformation, these contours would extend much farther to the left of Fig. 7 .) The 
contours of ν also have curvature owing to the nonlinear dependence of compressibility on pressure. Furthermore, the 
contours of ν diverge with increasing pressure because of the dependence of  on α* on the right-hand side of Eq. (3.4a). 
The spacing of the contours at great pressure is more than twice that at zero pressure. This reflects the approximate 
doubling of  [Eqs. (2.9), (2.34)] between surface and great pressure—the origin of which lies in the thermobaric effect 
(McDougall 1987a; de Szoeke 2000). 

Various fields relevant to the calculation of orthobaric specific volume are displayed for two north–south WOCE sections 
in the Pacific and Atlantic (Tsuchiya et al. 1992, 1994), nominally along 150°W and 25°W (Fig. 5 ). Sound speed 
anomaly,

 

between average sound speed function c0(p, α) (Fig. 2 ) and actual sound speed is shown in Fig. 8 . [The linear 

trend λp removed from c0 by (3.2) has been restored.] Note that compressibility anomaly ΔΓ, given by (2.4c), may be 

obtained from



 

to good approximation. Sound speed anomalies are large and negative in the upper North Atlantic, while Δc  −15 m s−1 

for depths shallower than 1500 m. Anomalies are moderately large and positive in the upper South Atlantic, Δc  5 m s−1 

shallower than 1500 m, though with a lens of negative anomaly, Δc  −5 m s−1 shallower than 600 m, in the subtropical 

South Atlantic. In the deep Atlantic small negative anomalies are found, between 0 and −5 m s−1, with somewhat larger 
magnitudes in the deep North Atlantic. Small positive values occur along the bottom associated with Antarctic waters. Sound 
speed anomaly is invariably associated with salinity (Fig. 9 ): negative anomalies with high salinity anomalies, and vice 
versa.

Sound speed anomalies are generally smaller in magnitude in the Pacific, and mostly positive, while in the Atlantic they are 
mostly negative. This merely reflects the fresher waters of the Pacific (Fig. 9 ). Values are large in the upper North 

Pacific, with Δc of order 10 m s−1 shallower than 1000 m, somewhat smaller in the South Pacific at the same depths, the 
largest values occurring in the Antarctic Circumpolar Current. The only negative values are found shallower than 500 m in 
the subtropical gyre of the South Pacific, and between 500 m and 1500 m in the tropical band.

Buoyancy frequency is shown in Fig. 10 . This resembles what is seen, for example, in Flatté’s (1979) section of this 
variable. It is included here because of the role it plays in the calculation of the buoyancy gain factor  [Eq. (2.23)]. The 0.4 

cph [=7.0 × 10−4 rad s−1] contour is shown dashed. This value corresponds to a density gradient of 0.01 kg m−3/200 m, 
the numerator corresponding to the limit of density difference that can be discriminated (Fofonoff 1985) over the 200-m 
resolution sought in Fig. 10 . Values smaller than this we take to be not practically distinguishable from zero. 

The gain factor  associated with orthobaric density [Eq. (2.23)] is shown in Fig. 11 . This factor lies mostly in the 
range 0.8 to 1.2 throughout both oceans outside the bottom layer with buoyancy frequency <0.4 cph, with occasional 
bull’s-eyes in the upper ocean, presumably associated with mixed layers. In the deep North Atlantic,  values as low as 0.6 

are found on the section, but only at the very edge of the bottom pycnostad, where the estimate of n2 that goes into the 
calculation of  is marginally reliable. Values of  tend to be smaller than 1 in the Atlantic, associated with more-saline 
water masses, except for the fresher Antarctic waters and their equatorward extensions—intermediate water and bottom 
water. By contrast, values tend to be larger than 1 in the Pacific because waters are fresher, except in the near-surface 
South Pacific subtropics and in a middepth equatorial band. In the Pacific, values of  are somewhat nearer 1 than in the 
Atlantic.

The gain factor  is an index of the quality of orthobaric specific volume ν as a coordinate. It is necessary for the 
transformation to ν that  remain the same sign everywhere—a requirement that is easily satisfied. The irreversible sources 
of in situ density q are multiplied by  to give the irreversible sources of ν [Eq. (2.20)]. The closeness of this factor to 1 
makes the correction practically inconsequential. The turbulent mixing coefficients and such, which constitute the 
calculation of q, are far more uncertain than order 20%. 

The rate of change of pressure, calculated as though observed following orthobaric specific volume surfaces, and 
multiplied by  − 1, makes a thermodynamically reversible contribution to . Though the  − 1 factor may be small, of 
order ±0.1, the effect of this contribution should not be neglected. In the next section, we shall demonstrate a link between 
patched potential density (Reid and Lynn 1971) and a form of orthobaric density, and show that, through the rifts between 
the leaves constituting the patched surfaces, there is a material flow that is the discrete analog of the reversible contribution 
to . 

