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ABSTRACT

Several diagnoses of three-dimensional circulation, using density and velocity 
data from a high-resolution, upper-ocean SeaSoar and acoustic Doppler current 
profiler (ADCP) survey of a cyclonic jet meander and adjacent cyclonic eddy 
containing high Rossby number flow, are compared. The Q-vector form of the 
quasigeostrophic omega equation, two omega equations derived from iterated 
geostrophic intermediate models, an omega equation derived from the balance 
equations, and a vertical velocity diagnostic using a primitive equation model in 
conjunction with digital filtering are used to diagnose vertical and horizontal 
velocity fields. The results demonstrate the importance of the gradient wind 
balance in flow with strong curvature (high Rossby number). Horizontal 
velocities diagnosed from the intermediate models (the iterated geostrophic 
models and the balance equations), which include dynamics between those of 
quasigeostrophy and the primitive equations, are significantly reduced 
(enhanced) in comparison with the geostrophic velocities in regions of strong 
cyclonic (anticyclonic) curvature, consistent with gradient wind balance. The 
intermediate model relative vorticity fields are functionally related to the 
geostrophic relative vorticity field; anticyclonic vorticity is enhanced and 
cyclonic vorticity is reduced. The iterated geostrophic, balance equation and 
quasigeostrophic vertical velocity fields are similar in spatial pattern and scale, 
but the iterated geostrophic (and, to a lesser degree, the balance equation) 
vertical velocity is reduced in amplitude compared with the quasigeostrophic 
vertical velocity. This reduction is consistent with gradient wind balance, and is 
due to a reduction in the forcing of the omega equation through the geostrophic 
advection of ageostrophic relative vorticity. The vertical velocity diagnosed 
using a primitive equation model and a digital filtering technique also exhibits 
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reduced magnitude in comparison with the quasigeostrophic field. A method to 
diagnose the gradient wind from a given dynamic height field has been 
developed. This technique is useful for the analysis of horizontal velocity in the 
presence of strong flow curvature. Observations of the nondivergent 
ageostrophic velocity field measured by the ADCP compare closely with the diagnosed gradient wind ageostrophic 
velocity.

1. Introduction  

The seasonally energetic California Current system (CCS) often exhibits sharp frontal features, such as cold filaments, 
particularly during upwelling season (Strub et al. 1991). Strong fronts in the density field are accompanied by large 
alongfront geostrophic currents and large relative vorticities (Kosro and Huyer 1986; Onken et al. 1990). Associated with 
fronts and strong geostrophic currents are potentially sizable secondary or ageostrophic circulations, including vertical 
motion. Ageostrophic circulation at a front is required to offset the tendency for thermal wind to destroy itself (Hoskins et 
al. 1978). 

Determination of the three-dimensional circulation associated with mesoscale features is complicated, primarily by our 
inability to accurately measure the vertical velocity w. Hence, indirect methods for estimating w from observable fields are 
required. In the absence of information about temporal evolution, the Q-vector form of the quasigeostrophic (QG) omega 
equation (Hoskins et al. 1978) is a useful technique for diagnosing the vertical circulation from the observed, synoptic 
density and geostrophic velocity fields, such as provided by a single hydrographic survey. Recently, the QG diagnosis of 
three-dimensional circulation has been successfully applied to oceanic datasets (Viúdez et al. 1996; Rudnick 1996; Allen and 
Smeed 1996; Shearman et al. 1999). 

The applicability of QG dynamics to mesoscale features is limited in the presence of large Rossby number flow. Hence, 
the QG diagnostic methods may not accurately represent the vertical velocity field in mesoscale features with large Rossby 
numbers. Primitive equation (PE) models offer a more comprehensive set of dynamics. The complexity of the PE model, 
however, is sometimes a hindrance in isolating particular physical processes. Intermediate models, such as the geostrophic 
momentum approximation (Hoskins 1975), the semigeostrophic equations (Hoskins and Draghici 1977), the balance 
equations (Gent and McWilliams 1983), and iterated geostrophic models (Allen 1993), were developed as a means for 
incorporating dynamics between QG and PE. Diagnostic methods for estimating ageostrophic circulations based on 
intermediate models should therefore have improved accuracy compared with QG diagnostics.

This paper builds upon the work of Shearman et al. (1999), who diagnosed, via the Q-vector form of the 
quasigeostrophic omega equation, the three-dimensional circulation associated with a cyclonic jet meander and adjacent 
cyclonic eddy in the CCS. Density and velocity data from small-scale survey 1 (SS1), a high-resolution upper-ocean 
SeaSoar/Acoustic Doppler Current Profiler (ADCP) survey conducted as part of the 1993 Eastern Boundary Currents (EBC) 
program (Huyer et al. 1998), were objectively analyzed to form smooth, gridded fields (2 km horizontal and 10 m vertical 
spacing) from which the geostrophic horizontal and quasigeostrophic vertical flow fields were diagnosed. The data reduction 
procedures are described in Shearman et al. (1999). For the SeaSoar density, a spatially variable mean field is determined by 
fitting a second-order polynomial to the SeaSoar observations. The fitted mean is then removed and the residual objectively 
analyzed (Bretherton et al. 1976) using the correlation function (decay scale and zero crossing of 20 km) reported in 
Shearman et al. (1999). The data reduction procedure for the ADCP data is similar with the additional constraint of 
nondivergence.

Corresponding to the position of the jet meander, a cold filament can be seen in sea surface temperature (Fig. 1 ) 
making a sharp cyclonic turn in the SS1 survey region. The ship track for SS1 relative to this feature is also shown (Fig. 1 

), demonstrating the high spatial resolution of this survey. The SS1 density field (Fig. 2 ) was characterized by a 
curvilinear front that follows approximately the same cyclonic path as the surface filament. As reported by Shearman et al. 
(1999) the density front was strongest between 70 and 100 m and weakened below these depths. The geostrophic velocity 
field, referenced to the objectively analyzed ADCP data at 200 m (constrained through the objective analysis to be 

nondivergent), showed a surface-intensified jet with a maximum speed of 0.9 m s−1 that followed the density front along the 
cyclonic meander. Geostrophic relative vorticity within the jet ranged from −0.8f  to 1.2f  at the surface, where f  is the local 
Coriolis parameter. The diagnosed quasigeostrophic vertical velocity field was characterized by two length scales: a large (

75 km) pattern of downwelling upstream and upwelling downstream of the primary cyclonic bend; and smaller (20–30 

km) patches associated with similar scale meanders in the jet. The maximum vertical velocity was 40–45 m d−1 and was 
found within the jet between depths of 70–100 m. 

The objectives of this paper are to compare existing methods and to develop techniques that are more accurate than QG 
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for diagnosing three-dimensional circulation in the presence of large Rossby number flow. In addition, the dynamics of 
mesoscale features are examined, emphasizing the importance of the gradient wind balance in features with strong flow 
curvature.

The remainder of this paper is organized as follows:Section 2 describes the intermediate models (the iterated geostrophic 
models and the balance equations) and the development of the associated horizontal and vertical velocity diagnostics; section 
3 covers the diagnosis of three-dimensional circulation using the primitive equations and digital filter initialization technique; 
section 4 (along with appendix A) recapitulates gradient wind theory and describes a method for diagnosing the gradient 
wind from a synoptic dynamic height field; section 5 discusses the results of the different diagnostic techniques vis-à-vis the 
gradient wind balance; and section 6 summarizes the preceding material. 

2. Intermediate models  

Intermediate models contain physics between quasigeostrophy and the primitive equations. They are therefore capable of 
representing oceanic flows with strong velocities, steep isopycnal slopes, and a wide range of Rossby number (0 <  < 1) 
more accurately than QG. Intermediate models also have the benefit of dynamically filtering transient high-frequency inertia–
gravity waves, which are contained in the PE solutions and can obscure the dynamically relevant, more slowly evolving 
mesoscale circulation. The balance equations (Gent and McWilliams 1983) and the iterated geostrophic models (Allen 1993) 
are examples of intermediate models. They are used here to derive diagnostics of the three-dimensional circulation associated 
with a sharp cyclonic jet meander and adjacent cyclonic eddy in the CCS. The meander and eddy exhibit strong horizontal 

velocities ( 1 m s−1) and large relative vorticities ( 1f), which imply a large Rossby number (  1). The QG 
approximation is less applicable in these circumstances, and the intermediate models more appropriate.

a. Iterated geostrophic model IG1  

Iterated geostrophic models (denoted IGn where n is the iteration number), developed by Allen (1993), contain physics 
between quasigeostrophy and the primitive equations. Iterated geostrophic models provide a systematic method for 
extending model dynamics to higher order in Rossby number. IG0 is the geostrophic balance, and the subsequent iterated 
geostrophic models expand upon the geostrophic balance to increase the model’s accuracy in powers of Rossby number. 
The inviscid, f-plane relationships between model iterations, where all variables are nondimensional and n again signifies the 
iteration number, are given by [Eqs. (7a–c) in Allen 1993]

 

where the subscripts x, y, z, and t indicate partial derivatives and  is the horizontal gradient operator. The Rossby 
number  is defined as

 

where U, L, and f  are the characteristic velocity and lengths scales and local Coriolis parameter, respectively. The 
horizontal velocity is u = (u, ) and the three-dimensional velocity is u3d = (u, , w), where u, , w are the 

nondimensional eastward, northward, and vertical velocity components, respectively. The pressure field is ,  = k ·  × 

u is the vertical component of relative vorticity (k  is the unit vertical vector), K = ½(u2 + 2) is the kinetic energy per unit 
mass, and

 

where H is the characteristic height scale, is the nondimensional Burger number, based on the buoyancy frequency N(z). 
The following derivation of iterated geostrophic three-dimensional circulation diagnostics uses nondimensional variables. The 
principal diagnostic equations used in this paper are given in dimensional form in appendix B.

The zero-order geostrophic balance is defined as



 

Note that there is no zero subscript on the pressure field, which is assumed to be known and is not expanded in . The 
tendency (time derivative) of the pressure field, however, is expanded in . Consequently, the tendency of the geostrophic 
pressure field is denoted 0t. The horizontal momentum and density equations in IG1 are the same as in QG:

 

where J(a, b) = axby − aybx is the Jacobian operator. Likewise, the IG1 omega equation is identical to the QG omega 

equation (w1 = wqg). The IG1 omega equation is derived from the IG1 density equation (8) and vorticity equation, formed by 

taking the curl of the momentum equations (6) and (7),

 

where 2  = 0 and 2
0t = 0t. The continuity equation

 

where χ1 is the IG1 divergent velocity potential function, has been used to replace horizontal divergence with the vertical 

derivative of the vertical velocity on the left-hand side (lhs) of (9). The time derivative of the pressure field can be eliminated 

by adding z (9) and 2 (8). This yields the nondimensional IG1 omega equation

 

The first term on the right-hand side (rhs) is referred to as the differential vorticity advection (Holton 1992) and 
represents the contribution to vertical velocity caused by the stretching and compression of vortex tubes, required by the 
conservation of potential vorticity in response to the advection of geostrophic relative vorticity. The second term on the rhs 
is the negative Laplacian of thickness advection, which is proportional to thickness advection itself (Holton 1992), and 
represents the contribution to vertical velocity caused by the direct displacement of isopycnals. The forcing of the IG1 
omega equation (11) can be reformulated into the nondimensional Q-vector form (Hoskins et al. 1978),

 

where θ is the negative perturbation density, such that the total nondimensional density field is given by

 

The Q-vector form of the QG omega equation has been applied to oceanic datasets previously (Viúdez et al. 1996; 
Rudnick 1996; Allen and Smeed 1996; Shearman et al. 1999). The solution procedure for the QG/IG1 omega equation 
follows Shearman et al. (1999). The horizontal boundaries of the computational region are moved away from the area of 
interest. This should minimize the influence of the lateral boundary conditions, which are wx = 0 on the east–west boundaries 

and wy = 0 on the north–south boundaries. Furthermore, the divergence of Q is set to zero outside of the 0.1 error 

covariance contour (denoted by the thick gray line in Fig. 2 ). The boundary condition at the surface is w = 0, and at the 
bottom of the computational region the boundary condition is wz = 0. A slight change has been instituted here in anticipation 

of the application of the PE/DFI (digital filter initialization) vertical velocity diagnosis, which uses w = 0 at a flat, solid 
bottom boundary. The bottom boundary of the computational region has been extended from 310 m to 510 m to isolate the 
results obtained in the upper 310 m from the influence of the bottom boundary condition.



Coarse resolution, nonsynoptic, deep hydrographic data from an EBC cruise (Kosro et al. 1995) were used to extend the 
SS1 SeaSoar density data below 310 m. Twenty-seven conductivity–temperature–depth (CTD) casts to at least 500 m were 
conducted between 9 May 93 and 11 July 93. The sampling pattern forms a cross, intersecting the curved density front 
(Fig. 2 ) at three separate places. The CTD data were gridded using standard objective analysis following Shearman et al. 
(1999) with historical covariance parameters a = 55 km and b = 120 km (Walstad et al. 1991). Although the sampling 
pattern resolves only the coarse length scales and the data are not synoptic, this is not detrimental to the analysis. In the IG 
diagnoses, the CTD data will only be used to extend the bottom boundary away from the high-resolution, quasi-synoptic 
SeaSoar data region. As with the lateral boundary conditions, the forcing of the omega equation is set to zero outside of the 

SeaSoar data region (below 310 m). This technique is similar to extending the density data assuming a constant N2 (Rudnick 

1996), but is preferable since it is based on actual data. For SS1, extension using constant N2 gives unrealistic densities and 
maintains the horizontal density gradients from 310 m on down. This is not an issue for the diagnosis of vertical velocity 
using the omega equation, since the rhs forcing is set to zero in the extended data region. However, in the PE/DFI diagnosis, 
the large density gradients in the deep region yield unrealistically large geostrophic velocities, and the diagnosis is obviously 
affected. By using actual data to extend the density field, these problems are avoided.

The dimensional QG/IG1 vertical velocity field (w1 = wqg) (Fig. 3 ) has been diagnosed by solving the dimensional 

form for (12), using the above boundary conditions. A complete description of the QG vertical velocity field for SS1 is given 
in Shearman et al. (1999). The rms difference between the QG/IG1 vertical velocity wqg diagnosed using the extended 

boundary condition wz = 0 at 510 m and the wqg field diagnosed using wz = 0 at 310 m (i.e., as used in Shearman et al. 

1999) is 0.8 m d−1, whereas the rms of w1 itself is 9.4 m d−1. 

Once the QG/IG1 vertical velocity has been calculated, the complete (geostrophic and ageostrophic) IG1 horizontal 
velocity can be diagnosed. The IG1 horizontal velocity field can be separated into its rotational and divergent components

 

where u1R and u1D are the rotational and divergent velocity components determined from the IG1 streamfunction 1 and 

velocity potential χ1, respectively, and k  is the unit vertical vector. The rotational IG1 velocity field is calculated from the 

divergence of the momentum equations (6) and (7)

 

Since 2
1 = 1 and 2  = 0, this expression can also be written as a relationship for the IG1 relative vorticity

 

The ageostrophic relative vorticity is therefore given by 2J( 0, u0), which has been identified previously by Keyser et al. 

(1992). The elliptic operator in (13) is inverted using successive overrelaxation and the boundary condition

 

where n is the unit normal vector pointing out of the boundary. Using the geostrophic velocity in the boundary condition 
is formally an approximation to the actual boundary condition, as evident in the IG1 momentum equations (7) and (6). 
However, since the lateral boundaries are far away from the region of interest, the neglect of higher-order terms in the 
boundary condition will not make a significant difference. The IG1 rotational velocity field and streamfunction show both 
the large-scale cyclonic and small-scale meanders exhibited by the geostrophic velocity field and dynamic height (Fig. 4a 

). The maximum speed in the IG1 rotational velocity field is 0.80 m s−1, which is less than the maximum geostrophic 

speed of 0.90 m s−1. 