Meridional sections of the index of neutrality β2, calculated from Eq. (2.45), are displayed in Fig. 12  on a logarithmic 

scale. The largest values, O(10−8), are found along the ocean bottom, almost invariably within the band where buoyancy 

frequency is less than 0.4 cph, and where the estimates of  − 1, hence β2, are most uncertain. Outside this band β2 is 

typically orders of magnitude smaller. The criterion for the neglect of the KHβ
2 term in the third diagonal element of K′, the 

diffusivity tensor with respect to orthobaric density coordinates, Eq. (2.47), is that

 

To estimate the right side of this inequality, we have adopted the nominal values KD = 10−5 m2 s−1, KH = 103 m2 s−1. 

This criterion is fairly well satisfied throughout the sections of Fig. 12 . We conclude that for the purposes of calculating 
turbulent diffusion with respect to orthobaric density surfaces, that is, the term q appearing in (2.2) or (2.20), the 



approximation of the diagonal elements of K′ [Eq. (2.47)] as KH, KH, KD is acceptable. 

Finally, sections of orthobaric density, shown as

 

are displayed in Fig. 13 . These sections appear quite conventional, exhibiting the features expected in “density”  
sections. However, the use of orthobaric density has certain advantages over potential density. Surfaces of constant 
orthobaric density (called orthobaric isopycnals, for short) are invariant with respect to reference pressure. If the reference 
pressure of Eq. (3.4b) were altered, the forms of the orthobaric isopycnals in Fig. 13  would not change, although the 

numerical labels, σ
ν
, of the surfaces would. Potential temperature also has this reference-invariant property,4 though 

potential density in seawater does not. Second, the gradients of orthobaric isopycnals in Fig. 13  give precisely the 
geostrophic shear [Eq. (2.35)], which gradients of potential density surfaces do not (de Szoeke 2000). 

The chief reservation about using orthobaric density for descriptive and modeling purposes is the occurrence of residual 
compressibility contributions to diapycnal material flow, though this is an irreducible concomitant of the variable 
composition of seawater and thermobaric effects. This contribution is measured by the parameter  − 1, a nondimensional 
formulation of the compressibility anomaly ΔΓ. Orthobaric density sections like Fig. 13  ought to be evaluated in 
conjunction with the corresponding sections of  like Fig. 11 , which we discussed extensively above. In the following 
section we will show that a similar contribution to diapycnal mass flow must occur through patched potential density 
surfaces.

Interested readers may obtain datasets of the empirical function (p, α*) from the authors. Using these, Eqs. (3.4) may 
be solved by standard methods to obtain trajectories of constant ν on the p, α* plane. In addition, a Matlab toolbox is 
available to compute orthobaric density, σ

ν
, from hydrographic data for arbitrarily dimensioned (p, S, T) arrays. 

4. Patched potential density  

To overcome some of the difficulties with the use of potential density in pressure ranges far from its reference pressure, 
Reid and Lynn (1971) calculated potential densities over restricted pressure ranges (typically of order 1000 dbar) referenced 
to a pressure in the center of the range. We shall call a constant potential density surface within such a restricted pressure 
range a leaf. Patched isopycnal “surfaces”  are formed by joining adjacent leaves across the transitions between their 
pressure ranges (Fig. 14a ). The word “surfaces”  is put in quotes here because of the inevitable discordances between 
the leaves, which must occur at their joints and which arise from the variation of compressibility with temperature (the 
thermobaric effect) and the geographical variation of T–S properties. 

In this section we shall study the Reid and Lynn (1971) method of patching potential density leaves. In particular, we shall 
examine the discordances between the leaves, showing how they permit exchange of water through the resulting patched 
surfaces, even if the individual leaves are considered impermeable (i.e., when no mixing or cabbeling is held to occur across 
potential density surfaces), and calculate the rate of exchange across the discordances. It will be shown that patched 
potential density surfaces tend, in the limit of ever finer individual leaves (finer divisions of pressure intervals), to constant 
surfaces of a form of orthobaric density. This means that the procedure of matching leaves at the joints, as described above, 
is equivalent to replacement of true seawater compressibility by an approximate form, dependent only on pressure and 
specific volume, just as was done to obtain the empirical orthobaric density of sections 2 and 3. The rate of mass exchange 
across the discordances between leaves is the discrete analog of the reversible flux, obtained above, of water across the 
corresponding form of orthobaric density surfaces.