Once the QG/IG1 vertical velocity field has been diagnosed from (12), the divergent velocity field can be determined from 
the dimensional form of the continuity equation (10). There are no obvious physical boundary conditions for this relationship 
when the lateral boundaries are open. Therefore, the dimensional form of (10) was solved for χ1 using both Dirichlet and 

Neumann boundary conditions. The solutions had an rms difference of 0.001 m s−1 compared with a mean divergent 

velocity of 0.01 m s−1. For the following analysis, the Neumann boundary condition was used. The divergent velocity 
field and velocity potential (Fig. 4b ) indicate a large-scale convergence toward the center of the cyclonic low. There are 



also smaller-scale convergent and divergent features, for example, the region of divergence within the downwelling patch at 
37.65°N, 126.5°W and the region of convergence within the upwelling patch at 37.6°N, 126.0°W. The divergent velocity 
field at 100 m (Fig. 4b ) is in general below the depth of maximum vertical velocity, thus divergence (convergence) at 
depth within a downwelling (upwelling) patch is consistent with the intuitive expectation of surface convergence 
(divergence) leading to downwelling (upwelling) followed by divergence (convergence) at depth. The divergent velocity field 

is strongest near the surface with speeds of up to 0.1 m s−1. 

b. Iterated geostrophic model IG2  

The derivation of the IG2 omega equation follows the same steps as the QG/IG1 omega equation. The IG2 vorticity and 
density equations [(3.30a,b) and (3.24c) in Allen (1993)] are written as

 

where

 

recall that 2
1 = 1 and 2  = 0. To eliminate the time derivative of the IG1 pressure field 1, take z (16) and 2 

(17), and add to get the IG2 omega equation:

 

Once the IG1 solution is obtained, the rhs of the IG2 omega equation is completely determined in the same way that the 
rhs of the QG/IG1 omega equation is completely determined by the IG0 or geostrophic solution. The values of 0tx and 0ty 

in (19) are computed from the IG1 momentum equations (6) and (7). A corresponding Q-vector form for the IG2 omega 
equation has not been found.

Without the O( ) and O( 2) terms, the IG2 omega equation is identical to the QG omega equation (11) with the 
geostrophic advecting velocity and geostrophic relative vorticity replaced by the IG1 rotational velocity and relative vorticity

 

where the superscript 2d denotes the limitation to horizontal advection on the rhs. This clipped forcing has the same 
contributing terms as the QG/IG1 omega equation (horizontal advection of relative vorticity and thickness); however, the 
advecting velocity is the IG1 rotational velocity field and the advected relative vorticity field is the IG1 relative vorticity. The 
IG2 diagnosis differs from the geostrophic momentum approximation in that the advection of ageostrophic relative vorticity 
contributes to the forcing of vertical motion. Likewise, the clipped forcing for the IG2 omega equation differs from the 
QG/IG1 omega equation through the inclusion of the geostrophic advection of ageostrophic relative vorticity and the 
nondivergent ageostrophic advection of thickness and relative vorticity (both geostrophic and ageostrophic).



The full rhs of the IG2 omega equation (20) can be reformulated to emphasize the three-dimensional advection of relative 
vorticity and thickness

 

where 3d is the three-dimensional gradient operator. Note, the O( 2) term from (20) has been incorporated into the O( ) 

terms, and similarly some O( ) terms from (20) have been incorporated into the O(1) expressions, through the use of the 
total IG1 velocity

 

In the full IG2 omega equation, the advection terms are three-dimensional. In addition to the geostrophic and ageostrophic 
horizontal advection terms included in the clipped forcing, the full IG2 omega equation includes advection of relative 
vorticity and thickness by the divergent velocity field (u1D, 1D, w1). The three additional forcing terms in (22) are related 

to the evolution of the absolute IG1 vorticity field through the baroclinic production (solenoidal), tilting/twisting and 
divergence terms in the vorticity equation (see Pedlosky 1987). This formulation highlights the utility of the iterated 
geostrophic intermediate models. At each iteration, the physics are systematically made more inclusive, and each new term is 
easily identifiable. The solution procedure for both IG2 omega equations (21) and (22) implemented here uses the identical 
boundary conditions as the QG/IG1 solution.

The IG2 vertical velocity fields,  (Fig. 5 ) and w2 (Fig. 6 ), have similar spatial scales and patterns as the 

QG/IG1 vertical velocity (Fig. 3 ). The signs of  and w2 match the sign of wqg at 88% and 86% of the grid points, 

respectively. The general consensus within the literature states that wqg is often qualitatively accurate in describing the actual 

vertical velocity (Davies-Jones 1991), but quantitatively wqg tends to overestimate the actual vertical velocity (Pinot et al. 

1996). Of the grid points where |wqg| > |w2|, the IG2 vertical velocity field shows 36% weaker downwelling velocities and 

45% weaker upwelling velocities. The maximum upwelling and downwelling velocities for w2 and  are shown in Table 

1 . The absolute maximum upwelling and downwelling velocities for w2 and the maximum upwelling velocity for  

are greater than the QG maxima. However, those maxima occur over a smaller area (cf. Fig. 3 , Fig. 5 , and Fig. 6 
). 

Area-averaged vertical velocity at a given depth is computed via

 

where A is the total area over which the vertical velocity is acting (always constrained to lie within the 10% error 
covariance). Area-averaged upwelling (downwelling) is computed from (23) over the area (A) where w > 0 (w < 0). The 

maximum area-averaged upwelling and downwelling velocity for w2 and  is less than wqg. The area-averaged vertical 

velocity for both  and w2 is downwelling at all depths (Fig. 7 ), and the magnitude of the area-averaged vertical 

velocity increases with depth. This reinforces the view of a developing low-pressure cyclone as a horizontally convergent, 
net-downwelling feature (see Gill 1982, section 12.10). The area-averaged QG vertical velocity (Fig. 7 ) is positive (net 
upwelling) above 150 m, reaching a positive maximum at 70 m. The area-averaged QG vertical velocity gradient implies 
divergence above 70 m and convergence below, while the IG2 area-averaged vertical velocity gradients imply convergence 
at all depths. The difference is due to the neglect of ageostrophic motion in the QG analysis. Because there is mean 
convergence and sinking motion in this cyclonic system (more evident in the higher-order estimates), one suspects that it 
may still be intensifying. This was confirmed by computing 0t from (9) and 1t from (16), which (averaged over the entire 

volume) were both positive.



Finally, using the diagnosed IG2 vertical velocity w2, the total IG2 horizontal velocity can be computed. The divergent 

component is calculated from the IG2 continuity equation

 

using the same boundary conditions as when solving for χ1. The rotational component is diagnosed from the divergence 

of the IG2 momentum equations

 

where only the O(1) and O( ) terms have been retained. The IG1 rotational velocity is used as the boundary condition. 

Similar three-dimensional circulation diagnostics can be formed from the other iterated geostrophic models (n = 3, 4, · · ·

). For the purposes of this analysis, though, it is sufficient to stop at IG2, which incorporates the O( , 2) corrections to 
QG dynamics that are the focus of this study.

c. Balance equations  

The balance equations (Gent and McWilliams 1983) are a well-known and widely used intermediate model. Previous 
studies have shown the balance equations (BE) to be an accurate (in comparison to a PE model) representation of dynamics 
when Rossby numbers are moderate to large (Barth et al. 1990; Allen and Newberger 1993). In the case of a stationary, 
circular, barotropic vortex, the balance equations exactly reproduce the PE solution, namely the gradient wind balance 
(McWilliams and Gent 1980). 

The balance equations are formulated via a systematic truncation, retaining only the O(1) and O( ) terms, of the equations 
for the vertical component of relative vorticity and horizontal divergence (Gent and McWilliams 1983). The balance 
equations (inviscid, f  plane) consist of the truncated vorticity and divergence equations

 

along with the continuity, hydrostatic, and thermodynamic energy equations

 

where the velocity field has, once again, been decomposed into its divergent and rotational components, represented by 
the streamfunction  and potential function χ. 

One benefit of the iterated geostrophic models is that, like QG, the basic variable is the pressure field . The basic 
variable of the balance equations, the streamfunction , can be determined from the nonlinear balance equation (27) given 
the pressure field . This is a nonlinear partial differential equation (falling under the class of Monge–Ampere equations) and 
cannot be solved by conventional techniques. The solution of (27) is also subject to the solvability constraint



 

which is exceeded in some parts of the dataset used in this analysis.

The solution procedure for the nonlinear balance equation (27) follows Arnason (1958). First, regions of the geostrophic 
relative vorticity field that do not meet the solvability condition are repeatedly smoothed by averaging the four nearest grid 
points, until the solvability condition is met everywhere. The solution of (27) is an iterative process where the balance 
equation is essentially linearized about the previous iteration

 

where m  1 is the iteration number and 0 = . The solution at each iteration is obtained via successive overrelaxation, 
and the geostrophic velocity field is used to provide the boundary condition. The solution is obtained at each vertical level 
and converges at m  15. 

Another option for determining the balance equation streamfunction would be to use the streamfunction determined from 
the objective analysis of the observed ADCP velocity field. While this avoids having to solve the nonlinear balance equation 
(27), it relies on the assumption that the streamfunction field is being accurately measured (i.e., that noise sources are 
inconsequential or filtered and that time-dependent changes are not significant). Determining  via (27) is used here to keep 
the comparisons between BE solutions and IG solutions more consistent.

Before forming the BE omega equation, the vorticity and density equations are rewritten as

 

The BE omega equation is then formed by taking

 

This procedure is similar to that used when forming the QG or IG omega equations, however, the new term zt(27) is 

required to eliminate the time derivatives of vorticity and density. The BE omega equation (Gent and McWilliams 1983), with 
all terms involving w placed on the lhs, is

 

There are interesting similarities and differences between the BE omega equation and IG omega equations [IG1 (11); IG2 

(20)]. The 2w term, rather than being scaled by S, is scaled by S + θz, which is the horizontally variable N2 (in 

dimensional terms). The inclusion of the horizontally variable N2 has been used in previous QG diagnoses where it is not 

formally appropriate. The BE omega equation makes this clear and confirms the order of this term to be S−1 (Shearman et 
al. 1999). The first-order forcing terms are identical to the terms in the IG omega equations, namely differential horizontal 
advection of relative vorticity and the negative Laplacian of thickness advection. The vertical advection of thickness and 
relative vorticity present in IG2 [(20) and (22)] have been moved to the lhs. 

The BE omega equation (36) can be reformulated similarly to the IG2 omega equation (22) by moving a few of the terms 
on the lhs to the rhs:



 

The similarity of the BE omega equation to the IG2 omega equation (22) is clear with the primary forcing terms being the 
three-dimensional advection of relative vorticity and density. The similarity continues with the O( ) terms. The Jacobian 
term in (37)

 

is analogous to the  term in the IG2 omega equation (22). Another similarity between the forcing of the BE and IG2 
omega equations is the inclusion of the stretching term wz. A difference between the two omega equations appears in the 

tilting/twisting term on the rhs of (37) and (22). The IG2 omega equation includes tilting/twisting by the divergent horizontal 

velocity field, brought in as an O( 2) term, while the BE omega equation includes tilting/twisting by the rotational velocity 
only.

The solution of the BE omega equation (37) requires an iterative procedure since some terms on the rhs contain the 
divergent velocity field (χx,χy,w). The forcing of (37) is computed using values of χ and w from the previous iteration, with 

χ0 = w0 = 0. The time-derivative of  in the Jacobian term is diagnosed from the BE vorticity equation (26), where the 
divergent velocity field is determined from the previous iteration. Once the rhs is computed, the solution procedure is 
identical to the IG2 omega equation. The solution of the BE omega equation converges after approximately 13 iterations.

The vertical velocity field wbe (Fig. 8 ) diagnosed from the BE omega equation (37) is similar in pattern and scale to the 

QG and IG2 vertical velocity fields. The signs of wbe and wqg match at 88% of the grid points. Of the grid points where 

|wqg| > |wbe|, the BE vertical velocity has 37% weaker upwelling velocities and 33% weaker downwelling velocities. The 

maximum BE upwelling velocity is 53 m d−1 and the maximum downwelling velocity is −48 m d−1. 

3. Primitive equation/digital filter initialization  

An alternative method for diagnosing secondary circulation is achieved through the coupling of a primitive equation (PE) 
model and a low-pass digital filter, the so-called digital filter initialization (DFI). The DFI technique, developed for numerical 
weather prediction by Lynch and Huang (1992), involves the initialization of a PE model (Haney 1985) with the observed 
density and velocity fields, followed by short ( 24 h) backward and forward integrations. The final diagnosed fields are 
then obtained by applying a low-pass filter to the resultant time series. The hypothesis is that the system of equations within 
the PE model has an underlying “slow manifold”  (Lorenz 1992) that can be recovered by removal of the high-frequency 
content. The PE/DFI technique is equivalent to nonlinear normal mode initialization (Lynch and Huang 1992). Since the DFI 
technique uses a PE model, the diagnosis of the three-dimensional circulation will necessarily include higher-order dynamics 
than those contained in QG.

This technique has been applied to quasi-synoptic CTD surveys in the Alboran Sea (Viúdez et al. 1996) and the California 
Current (Chumbinho 1994). The results were similar to the diagnosis of three-dimensional circulation using QG dynamics. 
Chumbinho (1994) analyzed a cyclonic eddy over the slope near Point Arena in May 1993—this is apparently the same eddy 
sampled in SS1 farther offshore as evident in a time series of satellite SST images (Kosro et al. 1994)—and concluded that 
the QG vertical velocities were 30% larger than the PE/DFI vertical velocities. This difference was attributed to the neglect 
of ageostrophic advection of relative vorticity and density.

The application of DFI to SS1 follows Chumbinho (1994) and Viúdez et al. (1996). The objectively analyzed density field 
and the geostrophic velocity field referenced to objectively analyzed ADCP data are used to initialize the PE model. Since the 
PE/DFI solution is obtained through the process of geostrophic adjustment, the initial currents significantly influence the 
solution only on scales comparable to, or less than, the Rossby radius. The geostrophic currents are used because the 
ageostrophic part of the analyzed ADCP currents are subject to significant noise sources on smaller scales (inertial motions 
and internal tides). The forward and backward integration time was 9 h (total integration time of 18 h), and the DFI was 
applied once. Using an 18-h filter span, inertial motions, having a period of about 19 h at 38°N, are partly removed (filter 
response 0.6) and inertia–gravity waves, having periods much less than this, are completely removed (Viúdez et al. 1996). 
A variety of integration times and DFI applications were tested and compared. The results did not vary qualitatively for 
different integration times and number of applications of the DFI.

Observed small-scale meanders along the density front (Shearman et al. 1999) are similar to frontal instabilities that 



propagate rapidly in the direction of the mean flow (Barth 1994). These small-scale meanders can also be seen to propagate 
in the PE model (Fig. 9 ). The small-scale meanders are associated with strong vertical velocities (Shearman et al. 1999). 
The propagation of these meanders will affect the value of filtered fields. Thus, the choice of integration times will influence 
the results. From the prefiltered, time-dependent density field in the PE model (Fig. 9 ), the propagation of these 

instabilities can be tracked. Propagation speeds range from 0.13 to 0.32 m s−1. 

The filtered density field is slightly altered from its initial state (Fig. 2 ) due to the adjustment processes in the PE 

model. This adjustment is small; the rms difference between the original and filtered density fields is 0.007 kg m−3. The DFI 
vertical velocity field (Fig. 10 ) is similar in pattern to the QG vertical velocity field. The maximum upwelling velocity is 

approximately 34 m d−1 and the maximum downwelling velocity is 33 m d−1 at about 100 m (see Table 1 ). Visually, 
there appears to be little difference between the QG and DFI vertical velocity fields, except for a general reduction in the 
magnitude of vertical velocity. As with the intermediate model diagnostics, the spatial patterns are quite similar;the sign of 
wbe matches the sign of wqg at 84% of the grid points. Of the grid points with |wqg| > |wpe|, there is an average 36% 

reduction in wpe for downwelling and 35% reduction for upwelling. The area-averaged PE vertical velocity (Fig. 7 ) is 

similar to the area-averaged QG vertical velocity. 

4. Gradient wind  

In order to explain the dynamics and the diagnostic estimates of secondary circulation, the simplest higher-order model, 
the gradient wind balance, is explored. At synoptic length scales, the primary balance of forces in the ocean is between the 
horizontal pressure gradient and the Coriolis forces, the geostrophic balance. The geostrophic balance is strictly applicable 
only to flow along straight dynamic height contours (Holton 1992). When dynamic height contours curve, the appropriate 
force balance is among the Coriolis, pressure gradient, and centrifugal forces—the gradient wind balance. In SS1, the 
strongly curved flow suggests the appropriateness of the gradient wind balance.

Using a natural coordinate system following Holton (1992), the cross-stream momentum balance for time-independent, 
two-dimensional flow parallel to dynamic height contours is

 

referred to as the gradient wind equation, where V is the horizontal speed (a positive definite scalar),  is the geopotential 
field, and R is the radius of curvature of the flow where R > 0 indicates cyclonic curvature (see appendix A for further 

definitions). The centrifugal force is given by V2/R, the pressure gradient force is given by − / n, and the Coriolis force is 
fV. The geostrophic approximation

 

is recovered from (38) as R  ±∞ (flow without curvature), and the gradient wind equation can be rewritten

 

For the following analysis, it is assumed that streamlines and water parcel trajectories are equivalent as would be the case 
for steady-state motion (Batchelor 1967). The effects of this assumption are quantifiable, with the primary error coming 
from the large-scale advection of the mesoscale pattern of streamlines (Holton 1992). When a steady state is assumed and 
the geopotential field is known, the radius of curvature for water parcel trajectories is completely determined (see appendix 
A). Given the geopotential field and the radius of curvature, the quadratic gradient wind equation (39) can be solved

 

By choosing to seek regular solutions (see appendix A) and defining a Rossby number based on radius of curvature



 

the solution to the gradient wind equation becomes

 

for regions of both cyclonic and anticyclonic curvature (see appendix A for solution details). Regions of positive 
(negative) R indicate cyclonic (anticyclonic) curvature. 