Potential density patching as it is usually practiced allows for regional variation of the patching procedure. For example, 
Reid (1994) patches the σ1 = 31.938 leaf to the σ0 = 27.44 leaf in the North Atlantic and to the σ0 = 27.30 leaf in the South 

Atlantic. This is done to allow for regional differences in the T–S property distributions of the two oceans. We shall see in 
this situation that, while mass exchange through the discordances may be reduced in the individual subregions, additional 
horizontal mass exchanges through the patched potential density surfaces may arise at the discontinuous horizontal joints 
between the subregions. However, to begin, we shall put aside for later this complication of regionally differentiated patching 
and assume that a given σ1 leaf, for example, is uniquely associated with a single σ0 leaf everywhere. We may call this a 

universal form of patched potential density.

a. Patched isopycnals: A formal description  

We show in Table 1  excerpts of similar tables from Reid’s (1994) analysis of circulation in the North and South 



Atlantic. The rows in Table 1  identify the σm = α−1
m − 1000 values, with respect to reference pressures pm, for m = 0, 

1, 2, 3, 4, of certain potential density leaves defined, respectively, over the ranges m < p < m+1 [where m = ½(pm + 

pm−1) for m > 0, and 0 = 0]. The concatenation of these leaves from each row in Table 1  gives a patched potential 

density surface [called simply an isopycnal surface by Reid and Lynn (1971), though we shall call it a patched isopycnal 
surface, to distinguish it from other kinds of isopycnal surfaces]. For example, in the North Atlantic, a leaf with density of 
27.44 between the surface and 500 dbar is connected to the σ1 = 31.938 leaf from 500 to 1500 dbar, and so on (Fig. 14a 

). It is convenient to label such a patched isopycnal surface by the numerical value of its σ4 leaf. Reid (1994) follows this 

same practice, except when a surface never extends to greater than 3500 dbar, in which case the σm value of its deepest 

occurring leaf is used (Table 1 ). We will not follow in this exception but always use a σ4 label, obtained by extrapolation 

if necessary. This extrapolation is arbitrary but of no consequence except in furnishing a unique σ4 label for each surface. 

The entries from Table 1  (denoted by pluses) have been plotted on Fig. 15  as

 

[cf. Eq. (3.1)] versus σN (specifically σ4, i.e., N = 4), and joined by straight lines for each reference pressure pm = 0, 1, 

2, 3, 4 hbar (1 hbar = 1000 dbar). The curves in Fig. 15  may be read as defining a relation between σN and σm

 

at the discrete pressures pm. Given any in situ density and pressure, σm and pm, one can identify the corresponding 

reference pressure level and look up the corresponding isopycnal value (σ4 in the case of Fig. 15 ). [Note that trivially 

(pN, σN) = σN.] The function (4.2) furnishes the chain of σm values whose leaves make up a patched potential density 

surface characterized by the density label σN. 

Suppose a water sample from pressure pm, with (in situ) density σm = (pm, σN) and salinity S, is taken adiabatically and 

with fixed composition to pressure pm+1. There it will have a density σpot(pm+1|pm, σm, S), where the function σpot(p′|p,

σ, S) gives the potential density, with respect to reference pressure p′, of a water sample with in situ pressure p, density σ, 
and salinity S. This density matches σm+1 = (pm+1, σN) only for a special value of salinity given by the solution of

 

This special salinity value is designated by

 

indicating its dependence on the pressure levels pm, pm+1 and on the density value σm of the upper isopycnal surface. 

[The dependence on σN can be eliminated by inverting (4.2); listing the dependence on σm+1 would be similarly superfluous.] 

If this value of salinity occurs at a point along the intersection of the σm = (pm, σN) = const leaf with the transition 

pressure level m+1, then the σm+1 = (pm+1, σN) = const leaf will pass through the same point. (Figure 14a  furnishes 

a schematic illustration of such an occurrence between a σ0 surface and a σ1 surface at 500 dbar.) 

The Reid and Lynn (1971) method for selecting the set {σm} of density leaves that constitute a patched isopycnal surface 

is illustrated in the θ–S diagram of Fig. 14b  for m = 0, that is, at the transition from σ0 to σ1 at the 0 = 500 dbar 

pressure level. The σ1 surface to be associated with σ0 is chosen to pass centrally through the range of the observed data 

points. (The details of this selection procedure need not concern us.) The important point is that there is a finite, even if 
narrow, range of observed θ, S values along any σ0 surface at 500 dbar (say). This range differs from the θ, S values along 

the σ1 surface chosen to correspond. This means that in physical space, illustrated schematically in Fig. 14a , the σ0 leaf 



intersecting 500 dbar cannot join perfectly onto the corresponding σ1 leaf. The intersection of the chosen σ0, σ1 surfaces in 

the θ–S diagram of Fig. 14b  defines the salinity value (0, 1000 dbar, σ0) used in Eq. (4.4) above. These methods 

readily generalize to give a value of σm+1 corresponding to a preselected σm. In this way the set of leaves {σm : m < p < 

m+1} that make up a patched surface may be constructed.
 