The horizontal distribution of R (Fig. 11c ) is similar to the geostrophic and IG1 relative vorticity fields (Figs. 11a,b 

). The magnitude of R is consistently weaker than the magnitude of g/f  and 1/f. This is to be expected because R is 

an approximation to the curvature vorticity (the largest values of R overlie the most strongly curved portions of the density 

front), and the difference then is due to shear vorticity. At 100 m, the maximum positive (negative) value of R is 0.47 

(−0.25) compared with values of maximum geostrophic relative vorticity (scaled by f) of 0.69 (−0.40). As mentioned in 
appendix A, to assure real values for the velocity field in gradient wind balance, the magnitudes of negative R are 

constrained to be no more than 1/4. For R < 0 over the entire survey region, | R| exceeds 1/4 at only 3.7% of the grid 

points and exceeds 0.35 at 0.7%, all above 100 m. Near the surface, R attains its largest values of 0.82 (40 m) and −0.53 

(0 m). In the analysis presented here, the few grid points where R < 0 and | R| > 1/4 are reset to a maximum negative value 

of −0.25.

For SS1 at the surface, the gradient wind velocity Vgw is on average 0.12 m s−1 faster in anticyclonic regions ( R < 0) 

and 0.06 m s−1 slower in cyclonic regions ( R > 0) than Vg, with a maximum increase of 0.71 m s−1 and decrease of 0.19 

m s−1. At 100 m, the gradient wind velocity field is on average only 0.02 m s−1 faster and 0.02 m s−1 slower, with a 

maximum increase of 0.18 m s−1 and decrease of 0.07 m s−1. The calculation of gradient wind velocity is sensitive to large 
values of negative R; the gradient wind velocity Vgw rapidly approaches 2Vg as R approaches −0.25 (Fig. A1 ). The 

maximum speed increase seen in the gradient wind velocity field corresponds to a region where R = −0.25. By asserting the 

geostrophic momentum approximation (Hoskins 1975), an approximate gradient wind velocity—that is less sensitive to 
negative values of R—can be computed (see appendix A). At the surface, this approximate gradient wind velocity field Vgm 

is on average 0.07 m s−1 faster in anticyclonic regions and 0.07 m s−1 slower in cyclonic regions, with a maximum increase 

of 0.42 m s−1 and decrease of 0.23 m s−1, and, at 100 m, Vgm is on average 0.02 m s−1 faster and 0.02 m s−1 slower, with 

a maximum increase of 0.10 m s−1 and decrease of 0.08 m s−1. 

5. Discussion  

To examine the relationship between the geostrophic and higher-order velocity fields, comparisons between the 
geostrophic relative vorticity and higher-order estimates of relative vorticity are made via scatterplots. There is a clear 
functional relationship between g and 1 (Fig. 12a ). At high positive values, 1 is reduced in comparison with g and, at 

large negative values, 1 is enhanced in comparison with g. Assuming the characteristic length scales remain similar in both 

the relative vorticity and velocity fields, the relative vorticity fields will be proportional to the velocity field; that is to say, 
stronger velocities will yield stronger relative vorticities and weaker velocities will yield weaker relative vorticities. In this 
manner, the relationship between g and 1 is consistent with the gradient wind balance. The gradient wind in cyclonic 

curvature is subgeostrophic and yields weaker relative vorticities; gradient wind in anticyclonic curvature is 
supergeostrophic and yields stronger relative vorticities. The IG2 relative vorticity 2 (25) shows a similar functional 

relationship with g (Fig. 12b ), exhibiting larger enchancement/reduction than 1. The relationship between the relative 

vorticity field calculated from gradient wind field

 

and g (Fig. 12d ) is similar to the relationship between 1 and g, again demonstrating the importance of gradient wind 



balance on the IG1 rotational velocity field. To quantify this similarity, the linear regression of gw onto 1 has a slope of 

1.0103 and a correlation of 0.9724 at 100 m.

The relative vorticity field computed from the BE streamfunction is similarly related to the geostrophic relative vorticity 
(Fig. 12c ). The gradient wind balance is clearly reflected in the relationship between the BE relative vorticity be and g. 

The horizontal velocity field diagnosed via the PE/DFI technique does not exhibit the gradient wind balance. There is little 
difference between pe and g (Fig. 13a ). One reason for the discrepancy is that the component of the total velocity field 

in gradient wind balance is associated with fast propagating small-scale meanders, which were noted as being present by 
Shearman et al. (1999). These rapidly moving disturbances are filtered out by the DFI and, as such, not recognized as part 
of the slow manifold of the evolving flow field. Another possibility is the choice of initial velocity field. In this case, the initial 
velocity field is in geostrophic balance, computed from the initial density field. Thus, the initial velocity and density fields are 
already balanced and should not require much adjustment.

An initial velocity field in gradient wind balance would provide a different result. Therefore, the PE/DFI diagnosis was 

performed using the gridded density field and IG1 horizontal velocity as initial conditions. The resultant relative vorticity , 
when compared to g (Fig. 13b ), is different from pe initialized with the geostrophic velocity. There is a slight reduction 

(enhancement) in  apparent for large positive (negative) values of g. The effects of the filtering and adjustment 

processes within the model were to pull the initial velocity field (IG1) back toward the geostrophic velocity (cf. Fig. 13b  
and Fig. 12a ). This is somewhat unexpected, since the IG1 horizontal velocity field is similar to the gradient wind 
velocity that is balanced with respect to the density (pressure) field, and therefore should not require much physical 
adjustment. The significance of this is that the gradient wind velocity may not be a part of the “slow manifold”  within the PE 
model whenever, as in the present case, the largest gradient wind effects are associated with the small-scale, rapidly 
propagating frontal meanders. This highlights the greater requirement of the PE/DFI technique; the PE/DFI diagnosis 
requires both ρ and u as initial fields to provide an estimate of w, whereas the QG and IG diagnoses require only ρ. The 
gradient wind velocity computed from (42) could also be used as an initial velocity field in the PE/DFI diagnosis. 

The least-squares linear fits of w2, , and wbe onto w1 have slopes of 0.72, 0.76, and 0.98, respectively, at 100 m 

(Figs. 14a–c ). This agrees with the general consensus that QG vertical velocities are overestimates of the actual vertical 
velocity. Although the slope of the linear fit of wbe onto w1 is close to 1, similarities between the scatterplots of the IG 

vertical velocities and the BE vertical velocity indicate that wbe and w2 relate similarly to the QG vertical velocity. Previously, 

differences between higher-order estimates of w and wqg have been attributed to the ageostrophic advection of relative 

vorticity (Chumbinho 1994; Viúdez et al. 1996). By extending the same proportionality argument, previously applied to the 

relative vorticity, to the forcing of the IG2 omega equation, a reduction in the magnitudes of w2 and  compared with 

wqg would only be expected in regions of cyclonic curvature, while an increase would be expected in regions of anticyclonic 

curvature. This is the result obtained by Moore and VanKnowe (1992). The reasoning behind this is that the forcing of the 
higher-order omega equation depends mainly on the horizontal advection of relative vorticity and thickness (in the case of 

 the forcing depends entirely on horizontal advection) and, since the velocity field in gradient wind balance is reduced 
from the geostrophic for cyclonic features, advection will be similarly reduced. Conversely, advection in regions of 
anticyclonic curvature will be enhanced since the gradient wind velocities are supergeostrophic. Thus, extending the 
proportionality argument, higher-order vertical velocity estimates should be reduced compared with QG estimates in regions 
of cyclonic curvature and enhanced in regions of anticyclonic curvature. This disagrees with the general consensus that wqg 

tends to overestimate everywhere.

The DFI diagnosed vertical velocities wpe are generally reduced as well (Fig. 14d ). The slope of the least-squares 

linear fit was 0.84, indicating a smaller reduction compared with the reduction from wqg exhibited by the IG2 vertical 

velocities. The vertical velocity  diagnosed via the PE/DFI technique with the IG1 horizontal velocity field as an initial 

condition was only slightly different from wpe. The slope of the least squares linear fit of  to wqg was 0.86, and the 

average reduction in magnitude for both upwelling and downwelling was 31% for grid points where |wqg| > | |.
 

Although Lynch and Huang (1992) show that DFI is equivalent to NNMI, in all applications of DFI to relatively small 



scales (i.e., scales of the order of, or smaller than, the Rossby radius) a knowledge of the slow-mode currents for initial 
conditions is required. When, as in the present study, we use geostrophic currents at the initial time, the DFI technique treats 
these as valid independent estimates (observations) of the currents. The smaller-scale features in the initial analysis then 
adjust to these (geostrophic) currents during the PE model integration that is part of the DFI process. Since the larger-scale 
features, at least in the present situation, are rather well described by QG dynamics, a QG-like DFI solution (Fig. 9 ) is 
obtained.

It is therefore clear that the DFI diagnostic method cannot improve upon a QG estimate of vertical velocity without at 
least some information on the slow-mode currents at the initial time. To be specific, the method requires a good analysis of 
the rotational part of the ageostrophic, slow-mode currents on the smaller scales. However, even if this information is indeed 
available, the smaller space scales tend also to have shorter timescales and therefore they are partly removed by the DFI 
filter. From this discussion it is apparent that the IG and DFI diagnostic solutions primarily differ in how they treat the 
smaller scales. Here, the IG method produces a gradient balance current and a corresponding vertical velocity that is 
different from wqg. The DFI method, on the other hand, partly damps such scales and, without accurate information about 

the ageostrophic nature of the currents, produces a QG-like solution. By keeping the analyzed mass field unchanged, the IG 
method essentially assumes that the smaller scales are a part of the slow mode. By contrast, the DFI method basically 
assumes (via the DFI filter) that the higher frequencies (smaller scales) are not entirely balanced and therefore not a part of 
the slow mode.

To further examine the influence of the gradient wind balance on the forcing of vertical velocity through advection, the 
geostrophic and ageostrophic advections of geostrophic and ageostrophic relative vorticity were monitored (Fig. 15a ) 
along a geostrophic trajectory beginning at 100-m depth and 38.12°N, 126.03°W (Fig. 16a ). For this comparison, the 
ageostrophic velocity and ageostrophic relative vorticity are defined as the IG1 field minus the geostrophic field. Clearly, the 
strongest contribution to relative vorticity advection is the geostrophic advection of geostrophic relative vorticity (ug ·

g), which in QG scaling is O(1). As expected, the weakest contribution is the ageostrophic advection of ageostrophic 

vorticity (uag · ag) which in QG scaling is O( 2). The O( ) term uag · g, which is the ageostrophic advection of 

geostrophic relative vorticity and would be the term expected to behave according to the proportionality argument above, is 
only slightly larger than the ageostrophic advection of ageostrophic relative vorticity and obviously not likely to influence the 
corresponding vertical velocity field. The other O( ) term, the geostrophic advection of ageostrophic relative vorticity (ug ·

ag) is much larger than ageostrophic advection of geostrophic relative vorticity. At times, the geostrophic advection of 

ageostrophic relative vorticity is equal in magnitude to the geostrophic advection of geostrophic relative vorticity, e.g., 
between 70 and 90 km (Fig. 15a ). Most significantly, the geostrophic advection of ageostrophic relative vorticity is 
almost always opposite in sign to the geostrophic advection of geostrophic relative vorticity. The net result is that the forcing 
of w by relative vorticity advection is reduced, regardless of curvature. In Fig. 15b , the influence of the geostrophic 
advection of ageostrophic relative vorticity is clear as seen by the difference between the QG vertical velocity and the 
higher-order vertical velocity w2. The largest differences occur where geostrophic advection of ageostrophic relative 

vorticity is strongest and, in those regions, w2 is always reduced in comparison with wqg. This differs from the conclusions 

of Chumbinho (1994), who attributes the overestimation by QG vertical velocity to the neglect of ageostrophic advection in 
the QG diagnosis.

Water parcel trajectories (Fig. 16a ) have been computed in an analogous fashion to Shearman et al. (1999). 
Trajectories were determined by linearly interpolating the velocity to the location of the water parcel and integrating, using a 
time step of 15 min (0.01 days), to find the water parcel’s next location. The geostrophic trajectory Sg computed from the 

geostrophic velocity (ug, g, 0), constrained to a constant depth consistent with the QG approximation (Shearman et al 

1999), is the shortest among the three and takes 7.7 days to traverse the survey region. Integrating w1 along the level 

geostrophic trajectory yields a net vertical displacement of −20 m (Fig. 16b ). Unlike Shearman et al. (1999), for the 
higher-order trajectories, the water parcels were not constrained to remain on a horizontal level, but rather were free to 
move in all three dimensions. The IG1 trajectory S1 computed from the IG1 velocity (u1, 1, w1) is slightly longer than the 

geostrophic path and undergoes a net vertical displacement of −40 m. The IG1 water parcel takes 11.2 days to move 
through the region. The IG2 trajectory S2 computed from (u2, 2, w2) is longest and undergoes a net vertical displacement 

of −35 m. The vertical displacements computed from w1 and w2 are quite similar with net sinking followed by net rising 

motion. The net vertical displacement from the IG2 vertical velocity is less than the QG net vertical displacement when both 
are computed along a common trajectory, for example, S1 (not shown). This is expected since |w2| is reduced in general 

compared with |w1|. 

The IG1 ageostrophic velocity (Fig. 17 ) exhibits three particular flow patterns; small-scale (diameter 10–15 km) 



vortices, flow along streamlines but opposing the main geostrophic current, and cross-frontal flow. The small-scale vortices 
are mostly anticyclonic and their position is associated with small-scale cyclonic curvature in the dynamic height (e.g., 
anticyclonic vortices at 37.85°N, 125.95°W; 37.90°N, 126.60°W; 37.60°N, 126.10°W; 37.65°N, 126.40°W; 37.85°N, 
126.20°W; cyclonic vortex at 37.50°N, 126.45°W; all marked by gray dots in Fig. 17 ). The small-scale vortex flow is 
due entirely to the rotational component of the IG1 velocity field. The ageostrophic vortices are surface-enhanced features, 

with a maximum speed of 0.25 m s−1 at the surface and almost nonexistent at 200 m. 

Opposing flow is linked to the small-scale vortex flow and occurs primarily at the peak of small-scale cyclonic troughs, 
where the vortex flow opposes the main geostrophic flow (e.g., 37.55°N, 126.15°W; 37.60°N, 126.45°W; and 37.75°N, 
125.75°W). The absence of anticyclonic ageostrophic vortices at the peak of small-scale anticyclonic ridges is attributed to 
the generally smaller values of curvature in such regions due to the broad cyclonic nature of the main flow. Opposing flow 
is due entirely to the rotational component of the IG1 velocity field. Opposing flow in the IG1 ageostrophic velocity most 
closely resembles the ageostrophic velocity expected from gradient wind; along streamline and in opposition at cyclonic 
peaks.

Cross-frontal flow exhibits two characteristic length scales: a large scale associated with the primary cyclonic meander 
and a smaller scale associated with the ageostrophic vortices. In the northern part of the survey region near 38.0°N, 126.0°
W, the large-scale cross-frontal flow at both 100 m and 200 m is westward, from more dense to less dense fluid. In the 
southeast (near 37.6°N, 125.8°W), the large-scale cross-gradient flow is directed northwestward, but the sense is now from 
less dense to more dense fluid. At 100 m, small-scale cross-frontal flow is evident. The small-scale cross-gradient flow is 
linked to the ageostrophic anticyclones such that cross-frontal flow is directed from less dense to more dense fluid on the 
upstream side and from more dense to less dense fluid on the downstream side. At 200 m, cross-frontal flow is the 
dominant ageostrophic flow pattern. The cross-gradient flow at 200 m is directed to the west-northwest and has a large, 
meander-wide scale. Cross-frontal flow is due mostly to the rotational velocity components; however, the divergent velocity 
also contributes, particularly at the large scale. At 200 m, the divergent and rotational components reinforce each other, 
directed primarily westward. At 100 m, the divergent flow opposes the rotational flow (cf. Fig. 4  with Fig. 17 ). At 
both 100 m and 200 m, the magnitude of the ageostrophic rotational velocity is two to three times the magnitude of the 
divergent velocity.