b. Coarse orthobaric density approximations to patched density  

Before considering the theoretical limit of taking ever finer spacings of the set of reference pressures pm, it is useful to 

review some interesting interpretations of the information in Table 1  and Fig. 15 . The latter shows how coarsely 
resolved are the particular patched isopycnals displayed by Reid (1994): first, the pressure intervals over which the 

constituent leaves are defined are quite wide; second, only a small number (nine)5 of isopycnal patchings are specified to 
represent the entire density continuum. (We will call these the standard patched isopycnals.)

On the second point, one might readily specify a continuum of intermediate patched isopycnals merely by linearly 
interpolating (for example) between the standard patched isopycnals. On the first point, the function (pm,  σ4) gives the in 

situ densities, at the discrete pressures pm = 0, 1, 2, 3, 4 hbar, that are associated with a given σ4 label. Although the 

patched isopycnals appear to admit no interpretation of  at pressures intermediate between these discrete values, each of 
which stands for a finite range, one might interpret an interpolation between these discrete pressures as follows. Consider 

two simple choices of interpolation indicated in Fig. 16 . This shows α* = (  + 1000)−1 + γp, in situ specific volume 
corrected by the offset γp, as a function of p for σ4 = 45.88. The discrete data points, denoted by asterisks, have been 

joined in two ways: by a sequence of centered stair steps and by linear segments. For either choice of interpolation (or any 
other) Fig. 16  may be read as specifying the in situ density  at pressure p that is to be associated with the given σ4 

label. Conversely, the numerical σ4 label of a water parcel with in situ density  at pressure p, converted to α*, may be read 

off Fig. 15 , and identifies a surface of water parcels that share this label. This surface is an isopleth of a form of 
orthobaric density, whose value coincides with in situ density at 4 hbar. The two interpolation choices give two forms of 
orthobaric density. The stair-step orthobaric density isopleths correspond fairly closely to the potential density leaves, 
patched together at the transition pressures: within each pressure interval the in situ density, after correction for pressure, is 

constant.6 Figure 16  also shows the orthobaric density isopleth from Fig. 7 , based on globally averaged 
compressibility, that goes through  = 45.88 at p = 4 hbar. Error bars (±2 std dev, encompassing 95% confidence) are 
shown on the global orthobaric isopycnal. These are computed by summing variance estimates of sound speed from the δp 
× δα bins of Fig. 3  from the starting point of integration of (2.6)—p′ = 4 hbar—to pressure p, namely,

 

as though sound speed fluctuations were uncorrelated among bins. These error bars may be interpreted as defining an 
envelope likely to contain at 95% confidence the statistically expected orthobaric isopycnal based on the expectation value of 
the (p, α)-sorted sound speed. The linearly interpolated versions of Reid’s (1994) patched isopycnals for the South and 
North Atlantic are quite close to the global-average orthobaric isopycnal, lying mostly within the error bars. 

There is no fundamental reason to favor the stair-step interpolation over linear interpolation, each of which gives a 
different form of orthobaric density. Note that the virtual compressibility function, Γ0 = ( / p)

σN
, is infinite at the transition 

pressures for the stair-step orthobaric density, but remains finite for the linearly interpolated orthobaric density. A coarse 
version of Fig. 2  could be constructed by differencing the rows of Table 1 . 

c. Patched potential density: The continuous limit  

We turn now to the question of taking the limit of ever finer spacing of the potential density leaves in patched surfaces, 
that is, taking each Δp = pm+1 − pm  0. It will first be shown how the salinity function (4.4) generates a virtual 

compressibility function, which defines a kind of orthobaric density. Subtract σm = σpot(pm|pm, σm, ) = (pm,  σN) 

from both sides of Eq. (4.3), where  is given by (4.4), and divide by Δp:



 

In the limit Δp  0, the left side becomes

 

This is the partial rate of change of potential density with respect to reference pressure, and is therefore the adiabatic 

compressibility evaluated at pm, σm, (pm, pm+1, σm) (Phillips 1966). In the limit this may be written

 

where

 

and

 

are the continuous limits of (4.2) and (4.4). (The subscripts m, superfluous in the limit, have been dropped.) 

The right side of (4.5), in the limit Δp  0, becomes (p′, σN)/ p′. Putting all this together, one sees that the function 

(p′, σN) is given by the solution of the differential equation

 

subject to

 

Equation (4.7) defines a virtual compressibility function, Γ0, dependent only on pressure, p, and in situ density, σ, and 

conditioned on (p, σ), the continuous limit of (4.4). Comparison of (4.7) with (2.11) confirms that (p, σ) is identical to 
the standard salinity function defined in section 2. Equation (4.8) describes the in situ density at pressure p that is to be used 
in constructing the continuous limit of the patched isopycnal surface generated from the reference density σN. Comparing 

(4.10) to Eqs. (2.6a,c), (2.8) one sees, by making the identifications

 

that the equations are identical.

d. Quasi-conservative property  



In the discrete version of patched density, the potential densities of individual leaves are quasi-conservative. In the 
continuous limit a form of orthobaric density is recovered, which is not in general quasi-conservative, as we saw in section 
2. This apparent paradox is resolved by observing that there is concentrated reversible material flow through the joints 
between the individual leaves of the patched isopycnals. This becomes continuously distributed in the limit and is 
synonymous with the reversible material flow, given by the second term of Eq. (2.20), across the limiting orthobaric 
isopycnals. The recognition of this material flow across patched surfaces (as across orthobaric isopycnals) is important to 
the assessment of the meaning of such surfaces in practical oceanographic contexts. For this reason we offer the following 
thought experiment that illustrates the inevitability of the cross-surface flow at the transitions between potential density 
leaves.

Suppose a subsurface ballasted float, which otherwise is advected by horizontal fluid motion, is programmed to adjust its 
buoyancy so as to follow patched potential density surfaces. Suppose the float is following a σm leaf in the downward sense 

and approaching the transition pressure m+1 at which it will switch to follow a σm+1 leaf. The particular σm+1 leaf to 

which it will switch has the value (pm+1, σN), preassigned by the Reid and Lynn (1971) procedure, and given by (4.3) at 

the salinity  specified by (4.4). Before the transition, the thermodynamic state of the water parcel surrounding the float is 
completely described by σm, pm, and its actual salinity S. The potential density referenced to pm+1 of this water parcel is 

σpot(pm+1|pm, σm, S). The difference of this value from the target potential density is therefore

 

By carrying out successive Taylor expansions, first of pm+1 about pm at fixed S (or ) and σm, then of S about , and 

using (4.6), one obtains that (4.14) is approximately

 

where the coefficient is furnished by (2.13). This is the in situ density change through which the float must 
instantaneously be made to rise or drop to reach the new potential density leaf. Equation (4.15) resembles an estimate made 

by McDougall (1987b) of potential density change along a neutral trajectory [though with S −   replaced by 

. 

Divided by n2g/α, where n is the local buoyancy frequency, (4.15) gives an estimate of the vertical displacement the float 
undergoes (positive if upward) in making the transition, namely,

 

where (2.12) has been used in the first equality and (2.23) in the second. Suppose both sides of (4.16) are divided by Δt, 
the time taken by the float to move from one central reference pressure, pm, to the next, pm+1. As pm+1  pm and Δt  

0, the quotient (pm+1 − pm)/Δt tends to the rate of change of pressure following horizontal motion along what has been 

identified as a limiting patched isopycnal, namely σN = const, now continuous:

 

Hence

 

The right side of (4.18) invites comparison to the second term of (2.20), the reversible material flow across orthobaric 
isopycnals. Thus we see that the material that flows past the hypothetical ballasted float as it travels from one potential 



density leaf to the next in the vicinity of a transition pressure is the discrete analogue of the reversible material flow through 
the corresponding form of orthobaric isopycnal.

e. Regional differentiation  

As already noted, Reid’s (1994) patching procedure makes allowance for regional variation of T–S properties. That is, 
different sets of numerical values for the σm = (pm, σN) leaves are selected for one ocean basin compared to another, or 

for one hemispheric basin compared to the other. For example, Table 1  and Figs. 15 , 16  show different patched 
isopycnal specifications for the North and South Atlantic. Even within a hemispheric basin such as the North Atlantic, Reid 
(1994) allows for some variation between western and eastern regions (not shown in Table 1 ). This undoubtedly ensures 

smaller variations of salinity from the regional standard, S −  R (in the mean-square sense, say), than from the lumped 

global standard salinity S − G. Hence the regional density jumps at transitions, given by (4.15), to which the cross-surface 
material flow is proportional, is similarly reduced. Likewise the continuously distributed material flow across orthobaric 
isopycnals could be reduced by using regional averages to define the virtual compressibility rather than lumped global 
averages as in section 3. However, this reduction comes at a price:there will be horizontal nonconformities in such regionally 
differentiated patched surfaces (or orthobaric density surfaces) at the boundaries between the regions. Material can leak 
across these nonconformities just as it does at the vertical transitions between the potential density leaves. It can be shown 
that the reduction, by using regionally differentiated specifications, of the local material flow across vertical transitions 
between leaves of a patched surface is compensated by the increase of material exchange at the resulting nonconformities 
among regions. This is a consequence merely of mass conservation, not of any property of the surfaces.