Observations of the nondivergent ageostrophic velocity field (Fig. 18 ), determined from the gridded shipboard ADCP 
velocity field minus the geostrophic velocity field, show similar circulation patterns as the IG1 ageostrophic velocity field 
(Fig. 17a ). The gridded ADCP velocity field is constrained to be nondivergent through the objective analysis, so the 
ADCP ageostrophic velocity field is completely rotational, while the IG1 ageostrophic velocity field in Fig. 17a  contains 
both divergent and rotational components. The rotational IG1 velocity component, though, is much larger than the divergent 
component. Anticyclonic vortices are located near the cyclonic meanders in the dynamic height field. At 100 m, the location 
of anticyclones in both fields is nearly one-to-one. The appearance of the predicted circulation patterns in an independent 
measure like the ADCP is strong corroboration of gradient wind balance in this feature and of the robustness of the higher-
order vertical velocity diagnosis presented here. With this in mind, the ADCP velocity field can be used to represent the 
gradient wind velocity field in the gradient wind solution (42), and an independent estimate of the Rossby number based on 
R can be calculated from

 

and compared with R = Vg/fR (41). The two fields have a correlation of 0.80, and for anticyclonic values of , 

the magnitude of  never exceeds 1/4. Again, this gives strong support for gradient wind balance. This demonstrates 
that, given the appropriate circumstance (strong flow curvature), a shipboard ADCP is capable of measuring ageostrophic 
velocities. However, it is important to note that the divergent velocity component remains too small to be observed by the 
ADCP.

6. Conclusions  

Two intermediate models, the iterated geostrophic models and the balance equations, and a primitive equation model 
coupled with a digital filter have been used to diagnose the ageostrophic flow fields (both horizontal and vertical) associated 
with a cyclonic jet meander in the CCS containing large Rossby number flow. The results show that including the dynamics 
of the gradient wind balance are important for ascertaining accurate estimates of the ageostrophic velocity field. In 
particular, the horizontal velocity field in gradient wind balance is subgeostrophic in cyclonic regions and supergeostrophic in 
anticyclonic regions. This relationship is seen in the IG1, IG2, and BE fields, and results in significant alteration of the 
relative vorticity. Higher-order estimates of vertical velocity are reduced in comparison with QG estimates for both upwelling 
and downwelling. This is shown to be primarily the result of the geostrophic advection of ageostrophic relative vorticity 



acting to reduce the net forcing of vertical velocity.

Vertical velocity diagnosed using the PE/DFI technique exhibits a reduction in comparison with wqg as well. However, the 

diagnosed horizontal velocity field from the PE/DFI is almost entirely geostrophic. In this case, the PE model was initialized 
with the geostrophic velocity field, and only slight adjustment would be expected since the geostrophic velocity field is 
already in balance with the density field (on larger scales), needing only divergent motions to maintain a thermal wind 
balance. When the PE model was initialized with the IG1 horizontal velocity, the diagnosed horizontal velocity field differed 
from geostrophy, reflecting the gradient wind slightly. However, the diagnosed vertical velocity field was only slightly 
changed from wpe initialized with the geostrophic velocity. The intermediate model and PE/DFI results differ in how they 

treat the smaller spatial scales; the intermediate models produce horizontal currents that reflect the gradient wind balance and 
vertical velocities that are correspondingly different from QG, while the PE/DFI solution tends to damp the horizontal 
velocities on smaller scales, treating them as not a part of the slow mode. Highly accurate observations of the initial slow-
mode velocity field (with noise sources damped or removed) are the optimal choice for the PE/DFI diagnosis, and further 
study in this direction would prove useful.

A method to diagnose the gradient wind from a synoptic dynamic height field has been developed. This method provides 
an objective means for determining the radius of curvature of a water parcel trajectory, and requires only the assumption of 
a steady state (which is also assumed in the computation of the geostrophic wind).

Existence of a gradient wind balance and the success of the higher-order diagnosis is supported by observation from 
ADCP. The location of anticyclonic vortices associated with the gradient wind balance match on a nearly one-to-one basis 
between observations of the ageostrophic velocity field from ADCP and computation of the ageostrophic velocity field from 
IG1.
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APPENDIX A  

7. Estimating the Gradient Wind from Observations  

The calculation of gradient wind requires knowledge of a water parcel trajectory (specifically the path curvature) and a 
choice between possible solutions of the quadratic gradient wind equation (39). In general, a synoptic hydrographic survey 
is not sufficient to determine a water parcel trajectory. However, by assuming a nondivergent steady state, a water parcel 
trajectory is completely determined by a streamline. Hence, the curvature of the trajectory can be calculated from the 
dynamic height field. The choice of solutions to the quadratic gradient wind equation is indicated by the local Rossby 
number as well as physical considerations. Additionally, approximations can be made to extend the applicability of the 
gradient wind balance.

In order to describe the gradient wind balance, it is convenient to use a natural coordinate system following Holton 
(1992). The natural coordinate system is a locally rectangular coordinate system defined by the tangential and normal 
orthogonal unit vectors  and , where  is directed parallel to the instantaneous velocity and  is directed perpendicular with 
positive values to the left by convention. Following the trajectory of a water parcel, the velocity is expressed V = V , where 
V = Ds/Dt, s is distance traveled along the trajectory, and D/Dt is the material derivative following parcel motion. The speed 
V is always nonnegative. The acceleration of a water parcel is given by

 

where the radius of curvature R is defined from the geometry of the water parcel trajectory as

 

Thus, given the trajectory of a water parcel

 

where x and y denote the water parcel location on a horizontal plane at time t (x and y must be continuous and at least 
twice differentiable), there exists a unique radius of curvature R(t) at every point along the path defined by

 

where (·) indicates the total derivative D/Dt (McLenaghan and Levy 1996). The radius of curvature R is defined such that 
positive (negative) R corresponds to cyclonic (anticyclonic) curvature in the northern hemisphere. Typically, to find R the 
total derivatives must be evaluated, and even when this is possible, R is only defined in a Lagrangian sense along a specific 
trajectory. By assuming two-dimensional motion in a steady state

 

trajectories and streamlines become equivalent. The need to evaluate the Lagrangian total derivatives is thus eliminated, and 
R can be defined in an Eulerian sense. Given a synoptic streamfunction field (such as geopotential, dynamic height, or 
pressure)  = (x, y), the total derivatives are determined by the following relations:



 

The radius of curvature can then be expressed in terms of the streamfunction field,

 

or the nondivergent velocity field,

 

This result is equivalent to the method used in Watts et al. (1995) to determine the curvature of the  field (depth of 
the 12°C isotherm) in the Gulf Stream.

Once the radius of curvature R and geostrophic velocity Vg are known within a specific region, the gradient wind velocity 

Vgw can be computed via (40). First though, a choice must be made as to which root of the quadratic gradient wind 

equation is appropriate. For cyclonic curvature (R > 0), the solution is

 

and for anticyclonic curvature (R < 0) the solution is

 

where f |R|/2 has been factored out of the radical and R has been substituted for Vg/fR. Both (A5) and (A6) correspond 

to the regular solutions, regular low (R > 0) and regular high (R < 0), discussed in Holton (1992). The anomalous 
solutions—anomalous low and anomalous high (R < 0 for both)—are excluded on the basis that the anomalous low is 
associated with very high Rossby number features such as tornados and the anomalous high is unlikely to occur far from 
the equator (Holton 1992). For R < 0, |R| = −R, which can be substituted into the anticyclonic solution, and, using |R| = R 
for R > 0, both solutions can be written identically

 

Multiplying the rhs of (A7) by

 

we obtain Vgw in its final form (42). Since the gradient wind velocity must be real and nonnegative (by definition in the 

natural coordinate system), the solution (42) will be limited. Choosing the regular solutions ensures that Vgw will be 

nonnegative. To assure real valued solutions, the quantity 1 + 4 R must be nonnegative. For cyclonic curvature (R > 0), this 

will always be true, however, for anticyclonic curvature (R < 0), the Rossby number range is constrained to



 

The range of Rossby number can be extended by using some approximations to the gradient wind equation. The 
geostrophic momentum approximation to the gradient wind equation is

 

(Hoskins 1975) where the cross-stream momentum attributable to centrifugal force is computed from the geostrophic 
velocity rather than the gradient wind velocity. Under the geostrophic momentum approximations, the solution is

 

and is applicable over a wider range of R. In the geostrophic momentum approximation, there is no difference between 

geostrophic advection of centrifugal force due to gradient wind and gradient wind advection of centrifugal force due to 
geostrophic wind. The ratio of Vgm to Vg (Fig. A1 ) demonstrates the behavior of this solution as it varies with R. For 

negative values of R, the solution is limited to the Rossby number range −1 < R  0. 