To illustrate these remarks, an example is shown in Fig. 17  of a density section computed for the tropical portion of 
WOCE Cruise A16 in the Atlantic at 25°W. What is displayed in Fig. 17  is σ4 for each pressure and in situ density pair 

reported from the station, calculated by bilinear interpolation of the data in Table 1 . As we have noted, this form of 
orthobaric density gives a defensible approximation to the patched potential density surfaces of Reid (1994), permitting a 
continuum of surfaces to be constructed between the standard ones specified. Because different rules are used for 
calculating σ4 in the North and South Atlantic (Table 1 ), there are inevitable discontinuities in Fig. 17  at the equator, 

equivalent to vertical displacements of order 50 m. [To forestall possible confusion, we emphasize that σ4 is not potential 

density referenced to 4 hbar, but the virtual density of a water parcel taken to 4 hbar as though its compressibility were Γ0 = 

( / P)
σ4

. The latter may be computed by differencing, in effect, Fig. 15 .] We stress that such discontinuities must 

occur for patched potential density surfaces interpolated between the surfaces σ0 = 26.750 and σ1 = 31.938 [these are two 

of Reid’s (1994) standard isopycnals, see Table 1 ; they correspond to σ4 = 43.837 and 44.788]. Such discontinuities are 

a concomitant of the regional differentiation employed in defining the patched potential density surfaces.

These discontinuities constitute gaps through which water may pass, even if the continuous portions of the surfaces 
could be regarded as material. The necessity of accounting for this exchange of material is a disadvantage of employing 
regional differentiation of water properties in the definition of patched potential density surfaces. An additional disadvantage 
of regional differentiation is the forfeiture, in the vicinity of interregional borders, of the property of the Montgomery 
function of being an acceleration potential (sometimes called a geostrophic streamfunction), as it otherwise is in orthobaric 
density surfaces, and would be approximately for patched potential density surfaces constructed without regional 
differentiation (de Szoeke 2000). There are discontinuities in acceleration potential at the interregional borders. 

An unexceptionable example of the use of regional differentiation is Reid’s (1994) subdivision of the denser waters of the 
North Atlantic into western and eastern subbasins separated by the Reykjanes Ridge. In this case the differentiated waters 
are not in direct contact because of the intervening ridge so that no horizontal discontinuity occurs between the differently 
specified water masses. (A good case could be made for dealing similarly with enclosed marginal seas like the Mediterranean 
and Red Seas.) Formally this regionality might be specified as follows:

 

depending on whether one is in region A or B (e.g., western or eastern Atlantic). 

f. Neutral density  

Empirical neutral density variables can be constructed that minimize everywhere the squared difference of the slope of 



surfaces of the variable from neutral tangent planes, which are perpendicular to ρ − Γ
ρ

p. The calculation may be based 

on the global hydrographic dataset (Jackett and McDougall 1997), or focused on a single ocean basin like the North Atlantic 
(Eden and Willebrand 1999). While this idea seems intuitively similar to orthobaric specific volume, which may be thought to 
be an approximate integral of the left side of Eq. (2.2), an important feature of Jackett and McDougall’s (1997) neutral 
density, which distinguishes it from the universal forms of orthobaric density and patched potential density, is that it depends 
not only on the thermodynamic state of a water sample, given by the triplet p, T, S but also on the longitude and latitude at 
which it was observed. (Although regionally differentiated forms of orthobaric density and patched potential density would 
also possess elements of geographical dependence.) While the complexity of the neutral density algorithm makes it difficult 
to analyze, we may rely on the empirical demonstration by Jackett and McDougall (1997) that neutral density surfaces 
closely follow the regionally differentiated form of Reid’s (1994) patched potential density surfaces. Indeed, these authors 
aver that neutral density surfaces are the continuous analogue of discretely defined patched potential density. They 
presumably mean by this the continuous limit of the discrete spacing of vertical pressure intervals, but also the horizontally 
continuous analogue of the regionally varying form of the Reid and Lynn (1971) potential density patching method. As we 
have shown above, both of these procedures (vertical and horizontal patching) imply reversible exchanges of mass across 
the patches, even if potential density itself could be regarded as perfectly conservative. The continuous limit merely 
distributes the cross-surface mass exchange at the patches continuously; it does not eliminate it. For orthobaric density 
surfaces this cross-surface material flow is explicitly given by the second term of Eq. (2.20). For patched potential density 
surfaces an analogous version of this material flow occurs at the discordances between the segmented leaves of potential 
density at the transition pressures. For the regionally variable form of patched surfaces, additional horizontal material flows 
may occur at the borders between the constituent regions, as we saw above. Presumably, for empirical neutral density, 
cross-surface material flows of both types occur, although now continuously distributed by the Jackett–McDougall 
algorithm.

5. Summary  

An empirically based, pycnotropic (i.e., function only of pressure, p, and in situ specific volume, α), variable was devised. 
It was constructed by calculating a global fit of adiabatic compressibility to p and α and then using this best-fit 
compressibility in the density equation to obtain an exact integral of the density tendency and the best-fit compressibility. 
This exact integral—the desired new variable—may be termed the pressure-corrected or orthobaric specific volume, ν. 
Orthobaric specific volume possesses the same useful dynamical properties potential temperature has in a single-component 
fluid. First, it possesses a geostrophic streamfunction, the Montgomery function. This means that under circumstances 
where geostrophy prevails, vertical shear is proportional to the gradient of orthobaric density surfaces (which is the thermal 
wind relation). Second, to the extent that the tendency of ν is negligible, a near-conservative potential vorticity satz may be 
devised. Neither of these properties pertains for potential density (de Szoeke 2000). 

The tendency equation for ν was derived. It consists of two parts. One part is given by the same irreversible sources and 
sinks (including turbulent transport divergence) that contribute to density tendency, multiplied by the buoyancy gain factor 

, the ratio of apparent stability (proportional to ν/ z) to true stability (buoyancy frequency squared). This factor is quite 
close to 1, as a diagnostic calculation shows for meridional ocean sections through the Atlantic and Pacific. So this 
contribution to the orthobaric specific volume tendency  is about the same as the potential specific volume tendency P 

due to irreversible contributions.

The angle between orthobaric density surfaces and locally defined neutral tangent planes, or trajectories, was calculated 
for two meridional ocean sections. This angle was sufficiently small that, for the purposes of computing a turbulent 
diffusivity tensor (assumed to be diagonal with respect to neutral tangent planes) with respect to orthobaric coordinates, it 
may be neglected except possibly near the ocean bottom.

The other part of the ν tendency comes from the compressibility anomaly, the difference between true compressibility 
and the best-fit compressibility, multiplied by the apparent vertical motion of orthobaric density surfaces. Its magnitude is 
measured by the smallness of  − 1, which is proportional to the compressibility anomaly. This term seems to be the 
inevitable price for banishing salinity gradient contributions from the horizontal momentum balance and hydrostatic balance. 
Despite the closeness of the gain factor to 1, its contribution to  may not be negligible. 

For these reasons, we suggest the empirical orthobaric specific volume (or density) variable as an alternative to potential 
density both for descriptive uses in displaying oceanographic data and for theoretical uses in modeling ocean circulation. It 
would be premature to claim the “best-fit”  compressibility we have devised as the last word. The version based on the global 
oceanographic data archive suffers from coarse resolution in p and α. The geographical and vertical binning, averaging, and 
interpolation used in constructing this dataset are not ideal for the present purpose. The partial WOCE station lists available at 
this time are better for the purpose, but lack extensive geographical coverage. (Still, the concurrence between the NODC 
archive calculation and the WOCE calculation is encouraging.) The gain factor deserves more careful study. These 
considerations would lead to a better formulation of best-fit compressibility, and a better assessment of the quasi-
conservative quality of orthobaric specific volume.



A remarkable result was established about the method, commonly used in descriptive physical oceanography, of patching 
locally referenced potential density surfaces from one narrow pressure range to the next (Reid and Lynn 1971). This is that, 
in the limit of ever narrower pressure ranges over which individual potential density leaves are defined, this method furnishes 
surfaces that approximate ever more closely surfaces of a form of orthobaric density. (Even without taking the limit, 
patched potential density surfaces are very similar to a discontinuous form of orthobaric density.) The associations made, in 
the patching method, among potential density surfaces in adjoining pressure ranges are equivalent to choosing a virtual 
compressibility function for orthobaric specific volume. From this correspondence between discrete patched potential 
density and orthobaric density, it follows that accompanying the former there must be cross-surface reversible mass fluxes, 
quite apart from irreversible mass fluxes associated with mixing and cabbeling, just as there are for orthobaric density. In the 
case of discrete patched potential density, these reversible fluxes occur at the discontinuous joints between the individual 
constant potential density leaves. One of the accomplishments of this paper is the determination of the theoretical form of 
this reversible contribution to the cross-surface mass flux. We also saw that modifications of the patched potential density 
method, such as varying the matching of potential density surfaces according to geographic regions, correspond to 
analogous modifications of regionally differentiated orthobaric density surfaces. While these modifications may reduce the 
reversible cross-surface mass flux locally within a region, this is vitiated by the creation of discontinuities and interlayer 
mass exchange at the borders between regions.
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Tables  