For the IG1 approximation (13), the corresponding gradient wind equation is

 

In this case, the advection velocity is the geostrophic velocity and the momentum attributable to the centrifugal force is 
due to geostrophic velocity as well. The solution is

 

For IG1, the solution is unrestricted for negative values of R, but for positive values of R, the Rossby number is limited to 
0  R < 1. 

APPENDIX B  

8. Dimensional Forms for the Iterated Geostrophic Diagnostic Equations  

In the derivation of the higher-order omega equations, it was convenient to use nondimensional forms because they make 
explicit the order of the contributing terms. For the actual diagnosis applied to the in situ data, the corresponding dimensional 
forms were used. This appendix presents the dimensional forms used in the applied diagnosis. For the following equations, 
all variables are dimensional. In some cases, variable names may be the same as nondimensional variables. All fields 
estimated from the iterated geostrophic models that are plotted or mapped are dimensional.

The dimensional form for the IG1/QG omega equation (11) in its Q-vector formulation (12) is

 

where ug is the dimensional geostrophic velocity. The dimensional density ρ is defined



 

where ρ0 is the volume averaged density, (z) is background stratification, and θ(x, y, z, t) is the negative perturbation 

density. The dimensional form for (14) the expression for the IG1 relative vorticity 1 is

 

where g is the vertical component of the dimensional geostrophic relative vorticity field. The dimensional form for the 

boundary condition (15) used to solve for the IG1 streamfunction 1 is

 

The dimensional form of the IG1 continuity equation is

 

The dimensional forms of the IG2 omega equations (21) and 22 are

 

where u1 is the dimensional IG1 horizontal velocity field (both divergent and rotational), and u3d1 is the total dimensional 

velocity field. Note that in (B5) ρ can be used to compute the horizontal advection of density since no vertical derivatives 
occur, but in (B6) θ must be used to compute the density advection; otherwise vertical advection will be incorrect. The 
dimensional form for the expression of IG2 relative vorticity 2 (25) is

 

where the dimensional IG1 rotational velocity field is used to provide the gradient boundary condition. Finally, dimensional 
form for the IG2 continuity equation (24) is

 

The dimensional form for the nonlinear balance equation (27) is

 

and the dimensional form for the BE omega equation (37) is
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Fig. 1. (top) Satellite SST image (2300 UTC 29 Jun 1993) of the SS1 survey region, showing a filament of cold water, associated 
with a strong current jet and density front, making a sharp cyclonic turn. (bottom) The SS1 survey region is expanded, and the 

shiptrack for SS1 is overlaid. The  indicate the locations of CTD casts used to determine extended dataset, and the  indicates 
the current meter mooring location
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Fig. 2. SS1 objectively analyzed σt (kg m−3) at (a) 100 m and (b) 200 m. Contour interval is 0.1 kg m−3. The region within the 

thick gray contour has an error covariance (from the objective analysis) of less than 10% of the raw data variance. Observation 
data points are indicated by the small black dots
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Fig. 3. QG/IG1 vertical velocity w1 (m d−1) diagnosed from the dimensional form of (12) at (a) 100 and (b) 200 m. Contour 

interval is 10 m d−1 with thick contours −30, 0, and 30 m d−1 

 
Click on thumbnail for full-sized image. 

Fig. 4. At 100 m, (a) IG1 streamfunction 1 scaled by f (m2 s−2) computed from (13) and absolute dynamic height (m2 s−2) (gray 

contours); and (b) IG1 velocity potential χ1 scaled by f (m2 s−2) and divergent velocity vectors u1D computed from (10) 
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Fig. 5. IG2 vertical velocity  (m d−1) diagnosed using (21), which includes only the O(1) terms on the rhs of the full IG2 

omega equation, at (a) 100 and (b) 200 m. Contour interval is 10 m d−1 with thick contours −30, 0, and 30 m d−1 
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Fig. 6. IG2 vertical velocity w2 (m d−1) diagnosed, using the full forcing of the IG2 omega equation (22), at (a) 100 m and (b) 200 

m. Contour interval is 10 m d−1 with thick contours −30, 0, and 30 m d−1 
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Fig. 7. Area-averaged vertical velocity (m d−1) computed via (23) for w1 (thick solid line),  (thin dashed line), w2 (thin 

solid line), and wpe (thick dashed line) 
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Fig. 8. The BE vertical velocity wbe (m d−1) diagnosed via the BE omega equation (36) at (a) 100 m and (b) 200 m. Contour 

interval is 10 m d−1 with thick contours −30, 0, and 30 m d−1 
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Fig. 9. Primitive equation model density fields  (kg m−3) at 100 m from model time (a) t = −9 h, (b) t = 0 h, and (c) t = 9 h. The 
heavy line signifies the location and propagation along the front of a small-scale meander trough 
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Fig. 10. Vertical velocity wpe (m d−1) diagnosed using the PE/DFI technique at (a) 100 m and (b) 200 m. Contour interval is 10 m 

d−1 with thick contours −30, 0, and 30 m d−1 
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Fig. 11. (a) Geostrophic relative vorticity g scaled by f, (b) IG1 relative vorticity 1 scaled by f, and (c) Rossby number R 

estimated using the geostrophic velocity and objectively determined radius of curvature R, all at 100 m. Contour interval is 0.1 for 
all fields with thick contours at 0 and 0.5
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Fig. 12. Scatterplots at 100 m of dimensional values of geostrophic relative vorticity g versus (a) IG1 relative vorticity 1 

computed from (14), (b) IG2 relative vorticity 2 computed from (25), (c) BE relative vorticity be computed from (27), and (d) 

gradient wind relative vorticity gw. The least-squares fit second-order polynomial is shown by the dashed gray line. The solid 

black line corresponds to a linear relationship with a slope of 1. All values of relative vorticity have been scaled by f. 
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Fig. 13. Scatterplots at 100 m of dimensional values of geostrophic relative vorticity vs PE/DFI relative vorticity pe when the 

PE model is initialized using (a) the geostrophic velocity field and (b) the IG1 horizontal velocity field (divergent and rotational). 
The least-squares fit second-order polynomial is shown by the dashed gray line. The solid black line corresponds to a linear 
relationship with a slope of 1. All values of relative vorticity have been scaled by f. 
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Fig. 14. Scatterplots at 100 m of QG vertical velocity wqg vs (a) vertical velocity computed from (21), which contains only the O

(1) terms in the IG2 omega equation (20) , (b) vertical velocity computed from the full IG2 omega equation (22) w2, (c) 

vertical velocity computed from the BE omega equation (36) wbe, and (d) vertical velocity computed via the PE/DFI technique 

wpe, where the PE model is initialized with the geostrophic velocity field. The least-squares linear fit is shown by the dashed gray 

line. The solid black line corresponds to a linear relationship with a slope of 1
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Fig. 15. (a) Comparison of relative vorticity advection along a geostrophic trajectory at 100 m. The subscript g indicates a 
geostrophic field and the subscript ag indicates an ageostrophic field, which is computed from the IG1 field minus the 
geostrophic field. (b) Comparison of vertical velocity along same trajectory
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Fig. 16. (a) Water parcel trajectories computed from the geostrophic velocity field (dashed line), the IG1 total velocity field (thin 
solid line), and the IG2 total velocity field (thick solid line). (b) Net vertical displacement of water parcels moving with the IG1 
total velocity field (thin solid line), the IG2 total velocity field (thick solid line), and determined by integrating the QG vertical 
velocity wqg along a geostrophic trajectory as reported in Shearman et al. (1999) (dashed line) 
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Fig. 17. The IG1 ageostrophic velocity (arrows) and dynamic height field (m2 s−2) at (a) 100 m and (b) 200 m. Contour interval 

for dynamic height is 0.1 m2 s−2 with thick contours at 2.5 and 3.0 m2 s−2. Gray solid circles indicate the center position of 
ageostrophic vortices
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Fig. 18. The nondivergent ageostrophic velocity field (arrows), computed from the gridded ADCP data, and contours of 

dynamic height (m2 s−2) at 100 m. Contour interval for dynamic height is 0.1 m2 s−2 with thick contours at 2.5 and 3.0 m2 s−2. 
Gray solid circles indicate the center position of ageostrophic vortices
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Fig. A1. The ratio of gradient wind to geostrophic wind V/Vg vs | R| found by solving (39). The solution to the exact gradient 



 

 

wind balance (heavy line) and approximate gradient wind balance, using the geostrophic momentum approximation (solid line) 
and the IG1 approximation (dashed line), are shown
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