Table 1. Specifications of patched isopycnal surfaces.a
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Figures  
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Fig. 1. Schematic showing a few members of the family α = α(p, ν), each for fixed orthobaric specific volume ν. 
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Fig. 2. Average adjusted sound speed c*
0 (in m s−1) as a function of pressure and adjusted specific volume, α*, computed 

from the global 1° × 1° yearly averaged NODC hydrographic dataset
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Fig. 3. Sound speed standard deviation (in m s−1) about the average shown in Fig. 2 
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Fig. 4. Number of data points per bin corresponding to the calculations of Figs. 2  and 3  
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Fig. 5. Data used in the WOCE estimate of average sound speed function c*
0(p, α*). The two sections A16 and P16 are 

displayed in Figs. 8–13  
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Fig. 6. Difference (in m s−1) between c*
0(p, α*) computed from WOCE and NODC (Fig. 2 ) datasets
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Fig. 7. Isopleths of ν(p, α*) computed by solving Eq. (2.6) using the average sound speed, c*
0(p, α*), of Fig. 2 
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Fig. 8. Sound speed anomaly, Δc = c0 − c (in m s−1), for WOCE sections A16 (top) and P16 (bottom)
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Fig. 9. Salinity, S (in psu), for WOCE sections A16 (top) and P16 (bottom). Different color ranges were used in the two oceans 

 
Click on thumbnail for full-sized image. 

Fig. 10. Buoyancy frequency n, in cycles per hour, for WOCE sections A16 (top) and P16 (bottom). The 0.4 cph contour is 
shown dashed
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Fig. 11. Gain factor  for empirical orthobaric density on WOCE sections A16 (top) and P16 (bottom). The 0.4 cph buoyancy 
frequency contour from Fig. 10  is shown dashed 
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Fig. 12. Logarithm (base 10) of index of neutrality β2, defined in the text, for empirical orthobaric density on the WOCE sections 
A16 (top) and P16 (bottom). The 0.4 cph buoyancy frequency contour from Fig. 10  is shown dashed 
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Fig. 13. Empirical orthobaric density σ
ν
 for WOCE sections A16 (top) and P16 (bottom)
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Fig. 14. (a) Patched potential density schematic. A constant σ0 surface is patched to a σ1 surface at 500 dbar, and so on, so as 

to minimize the discordance between the two surfaces or leaves. (b) θ–S diagram for the North Atlantic on 500 dbar (from NODC 
archive). Pairs of σ0, σ1 surfaces were so chosen by Reid (1994) that they intersect in the main θ–S line on this level surface 
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Fig. 15. Orthobaric density function corresponding to Reid’s (1994) patched potential density surfaces. Ordinate is in situ 
density, adjusted by γp [defined in the text]; abscissa is orthobaric density with respect to 4 hbar. Contours at fixed pressure p 
are shown; South Atlantic (solid), North Atlantic (dashed); pluses indicate the entries from Table 1  

 
Click on thumbnail for full-sized image. 

Fig. 16. Adjusted in situ density vs pressure for orthobaric density σ4 = 45.88; stair step and linearly interpolated versions; 

South Atlantic (solid), North Atlantic (dashed). Asterisks indicate the entries from Table 1 . Orthobaric density based on 
globally averaged compressibility of section 2 (dot-dashed), with error bars 
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Fig. 17. Regionally differentiated orthobaric density section for WOCE Cruise A16 along 25°W, based on linear interpolation 
between Reid’s (1994) density surfaces, defined differently for North and South Atlantic. Note the discontinuities at the equator. 
(Bold isopycnals correspond to the standard Reid surfaces.)

 

 

1 The third variable, salinity, could be replaced by any variable independent of the other two. The ensuing discussion would still follow, with 
appropriate modifications.

2 Exact conservation of any such variable is impossible (not only because of irreversible processes). The estimation of the degree of“nearness”  to 
conservation is part of the aim of this paper.

3 Usually αΓ
ρ
 is called the compressibility. For our purposes, the unconventional usage is convenient.

 

4 Although only approximately. The slight dependence of adiabatic lapse rate of seawater on salinity vitiates this useful property.
 

5 Reid (1994) shows one additional isopycnal.
 

6 The correspondence to the patched density of Reid (1994) can be improved by elaborating the correction γp in Eq. (3.1) to as complicated a 
function s(p) as necessary to remove as much of the pressure dependence of in situ density as possible in each pressure range. The correction may 
even be made discontinuous at the transition pressures to optimize this removal.
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